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Abstract

In this letter, we revisit the quantisation problem for a fundamental model of classical me-
chanics—the Zhukovsky-Volterra top. We have discovered a four-parametric pencil of compatible
Poisson brackets, comprising two quadratic and two linear Poisson brackets. Using the quantisation
ideal method, we have identified two distinct quantisations of the Zhukovsky-Volterra top. The
first type corresponds to the universal enveloping algebras of so(3), leading to Lie-Poisson brackets
in the classical limit. The second type can be regarded as a quantisation of the four-parametric
inhomogeneous quadratic Poisson pencil. We discuss the relationships between the quantisations
obtained in our paper, Sklyanin’s quantisation of the Euler top, and Levin-Olshanetsky-Zotov’s
quantisation of the Zhukovsky-Volterra top.
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1 Introduction

The classical and quantum tops are fundamental models in physics. The anisotropic Zhukovsky-Volterra
[1, 2] and Euler tops [3] stand out as the simplest yet non-trivial examples. In the classical case, they
describe the motion of a free rigid body in the presence or absence of an external field. In the quantum
domain, they characterise the dynamics of an isolated spinning particle, an atom or a nucleus subjected
to a constant external field, and contribute to the description of phase transitions in atomic nuclei in
the Lipkin-Meshkov-Glick model (see [4] and references therein). Their significance in classical and
quantum mechanics motivates us to revisit the problem of quantisation using a novel approach.

The classical Zhukovsky-Volterra system [1, 2] is a dynamical system in three-dimensional phase
space with coordinates Sα, α ∈ 1, 3 (representing rotational momenta or classical spin), described by
the following system of three ordinary differential equations:

dSα

dt
= 2(jβ − jγ)SβSγ + 2(kβSγ − kγSβ), (1)

where α, β, γ represent a cyclic permutation of the indices 1, 2, 3, jα are parameters of anisotropy
(reciprocals of the components of the inertia tensor), and kα are the constant components of the external
field.

It is well-known that the Zhukovsky-Volterra (and Euler) top admits a pencil of compatible Lie–
Poisson brackets. By extending the phase space with a new coordinate S0, which is a constant of
motion of the dynamical system, one can also construct quadratic Poisson brackets on the resulting
four-dimensional space. For the Euler top, the later coincides with the famous Sklyanin algebra [10].
In the case of the Zhukovsky-Volterra top, it represents a known modification of the Sklyanin algebra
[6].

In this paper, we demonstrate that Zhukovsky-Volterra and Euler tops admit a second inhomoge-
neous quadratic Poisson bracket. Furthermore, we establish that all four Poisson brackets are mutually
compatible in the sense of Magri [9], and define a family of Poisson brackets:

{Sα, Sβ}a,b,c,d = 2 ((c + d jα)S0Sγ + (a+ b jγ)Sγ + d kγS0 + b kγ) ,
{S0, Sα}a,b,c,d = 2e (jβ − jγ)SβSγ + 2e (kβSγ − kγSβ),

(2)

where a, b, c, d and e are arbitrary parameters of the family (if e 6= 0, then by a rescaling of the bracket
one can set e = 1 without a loss of generality). The existence of the second quadratic structure in these
models, along with the compatibility of all four Poisson brackets, seems to be a novel result to the best
of our knowledge. If e 6= 0, the variable S0 plays the role of the Hamiltonian for the entire family of the
brackets.

We address the quantisation problem through a novel approach based on the concept of quantisation
ideal, initially introduced in [12] and further developed in [13]-[16]. This approach is tailored for
dynamical systems defined on free associative algebras. As a preliminary step, we lift the Zhukovsky-
Volterra system to the free algebra A = C〈Ŝ0, Ŝ1, Ŝ2, Ŝ3〉 using the same Lax representation as applied
to the matrix-valued system [17]. The resulting system defines a derivation d

dt
: A → A of the algebra.

Subsequently, we seek a quantisation ideal J ⊂ A, which is an ideal satisfying two conditions:

(i) the ideal J is d
dt
–stable: d

dt
J ⊂ J ;
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(ii) the quotient algebra A/J admits a basis of normally ordered monomials.

