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Abstract. Agent-based modelling (ABM) has significantly advanced
the simulation of complex systems across various disciplines, including
economic markets, traffic systems, and ecological research. By represent-
ing individuals as autonomous agents operating within a defined envi-
ronment, ABMs facilitate the exploration of system behaviours and the
testing of interventions in a controlled setting. However, the computa-
tional demands of ABMs, particularly in simulating large-scale systems,
pose significant challenges. This article addresses these challenges by
introducing a GPU-accelerated transport model for the Isle of Wight,
leveraging the FLAME-GPU framework to enhance scalability and ef-
ficiency in traffic simulation. By comparing the proposed model with
traditional, non-GPU accelerated simulations, such as SUMO, the study
demonstrates improved performance metrics, including simulation speed
and the ability to handle larger vehicle populations effectively. This con-
tribution not only showcases the potential of GPU acceleration in over-
coming computational constraints of ABMs but also provides a practical
framework for simulating transport systems at a more granular and ex-
tensive scale than previously possible. Through detailed experimentation,
the article illustrates the model’s capability to realistically simulate the
vehicle population of the Isle of Wight, aiming for a balance between
computational tractability and the accurate representation of complex
traffic interactions.
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1 Introduction

Agent-based modelling (ABM) has emerged as a pivotal tool for simulating com-
plex systems across various domains, enabling researchers to explore the dy-
namics of markets [10, 2, 11], traffic systems [23, 14, 13], ecological systems [35,
9, 24], and more. ABM encapsulates interactions between autonomous agents
and their environments, facilitating the examination of individual and collective
behaviours within a controlled computational setting.

Despite ABM’s versatility, its application, particularly in simulating large-
scale phenomena, is often hampered by computational constraints. Simplifica-
tions or reductions in agent populations are common workarounds, though they
may compromise the model’s fidelity and outcomes [12, 29, 1, 15]. This article
addresses these computational challenges within the transportation domain by
leveraging the computational resources of graphics processing units (GPUs)
to simulate traffic on the Isle of Wight, showcasing the potential for GPU-
accelerated ABM in capturing complex transport dynamics.

Our contributions to the field include:

– A scalable traffic simulation using the FLAME-GPU (Flexible Large-scale
Agent Modelling Environment) framework [30], demonstrating the capability
to model large volumes of vehicular traffic.

– A detailed simulation of the Isle of Wight’s transport system, integrating
real-world geographic and traffic data to validate the model’s efficacy.

Previous studies have explored FLAME-GPU’s application in transport [17,
16] and biological systems [26], underscoring the architecture’s scalability and
computational efficiency. However, these works often employ simplified models or
do not address the complexities of real-world networks such as the Isle of Wight’s.
This gap highlights the necessity for a general-purpose, scalable ABM transport
model, which we address by implementing a detailed simulation informed by
established vehicle behaviour models and empirical data.

Our experiments focus on the Isle of Wight’s road network, evaluating the
proposed model’s processing performance and scalability. Key performance met-
rics include the real-time factor, simulation runtime, interaction rates, and vehi-
cle insertion counts, with comparisons drawn against SUMO to benchmark our
model’s performance enhancements in a GPU-accelerated environment.

The remainder of this article is structured as follows: Section 2 reviews exist-
ing transport models and identifies gaps our work aims to fill. Section 3 outlines
the FLAME-GPU framework and our model’s architecture. Section 4 presents
our experimental findings, and Section 5 concludes with an assessment of our
approach, limitations, and future research directions.

2 Literature Review

2.1 Agent-based modelling of transport systems

Agent-based modelling (ABM) has been instrumental in simulating vehicular
dynamics within street networks, offering profound insights into individual-level
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decision-making and its ramifications on traffic flow and congestion. Despite
the contributions, the approach encounters hurdles regarding computational de-
mands, scalability, and the depiction of geographic realities. Notable efforts have
integrated empirical city data to refine traffic signal controls [4], explored multi-
modal transportation navigation [34, 6, 25], and sought to estimate and optimise
emissions [28].

Addressing computational complexity often involves partitioning extensive
simulation areas into manageable sections, facilitating higher real-time factor
simulations. The calibration and validation of ABMs pose significant challenges,
impacting the models’ accuracy. Balancing empirical validity and simplification
is crucial for realistic yet computationally feasible ABMs.