The quotient algebra A/J is then said to be a quantum algebra for the system. The first condition
implies that d

dt
decends to a derivation of the quantum algebra, defining the quantum Zhukovsky-Volterra

system with commutation relations determined by the generators of the quantisation ideal.
As a candidate for a quantisation ideal, we consider the ideal I genrated by the set of polynomials:

I = 〈ŜαŜβ − ŜβŜα + Aγ(Ŝ0Ŝγ + ŜγŜ0) +KγŜ0 +MγŜγ +Nγ,

ŜγŜ0 − Ŝ0Ŝγ +Bγ(ŜαŜβ + ŜβŜα) + (lαŜβ − lβŜα) |α, β, γ ∈ 1, 3〉.

These polynomials generalise the commuation relations in the Sklyanin algebra [10] and the algebra
obtained in [6]. The ideal I is parametried by the set of 18 constants Aα, Bα, Kα,Mα, Nα and lα, α ∈ 1, 3.
The fulfillment of conditions (i) and (ii) leads to a system of algebraic equations on these parameters,
which we have solved in the paper to derive the most general quantisation ideal of the form I.

In the simplest case Aγ = Bγ = 0 condition (ii) is satisfied due to the Poincare-Birkchoff-Witt
Theorem. Ideals satisfying condition (i) almost immideatly give rise to a quantum algebra isomorphic
to the universal enveloping algebra given by (2) with c = d = e = 0, and with the central element Ŝ0.

We treat the generic case Aγ 6= 0, Bγ 6= 0 separately. Firstly, we identify and solve equations
for the coefficients of the ideal to fulfill condition (ii) for quadratic and cubic monomials (Theorem
3.1). Condition (i) imposes firther constraints on the coefficients of the ideal (Propositions 3.2 and
3.3). Finally we propose a reparametrisation of the coefficients that resolve all the constraints and is
convenient for a classical limit.

Ultimately, we obtain a general quantisation ideal that leads to commutation relations:

[Ŝα, Ŝβ] = − h

1+h2jγ

(

C+(jβ+jα)D
)

(

(C +Djγ)(Ŝ0Ŝγ + ŜγŜ0) + 2(A+Bjγ)Ŝγ + 2DkγŜ0 + 2Bkγ

)

,

[Ŝγ, Ŝ0] = −h
(

(jα − jβ)(ŜαŜβ + ŜβŜα) + 2(kαŜβ − kβŜα)
)

.

(3)
Here h = −i~ can be regarded as a quantisation (Planck) constant.

The five parameters h, A, B, C, D defines the quantum algebra. The classical limit corresponds
to h = 0, in which the algebra becomes commutative. We may assume that the parameters A =
A(h), B = B(h), C = C(h), D = D(h) are analytic functions of the variable h at h = 0. They
represent a trajectory to the classical boundary in the space of parameters. Evaluating the standard
classical limit of the commuation relations (3) results in the Poisson brackets family (2), where a =
A(0), b = B(0), c = C(0), d = D(0), e = 1.

The quantum Sklyanin algebra [10] corresponds to the case of the Euler top (kα = 0), with homoge-
neous quadratic commutation relations having A = B = 0, e = 1 and certain choices of functions C(h)
and D(h) (see Section 3.6.1). In the quantisation of the Zhukovsky-Volterra by Levin-Olshnetsky-Zotov
[6], the commutation relations do not have the form (3), and they do not satisfy condition (i) for the
lifted equation on A, but satisfy condition (ii). Their quantum system is a deformation of the classical
one, i.e. they deform both the commutative algebra and the equation of motion.

The structure of the present paper is as follows: in Section 2, we explore the classical Zhukovsky-
Volterra (and Euler) top, its integrals and four compatible Poisson structures. In Section 3, we apply the
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quantization ideal method and identify a five-dimensional variety of quantizations. Finally, in Section
4, we provide a brief summary and discuss the open problems.

2 Classical Zhukovsky-Volterra and Euler tops

2.1 Equation of motion and its first integrals

Motion of a rigid body in a constant external field, known as the classical Zhukovsky-Volterra top, can
be characterised by the vector of angular momenta (S1, S2, S3) ∈ R3, whose components satisfy the
following system of ordinary differential equations

dSα

dt
= 2(jβ − jγ)SβSγ + 2(kβSγ − kγSβ). (4)

Here (k1, k2, k3) denotes a vector of a constant external field and j1, j2, j3 are reciprocals of inertia
momentum of the diagonal inertia tensor. In system (4) and thereafter we assume that indices (α, β, γ)
represent a cyclic permutation of the table (1, 2, 3).

The classical Zhukovsky-Volterra top (4) admits two first integrals

C =
1

2

3
∑

α=1

S2
α, H =

1

2

3
∑

α=1

jαS
2
α +

3
∑

α=1

kαSα. (5)

When the external field vanishes (kα = 0), system (4) reduces to the classical Euler top.

2.2 Linear Poisson pencil

It is well known that system (4) is Hamiltonian

dSα

dt
= {Sα, H}1.

with respect to the standard linear Poisson structure on so∗(3):

{Sα, Sβ}1 = 2Sγ, (6)

and the Hamiltonian H . It is also Hamiltonian

dSα

dt
= {C, Sα}

′
1.

with respect to the linear inhomogeneous Poisson structure

{Sα, Sβ}
′
1 = 2(jγSγ + kγ), (7)

and the Hamiltonian C.
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The functions C and H are Casimir functions of the brackets { , }1 and { , }′1, respectively, i.e.,

{C, Sα}1 = {H,Sα}
′
1 = 0, α ∈ 1, 3.

The brackets { , }1 and { , }′1 are compatible in the sense of Magri [9], meaning that a linear
combination of the brackets

{Sα, Sβ}a,b = 2(a + jγb)Sγ + 2kγb, (8)

with arbitrary constant parameters a and b is a Poisson bracket. The Casimir function of this bracket
is the following function

Ca,b = aC + bH.

2.3 Extension of the phase space and quadratic Poisson structures

Let us now consider quadratic Poisson structure for the Zhukovsky-Volterra top. For this purpose we
need to extend the phase space of the model with a new variable S0, which is a constant of motion
(dS0

dt
= 0) and a central element of two linear brackets:

{S0, Sα}1 = 0, {S0, Sα}
′
1 = 0, α ∈ 1, 3.

In the extended phase space we are looking for an inhomogeneous quadratic Poisson structure of
the form:

{Sα, Sβ} = 2aγS0Sγ + 2KγS0, (9a)

{S0, Sα} = e
(

2(jβ − jγ)SβSγ + 2(kβSγ − kγSβ)
)

, (9b)

where aα, Kγ are some constants.

Proposition 2.1 (i) The brackets (9) satisfy the Jacobi identity iff

aα = c+ jαd, Kα = kαd, α ∈ 1, 3. (10)

(ii) The Poisson brackets given by (9) with the structure constants defined by (10) are compatible with
the pencil of linear-constant Poisson brackets { , }a,b defined by (8) for any values of c, d, a, b, e.

Furthermore, in order for the equation (9b) to coincide exactly with the equation of motion we will
further impose the normalization condition e = 1. This can be always achieved if e 6= 0. The the case
e = 0 can be effectively reduced to the previously considered linear case. Thus we obtained the Poisson
brackets:

{Sα, Sβ}a,b,c,d = 2
(

(c+ jαd)S0Sγ + (a+ jγb)Sγ + kγdS0 + kγb
)

, (11a)

{S0, Sα}a,b,c,d = 2(jβ − jγ)SβSγ + 2(kβSγ − kγSβ), (11b)

which depend on four arbitrary parameters a, b, c, d.
The above Proposition can be proven by solving equations on the coefficients aγ , Kγ that are obtained

from the Jacobi identity. We derived the brackets (11) as a classical limit of the general commutation
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relations (44) outlined in Proposition 3.5. Consequently, the fulfillment of the Jacobi identity is guar-
anteed for any choice of a, b, c, d.

Remark 1. Note that (11) represents a linear combination of two quadratic brackets if we set
c+ d = 1.

Remark 2. Observe that in the case da− bc = 0, c 6= 0, d 6= 0, the linear term in the equation (11a)
can be obtained simply by shift of the element S0: S0 → S0 + ν, where ν = ac−1 = bd−1.

Applying the method of indeterminate coefficients, we have identified two Casimir functions of the
brackets (11):

C1 =
3

∑

α=1

(c+ jαd)S
2
α + 2d

3
∑

α=1

kαSα − 2(da− bc)S0, (12a)

C2 =
3

∑

α=1

S2
α + dS2

0 + 2bS0. (12b)

3 Quantum Zhukovsky-Volterra top and quantisation ideals

In order to apply the quantisation ideal approach we lift equations of the classical commutative
Zhukovsky–Volterra top to a free associative algebra A = C〈Ŝ0, . . . , Ŝ3〉 using a Lax representation,
which is similar to the commutative case.