2.2 Road transportation and the role of SUMO

SUMO (Simulation of Urban MObility) [22] is a prominent open-source soft-
ware for microscopic traffic simulation. Introduced in the early 2000s, SUMO
has become a staple in transportation research, offering versatile modelling ca-
pabilities, visualisation tools, and auxiliary features like emission calculation and
route planning. Utilising microscopic car-following models, SUMO simulates in-
dividual vehicle movements and interactions based on dynamic road conditions
and traffic regulations, employing a modified version of Krauss’s car-following
model [21] by default.

While SUMO’s open-source nature and detailed simulation capabilities are
advantageous, the steep learning curve, limited agent behaviour modification,
and notably, its serial CPU-based processing model restrict scalability and per-
formance. High-performance computation comparisons highlight GPUs’ superi-
ority over CPUs in numerical tasks due to their parallel processing architecture
[5]. Transitioning from serial to parallel processing models to exploit GPU ca-
pabilities entails substantial software engineering, posing integration challenges
with established frameworks like SUMO.

The quest for enhanced simulation performance has led to the development
of custom frameworks like CityFlow [36], which claims up to 25 times faster
simulations than SUMO for extensive agent-based networks. Despite such im-
provements, the need for GPU-accelerated solutions for even larger and more
complex network simulations remains unmet, underscoring the potential bene-
fits of parallel computing in traffic simulation.

Our research aims to bridge this gap by leveraging GPU-enhanced ABM
within a microsimulation traffic model, proposing a scalable and complex traf-
fic behaviour simulation framework. By integrating ABM with microsimulation
on the FLAME-GPU platform, we capitalise on GPU parallelism, assigning in-
dividual agent state updates to separate GPU cores. This approach heralds a
significant leap towards realising a computationally efficient, parallelisable traffic
simulator that surpasses the current capabilities of SUMO and similar tools.
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3 Methodology

3.1 FLAME-GPU

FLAME-GPU epitomises a high-performance agent-based simulation framework,
leveraging the parallel computing capabilities of modern GPUs to enhance the
simulation of intricate systems. This framework abstracts GPU complexities,
enabling modellers to focus on the conceptual design rather than the computa-
tional intricacies. Such separation ensures the distinct representation of models
from their execution, facilitating the construction and simulation of expansive
models in feasible timeframes. FLAME-GPU’s versatility extends across various
domains, supporting simulations ranging from pedestrian dynamics [33], through
road networks [17], to cellular biological systems [32]. Employing FLAME-GPU
requires mapping the system under study to an agent-centric paradigm, where
agents embody entities with inherent states, messages facilitate indirect inter-
actions among agents through a global pool, and the environment encapsulates
globally accessible data.

3.2 Traffic simulation model overview

This section delineates our model’s approach to simulating vehicular traffic on
a microscopic scale within a real-world network, capturing individual vehicle
dynamics such as speed and position, and incorporating authentic road attributes
like lanes, intersections, and traffic signals.

The core of our vehicle behaviour model modifies the Krauss car-following
paradigm, also foundational to SUMO’s simulation mechanics [20]. This adap-
tation is encapsulated by:

vsafe(t) = vl(t) +
g(t)− gdes(t)

τb + τ
,

vdes(t) = min[vmax, v(t) + a(v)∆t, vsafe],

v(t+∆t) = max[0, vdes(t)− η],

x(t+∆t) = x(t) + v∆t,

(1)

where gdes = τvl(t) denotes the desired vehicle gap, with τ as driver reaction
time and τb = v

b(v) representing braking time, influenced by average velocity v

and random perturbation η to model deviations from ideal driving.
Lane-changing and intersection navigation are guided by principles outlined

in [7] and [8], with minor technical alterations in implementation that do not
affect principle mechanics, but only serve the purpose of better fitting into
FLAME-GPU architecture.

A system of equations from (1), lane-changing and intersection-crossing rules,
as well as other rules necessary to update the state of the system, are expressed as
a series of agent functions. Agent variables necessary to execute the functions are
stored and exchanged through a global messaging pool - a feature facilitated by
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FLAME-GPU’s design. The request for a state update of the system is fulfilled
by launching function kernels for all agents in the agent-state population. Each
agent is represented by a thread, and as a kernel is launched, a grid of threads
is formed and is subsequently combined into blocks which are then assigned
for concurrent execution to available Streaming Multiprocessors (SMs) within
a GPU. In case the number of threads n exceeds a GPU’s maximum thread
capacity Nmax, it then takes roughly c = n%Nmax steps to complete each kernel
run. While this scheme does not fundamentally change the time complexity of
the algorithm, it allows for a smooth and efficient computational scaling process.

Figure 1 visualises this simulation pipeline. Note that the current implemen-
tation of the traffic simulator accepts the same input files as SUMO, which makes
for straightforward testing and validation.