In the simplest case of Lie type ideals the existence of a basis of normally ordered monomials
B = 〈Sn0

0 Sn1

1 Sn2

2 Sn3

3 |nk ∈ N〉 in the quotient algebra A/I, or a PBW basis, is following from the
Poincaré–Birkhoff–Witt Theorem. The stability condition (i) leads to a quantisation that in the classical
limit results in the pencil of compatible linear Poisson brackets (8).

For a quadratic ideal I ⊂ A, we examine the conditions emerging from the requirement of existence
of a PBW basis in the quotient algebra A/I (condition (ii)) in order to find equations on the parameters
of the ideal. We focus on the subspaces spanned by monomials BN = 〈Ŝn0

0 Ŝn1

1 Ŝn2

2 Ŝn3

3 |n0+n1+n2+n3 6

N, nk ∈ N〉 with N = 2 and N = 3.
Subsequently, we consider the stability condition (i). The quantisation obtained in this way depends

on five parameters, and in the commutative classical limit results in a four parametric family of com-
patible Poisson brackets (11). Finally we compare the results obtained with Sklyanin’s quantisation of
the Euler top and Levin–Olshanetsky–Zykov quantisation of the Zhukovsky–Volterra top.

3.1 Equation of motion on free associative algebra

In the classical commutative case the Lax representation for the Zhukovsky-Volterra model was discov-
ered in [5] and studied in [6], [7]. The Lax pair with matrix valued entries Sα was discussed in [17].
Here, we employ the same Lax pair, replacing matrices Sα by elements Ŝα from the free algebra A:

L̂ = i
3

∑

α=1

(uαŜα +
kα
uα

)σα, M̂ = i
3

∑

α=1

uβuγŜασα, (13)
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where uα, α ∈ 1, 3 are coordinates of a point on the elliptic spectral curve

u2
1 − u2

2 = j1 − j2, u2
2 − u2

3 = j2 − j3,

and σα are standard Pauli matrices. The Lax equation

dL̂

dt
= [L̂, M̂ ], (14)

leads to the dynamical system

dŜα

dt
= (jβ − jγ)(ŜβŜγ + ŜγŜβ) + 2(kβŜγ − kγŜβ), α ∈ 1, 3, (15)

that together with the equations
dŜ0

dt
= 0, (16)

represent a lift of the of the classical commutative Zhukovsky-Volterra top (4) to the free algebra A.

3.2 Quantisation ideals of Lie type

Let us at first consider a Lie type ideal J , generated by polynomials:

J = 〈fγ = ŜαŜβ − ŜβŜα − aγŜγ − bγ , gγ = Ŝ0Ŝγ − ŜγŜ0 |α, β, γ ∈ 1, 3〉, (17)

where aγ, bγ are six arbitrary constants and Ŝ0 is a central element of the algebra A. It follws from
the Poincare-Birkchoff-Witt theorem that the quotient algebra A/J admits a basis of normally ordered
monomials B = 〈Sn0

0 Sn1

1 Sn2

2 Sn3

3 |nk ∈ N〉, which is refered as a PBW basis.
The ideal (17) is a quantisation ideal for system (15), (16) if J it is stable with respect to the

dynamics.

Proposition 3.1 The ideal J is d
dt
–stable, i.e. dJ

dt
⊂ J if and only if

aγ = 2(a+ jγb), bγ = 2kγb, (18)

where a, b are arbitrary constants.

Sketch of the proof: The stability conditions can be obtained from the requirement that the time
derivatives of the ideal generators belong to the ideal. The conditions of stability of the generators gγ
do not impose any constraints on the constants aγ , bγ. It follows from the conditions dfγ

dt
⊂ J , γ ∈ 1, 3

that

(j1 − j2)a3 + (j2 − j3)a1 + (j3 − j1)a2 = 0, bγ(jα − jβ) = kγ(aα − aβ), α, β, γ ∈ 1, 3.

The above implies (18). ✷
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The statement of the Proposition means that the quantisation ideal of the Lie type effectively depend
on two parameters

J(a,b) = 〈ŜαŜβ − ŜβŜα − 2(a+ jγb)Ŝγ − 2kγb, Ŝ0Ŝγ − ŜγŜ0 |α, β, γ ∈ 1, 3〉,

that in the classical limit reduces to the Poisson pencil (8). The center of the quantum algebra A/J(a,b)

is generated by Ŝ0 and aĈ + bĤ , where

Ĉ =
1

2

3
∑

α=1

Ŝ2
α, Ĥ =

1

2

3
∑

α=1

jαŜ
2
α +

3
∑

α=1

kαŜα. (19)

The specification a = i~ and b = 0 leads to the standard commutation relations

[Ŝα, Ŝβ] = 2i~Ŝγ, [Ŝ0, Ŝα] = 0

for so(3) quantum systems. On the algebra A/J(i~,0) the quantum Zhukovsky-Volterra system (15),
(16) can be presented in the Heisenberg from

i~
dŜα

dt
= [Ŝα, Ĥ]. (20)

The center of the quantum algebra A/J(i~,0) is generated by the elements Ŝ0 and Ĉ. The classical
limit in this case results in the Poisson brackets (6), Hamiltonian H and Casimir element C (5).

The second choice of specification a = 0 and b = i~ leads to commutation relations

[Ŝα, Ŝβ]
′ = 2i~(jγŜγ + kγ), [Ŝ0, Ŝα]

′ = 0

on the algebra A/J(0,i~). Here we use “prime” in [·, ·]′ to emphasize that the multiplication rules the
algebras A/J(i~,0) and A/J(0,i~) are different.

In the algebra A/J(0,i~) the center is generated by the elements Ŝ0, Ĥ (19), and the element Ĉ
becomes the Hamiltonian for the quantum Zhukovsky-Volterra system

i~
dŜα

dt
= [Ĉ, Ŝα]

′ . (21)

The classical limit in the case of algebra A/J(0,i~) results in the Poisson brackets (7), Hamiltonian C
and Casimir element H (5).

3.3 Quadratic ideals: the PBW condition

We start with consideration of a quite general ideal I ⊂ A genrated by quadratic polynomials:

I = 〈Fγ = ŜαŜβ − ŜβŜα + Aγ(Ŝ0Ŝγ + ŜγŜ0) +KγŜ0 +MγŜγ +Nγ ,

Gγ = ŜγŜ0 − Ŝ0Ŝγ +Bγ(ŜαŜβ + ŜβŜα) + (lαŜβ − lβŜα) |α, β, γ ∈ 1, 3〉.
(22)
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These polynomials generalise the commutation relations in the Sklyanin algebra [10] and the algebra
obtained in [6].

The first problem is to find conditions on 18 parameters Aα, Bα, Kα,Mα, Nα and lα, α ∈ 1, 3 which
guarantee the existence of the normally ordered monomial basis in the subspaces of quadratic and cubic
polynomials in the quotient algebra A/I.

Theorem 3.1 1. Quadratic polynomials in variables Ŝα, α ∈ {0, 1, 2, 3} admit normal ordering,
modulo the ideal I, i.e. a unique representation in the monomial basis B2, iff

A1B1 6= −1, A2B2 6= 1, A3B3 6= −1. (23)

2. Cubic polynomials admit normal ordering, modulo the ideal I, if conditions (23) satisfied and

3
∑

γ=1

AγBγ +
3
∏

γ=1

AγBγ = 0, (24)

B1 +B2 +B3 = 0, (25)

Kα =
(Aβ − Aγ +BαAβAγ)

Bα(1 + AβBβAγBγ)
lα, (26)

Mα = 2νAα − µ
(3 + AβBβ −AγBγ + AβBβAγBγ

1 + AβBβAγBγ

)

, (27)

Nα = νKα, α ∈ 1, 3, (28)

Bα 6= 0, A2
αB

2
α 6= 1, α ∈ 1, 3, (29)

(1 + A1B1 − A2B2 − A1A2B2B1)
2 + 16A1A2B1B2 6= 0, (30)

where µ, ν are arbitrary parameters, and indices α, β, γ are cyclic permutation of the set 1, 2, 3.

Sketch of the Proof. (1.) We regard Fγ = 0, Gγ = 0, γ ∈ {1, 2, 3} as a system of six linear equations

with respect to the quadratic monomials ŜiŜj , i > j which are not normally ordered. This system
admits a unique solution if and only if the conditions (23) are satisfied. Its solution enables us to span
any polynomial of degree less or equal to two in the basis B2 of the normally ordered monomials, modulo
the ideal J .