3.3 Mapping traffic model to FLAME-GPU

In order to translate the transportation model in to the FLAME-GPU frame-
work, a network based messaging approach was adopted for the bulk of agent
communication. This approach allows agents to exist within a static multi-lane
network, using the network structure to query agents within the same or adja-
cent edges or lanes. Both a compressed spare row (CSR) and compressed spare
column (CSC) representation of the network were stored within the agent envi-
ronment allowing for efficient querying of both upstream and downstream edges.
Network lookups are used for calculations to find followers and leaders, essential
components of traversing the network and entering junctions. Elsewhere net-
work communication is used within vehicle following, lane changing and vehicle
insertion (into the network). Within the FLAME-GPU implementation, vehi-
cles make dynamic choices of lanes but use pre-computed routes to reach their
destinations. The equivalent behaviour is observed from within SUMO by using
equivalent route files generated from SUMOs routing tool.

The FLAME-GPUmodel uses agents to represent vehicles. The SUMOmodel
parameters and distributions are mapped to FLAME-GPU agent variables. Ve-
hicle agents have three distinct states, the default state is “driving” in which
agents will perform call following, lane changing and traversal through junctions.
Vehicles also utilise states for pre-insertion into the network and pre-removal.
The former uses gap acceptance to ensure vehicles can safely enter a road edge,
the latter allows agents to persist within the model for data collection. Agents
are also used to represent sections of the road network. This facilitates data ag-
gregation and collection. Additionally, agents are used to represent traffic lights
which use a fixed pattern within the FLAME-GPU model.

While our FLAME-GPU model incorporates many of SUMO’s advanced fea-
tures, certain functionalities like vehicle type restrictions, teleporting for dead-
lock resolution, and comprehensive speed limit foresight are not currently sup-
ported. These limitations are addressed by disabling corresponding features in
SUMO for a balanced comparison.
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3.4 Experiment motivation and setup

The objective of our research is to elucidate the computational efficacy of our
proposed solution in simulating extensive, agent-based models with a focus on
vehicular traffic. We utilise the real-time factor (RTF) for evaluation, a metric
denoting the ratio of simulated time to computation time, where an RTF above
one suggests a simulation pace surpassing real-time [27, 18]. Our experiments
set out to benchmark our model’s performance against the SUMO platform,
selected for its prevalent application in traffic simulation studies, with roughly
11,956 references in the literature [18].

Our empirical analysis utilised the Isle of Wight’s transport network, shown
in Figure 3a. Contrary to the use of synthetic networks, which are characterised
by their uniformity, real-world networks offer a heterogeneous and challenging
environment, highlighting our model’s scalability and versatility.

The map was generated from Open Street Map data, as a left hand drive net-
work. JOSM was used to clean the map, and SUMO’s netconvert utility was used
to convert the map to required net.xml format. For simulating traffic flow, we em-
ployed SUMO’s randomTrips.py and duarouter utilities. To scale the simulation
in randomTrips.py we varied the vehicle insertion density parameter –insertion-
density starting from 60 and going up to 600 vehicles per hour per kilometer
of road network’s length, with parameter -e being varied in increments of 60,
starting from 60 and going up to 360 seconds. We also used –validate parame-
ter as network may be not fully connected. Following this procedure, duarouter
was used to produce routes. To ensure data reliability, each simulation was ex-
ecuted three times, spanning from timestep 0 to 3600 seconds, equating to one
hour. Please note, however, that upper end density settings produce thousands
of teleportation events due to congestion and multiple collisions. As a caveat,
it requires mentioning, that currently SUMO has a more elaborate algorithm of
inserting teleported (gridlocked) cars into downstream traffic. This may account
for some additional performance gains that FLAME traffic simulator may have
in test results.

The computational experiments were conducted on a workstation equipped
with an Intel Core i7-5930K CPU, an NVIDIA GeForce RTX 3090 (24 GiB)
GPU, and 64 GB of system memory.

4 Results analysis

In Figure 2, we present four sub-figures comparing our model to SUMO. In the
following paragraph, we break down each graph and describe the results.

In Figure 2a, the RTF is plotted on a log-scale (y-axis) and compares our
model (FLAME-GPU) with SUMO. As the number of vehicles increases in the
simulation, SUMO exhibits a decline in performance, while FLAME maintains
a high RTF, achieving an average of approximately 99 compared to SUMO’s
1.45 at the end of the simulation. These results indicate that our solution can
simulate a larger population of vehicles compared to SUMO in a significantly
shorter time.
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Fig. 1: Simplified state diagram of a single iteration of the FLAME-GPU model.
Circular nodes represent agent states, boxes represent agent functions respon-
sible for behaviour and green diagonal boxes represent messages which create
execution order dependencies between agents and functions.
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(a) Real-time factor compared to the num-
ber of vehicles loaded.