(2) The set of possible 64 cubic monomials contains 20 normally ordered monomials. The rest 44
unordered monomials can be expressed in the basis B3 solving the system of 48 polynomial equations

ŜβFα = 0, FαŜβ = 0, ŜβGα = 0, GαŜβ = 0, α ∈ {1, 2, 3}, β ∈ {0, 1, 2, 3}.

The solution of the above system enables one to represent any cubic polynomial in A in the basis B3

uniquely, modulo the ideal I. The resolvability conditions for this overdetermined system of linear
equations leads to (24)-(30). ✷

Remark 3. The quantum ideals and PBW conditions for the quadratic structures of the quantum
Euler top are obtained by putting lα = 0, Kα = 0, Nα = 0, α ∈ 1, 3 in the formulae above.
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3.4 Stability of the quadratic ideal

3.4.1 Dynamical stability of the ideal and projective parametrisation

We will denote J the ideal I (22), whose parameters satisfy conditions (23)-(30) (Theorem 3.1). The
stability of the ideal with respect to the dynamics (15), (16) impose further constraints.

Proposition 3.2 The ideal J is d
dt
–stable iff

Bα = h(jβ − jγ), lα = 2hkα, (31)

where h is an arbitrary constant.

There is a convenient parametrisation of parameters Aα, satisfying (24) with Bα satisfying (31).

Proposition 3.3 The coefficients Aα satisfying condition (24) with the constants Bα defined by (31)
can be parametrized as follows:

Aα =
1

hJα

Jβ − Jγ

jβ − jγ
, α ∈ 1, 3, (32)

where Jα satisfy the following inequalities:

Jα 6= 0, Jα 6= Jβ + Jγ, α ∈ 1, 3, (33)

(J1 + J2 − J3)
4 + 16J1J2 (J1 − J3) (J2 − J3) 6= 0 (34)

and are arbitrary otherwise.

The statement of Proposition 3.3 can be checked by a direct substitution of (31), (32) in (24).
Conditions (33), (34) represent inequalities (29),(30), where Aα is given by (32).

Remark 4. Observe that there exists another then (32) parametrization of Aα, namely:

Aα = −
1

hJ̃α

J̃β − J̃γ

jβ − jγ
, α ∈ 1, 3, (35)

The parametrizations (32), (35) are equivalent. The equivalence is achieved by an invertible map [18]:

J̃α = Jα(Jα − Jβ − Jγ).

The structure constants Kδ, as it follows from the formula (26) and the above form of Aα, Bα, lα, are:

Kδ = −
2

h

kδ
Jδ

3
∑

α=1

jα(Jβ − Jγ)

3
∏

α=1

(jβ − jγ)

, δ ∈ 1, 3. (36)
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The structure constants Mα, as it follows from the formula (27) are the following:

Mα =
2ν

hJα

Jβ − Jγ

jβ − jγ
+ µ

(J1 + J2 + J3)

Jα

, α ∈ 1, 3. (37)

In the result the generators of the ideal J acquire the following explicit form:

ŜαŜβ − ŜβŜα +
1

hJγ

Jα − Jβ

jα − jβ

(

(Ŝ0 + ν)Ŝγ + Ŝγ(Ŝ0 + ν)
)

+ Kγ(Ŝ0 + ν) +

µ
3
∑

α=1

Jα

Jγ

Ŝγ , (38a)

ŜγŜ0 − Ŝ0Ŝγ + h
(

(jα − jβ)(ŜαŜβ + ŜβŜα) + 2(kαŜβ − kβŜα)
)

, γ ∈ 1, 3, (38b)

where the indices α, β, γ constitute the cyclic permutations of the indices 1, 2, 3 and the ideal parameters
(J1 : J2 : J3, n,m, h) belong to the space CP 2 × C3.

3.4.2 The Casimir elements

Let us now describe the Casimir elements of the algebra (22) with the structure constants (31)-(36).

Proposition 3.4 The following elements:

Ĉ1 = −

3
∏

α=1

(Jβ − Jγ)

3
∏

α=1

(jβ − jγ)

(Ŝ0 + ν)2

h4
3
∏

δ=1

Jδ

+

3
∑

α=1

Jβ − Jγ

jβ − jγ

Ŝ2
α

h2Jα

+

3
∑

α=1

Kα

h
Ŝα − µ

(
3
∑

α=1

Jα)(
3
∑

α=1

jαJα(Jβ − Jγ))

h3
3
∏

δ=1

Jδ

3
∏

α=1

(jβ − jγ)

Ŝ0,

(39)

and

Ĉ2 = −
3

∑

α=1

1

h2

Jβ − Jγ

jβ − jγ
(Jα − Jβ − Jγ)Ŝ

2
α+

2

3
∑

α=1

kα
h2

jα(Jβ − Jγ)(Jα − Jβ − Jγ)− jβ(Jγ − Jα)Jγ − jγ(Jα − Jβ)Jβ

(j1 − j2)(j3 − j1)(j2 − j3)
Ŝα−

µ(
3
∑

α=1

Jα)(
3
∑

α=1

jα(Jβ − Jγ))

h3
3
∏

α=1

(jβ − jγ)

Ŝ0

(40)

are central elements of the algebra of the algebra (22) with the structure constants (31)-(36).

Idea of the Proof. The Casimir elements are found using the method of the indeterminate coefficients
in the assumption of the linear-quadratic form of the Casimirs.

Remark 5. From (38b) it follows that Heisenberg equation of motion with respect to Ŝ0:

i~
dŜγ

dt
= [Ŝγ , Ŝ0], γ ∈ 1, 3

coincides — on the quotient algebra — with the dynamical equations (15) if and only if h = −i~.
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3.5 The variety of quantum algebras and the classical limit

3.5.1 Affine re-parametrisation of the ideal

In this subsection we give another parametrisation of the ideal that yields a quantum analogue of the
Poisson pencil structure. It is based on the observation that a simultaneous re-scaling of the parameters
Jα → Ĵα = QJα, Q 6= 0 does not affect the ideal generated by the polynomials (38).

Lemma 3.1 Let
3
∑

α=1

Jαjβjγ(jβ − jγ) 6= 0. Then up to projective equivalence Ĵα = QJα the structure

constants Ĵα can be parametrised as follows:

Ĵα = 1 + h2jα

(

C + (jβ + jγ)D
)

, α ∈ 1, 3. (41)

where C and D are arbitrary complex parameters.

Proof. The sysetem of three equations on variables C,D and Q

QJα = 1 + h2jα

(

C + (jβ + jγ)D
)

, α ∈ 1, 3

admits a unique solution

C =
3

∑

α=1

Jαjα(jβ − jγ)

h2
3
∑

α=1

Jαjβjγ(jβ − jγ)

, D = −

3
∑

α=1

Jα(jβ − jγ)

h2
3
∑

α=1

Jαjβjγ(jβ − jγ)

, (42)

and

Q =

3
∏

α=1

(jβ − jγ)

3
∑

α=1

Jαjβjγ(jβ − jγ)

.

✷

Remark 6. In terms of the paramters C,D the inequalities (33), (34) take the form

(h2 (C (j1 + j2 − j3) + 2Dj1j2) + 1) 4+
16h4 (j1 − j3) (j2 − j3) (C +Dj1) (C +Dj2) (h

2j2 (C +D (j1 + j3)) + 1) (h2j1 (C +D (j2 + j3)) + 1) 6= 0,

1 + h2 (C (jα + jβ − jγ) + 2Djαjβ) 6= 0, 1 + h2jα (C +D (jβ + jγ)) 6= 0, α ∈ 1, 3.
(43)

The following Proposition is the main result of the present article:

12



Proposition 3.5 A quantisation ideal of the form (22) for the Zhukovsky–Volterra top (15), (16) leads
to a quadratic quantum algebra with the commutation relations:

[Ŝα, Ŝβ] = −
2h

1 + h2jγ
(

C + (jβ + jα)D
)

(

(C+Djγ)
(Ŝ0Ŝγ + ŜγŜ0)

2
+(A+Bjγ)Ŝγ+DkγŜ0+Bkγ

)

, (44a)

[Ŝγ, Ŝ0] = −h
(

(jα − jβ)(ŜαŜβ + ŜβŜα) + 2(kαŜβ − kβŜα)
)

, γ ∈ 1, 3, (44b)

where parameters h, A, B, C, D satisfy the inequalities (43) and arbitrary otherwise.