(b) Average simulation run-time in sec-
onds compared to the number of vehicles
loaded.

(c) Simulation state-change per second
compared to the number of vehicles
loaded.

(d) Number of vehicles inserted into the
model compared to the number of vehicles
loaded.

Fig. 2: Benchmark results illustrating performance metrics for both the proposed
traffic simulation and SUMO, conducted on the Isle of Wight.
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To supplement these findings, Figure 2b displays the average simulation time
in seconds as the number of vehicles increases. While SUMO takes over 2,481
seconds (41.35 minutes) to simulate approximately 95,000 vehicles, our proposal
completes the simulation in just around 36 seconds, representing a speedup of
approximately 68 times. Furthermore, SUMO’s simulation time increases linearly
with the number of vehicles, while our model remains relatively consistent.

The interactions between agents and their environment can be computation-
ally intensive as the number of agents increases. In Figure 2c, we compare the
updates per second (the number of state-changes across all agents every second)
with the number of vehicles in the model. The interactions grow linearly with
the number of vehicles in our solution, while SUMO maintains an average of
around 116,000 updates per second. The final data point, with 95,000 vehicles
loaded, shows FLAME-GPU performing vehicle updates approximately 62 times
faster than SUMO.

The last benchmark test in Figure 2d evaluates how quickly the model can
compute available spots on the street network to insert a new vehicle. SUMO
appears to outperform our solution, indicating that SUMO is more efficient in
loading new vehicles into street networks. The graph reveals that FLAME-GPU’s
insertion rate decreases as the number of vehicles increases, partly due to small
differences in congestion clearance compounding over time. If vehicles join a
queue faster than they leave, even minor differences in clearance rate can quickly
accumulate, leading to fewer available slots for new vehicles to insert in the model
with the slower clearance rate.

These results demonstrate the performance advantages of our solution over
SUMO and vice versa. Algorithmic efficiency in loading new agents into an envi-
ronment is an area where SUMO excels. However, in terms of raw performance
(the time taken to execute a model from timestep 0 to N), simulations executed
using GPU can be significantly faster than those primarily utilising the Central
Processing Unit (CPU). It is worth noting that some modellers may reduce the
granularity of agent representation as computational complexity increases, mak-
ing the model less representative of the complex system being simulated. This is
a challenge that most agent-based modellers and simulation experts must con-
tend with. Hopefully, our contribution to the literature can empower researchers
to leverage GPU-based modelling frameworks to develop more accurate and re-
flective models of the real world. In the following section, we revisit our findings
and discuss future avenues for further exploration while assessing the strengths
and weaknesses of our solution.

5 Conclusion

This article introduces a GPU-enhanced framework for agent-based modelling,
specifically tailored to address the computational challenges associated with sim-
ulating extensive agent populations in the transport domain. Our contributions
are twofold: (1) the development of a scalable modelling framework, and (2)
the application of this framework to simulate vehicle dynamics on the Isle of
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Wight, demonstrating significant performance advantages over traditional meth-
ods. Comparative experiments against the SUMO transport simulator [3, 19] un-
derscore our framework’s efficiency, with FLAME-GPU [31, 30] achieving a 68x
faster simulation rate for equivalent scenarios. Most notably, our model facili-
tated the simulation of over 95,000 vehicles within 36 seconds, a stark contrast to
SUMO’s 2,481 seconds, enabling the representation of realistic agent populations
and complex environments.

(a) The Isle of Wight’s street network (b) Traffic simulation at various junctions

Fig. 3: The Isle of Wight road network as modelled in our simulation alongside
a depiction of simulated traffic within the Newport area.

Despite its successes, our model does not incorporate certain features present
in SUMO, such as vehicle teleportation and adaptive traffic lights, which may
limit the realism and adaptability of the simulation. Additionally, the model’s
handling of roundabouts and speed limit transitions could be improved to better
mirror real-world driving behaviours.

Future work will focus on refining these aspects, enhancing the simulation’s
fidelity, and expanding its capabilities to model emerging transport technologies,
such as electric vehicles. Such developments will not only address the computa-
tional scalability challenges but also contribute to a more nuanced understanding
of traffic dynamics and energy demands, aligning with broader environmental
and policy objectives.
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