Remark 7. The parameters ν, µ are related with the constants A, B, C, D, h as follows:

νD = B, 2νhC + µ
(

3 + h2
(

2D

3
∑

α=1

jβjγ + C

3
∑

α=1

jα
)

)

= 2hA. (45)

3.5.2 The classical limit

Let us now assume that the functions A, B, C, D are analytical functions of h:

A = a+O(h), B = b+O(h), C = c+O(h), D = d+O(h). (46)

Under such the assumption the quantum algebra (44) is a quantum deformation of the classical inhomo-
geneous quadratic Poisson algebra with the Poisson brackets (11) labeled by four parameters a, b, c, d.
Indeed, using (44) and the expansions (46), it is easy to see that in the limit h → 0 the right-hand-side
of (44) is exactly { , }a,b,c,d multiplied by −h ( i.e. by i~). The inequalities (43) are obviously satisfied
in the neighbourhood of h = 0.

In terms of parameters A, B, C, D, the central elements (47)-(48) of the quantum algebra take the
form:

Ĉ1 = −

h2
3
∏

α=1

(C +Djα)(DŜ2
0 + 2BŜ0)

D
3
∏

α=1

(1 + h2jα(C + (jβ + jγ)D))

+

3
∑

α=1

(C +Djα)Ŝ
2
α + 2DkαŜα

(1 + h2jα(C + (jβ + jγ)D))
−

− 2(AD − CB)

(D + h2(C2 + CD
3
∑

α=1

jα +D2
3
∑

α=1

jβjγ))

D
3
∏

α=1

(1 + h2jα(C + (jβ + jγ)D))

Ŝ0, (47)

Ĉ2 =

3
∑

α=1

(C +Djα)(1 + h2(C(jβ + jγ − jα) +Djβjγ))Ŝ
2
α + 2

3
∑

α=1

(D + h2(C2 +DCjα −D2jβjγ))kαŜα

− 2(AD − CB)Ŝ0 . (48)
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The classical limit of the central elements Ĉ1 and Ĉ2 yield Casimir elements (12) of the quadratic
Poisson bracket (11):

C1 = lim
~→0

Ĉ1 = lim
~→0

Ĉ2 =

3
∑

α=1

(c+ djα)S
2
α + 2d

3
∑

α=1

kαSα − 2(ad− bc)S0 (49)

C2 = lim
~→0

1

h2

D
3
∏

α=1

(C +Djα)

(

Ĉ2 −

D
3
∏

α=1

(1 + h2jα(C + (jβ + jγ)D))

(D + h2(C2 + CD
3
∑

α=1

jα +D2
3
∑

α=1

jβjγ))

Ĉ1

)

= dS2
0 +

3
∑

α=1

S2
α + 2bS0.

(50)

3.6 Comparison with the existing algebras.

3.6.1 Sklyanin algebra

The quantum Sklyanin algebra [10] corresponds to the case of the purely quadratic structure of quantum
anisotropic Euler’s top, i.e to the case µ = ν = 0 and kα = 0, α ∈ 1, 3. The corresponding ideal
generators (38) are simplified to the following form:

Fγ = ŜαŜβ − ŜβŜα +
1

hJγ

Jα − Jβ

jα − jβ

(

Ŝ0Ŝγ + ŜγŜ0

)

, γ ∈ 1, 3, (51a)

Gγ = ŜγŜ0 − Ŝ0Ŝγ + h(jα − jβ)(ŜαŜβ + ŜβŜα), (51b)

The algebra with commutation relations (51) is equivalent to the Sklyanin algebra obtained from the
quantum group considerations, where

Jα =
1 + 2jαh

2 + ((jβ + jγ)jα − jβjγ)h
4

(1 + h2jα)
, α ∈ 1, 3. (52)

The above expression for Jα coincides with the one obtained by Sklyanin after the re-parametrisation
h2 = 1/℘(i~), where ℘ is a Weierstrass elliptic function with g2 = −4(j1j2+ j2j3+ j3j1), g3 = −4j1j2j3,
assuming j1 + j2 + j3 = 0.

It follows from Lemma 3.1 that corresponding functions C = C(h) and D = D(h) are :

C =

1− h4
3
∑

α=1

jβjγ − 2h6j1j2j3

1 + h6(
3
∑

α=1

j3α + j1j2j3)− h8
3
∑

α=1

j2βj
2
γ

,

D =

h2(3 + h4
3
∑

α=1

jβjγ)

1 + h6(
3
∑

α=1

j3α + j1j2j3)− h8
3
∑

α=1

j2βj
2
γ

.

In this case c = 1, d = 0, i.e. in the classical limit we obtain the first quadratic (Sklyanin) brackets.
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3.6.2 Algebra of Levin-Olshanetsky-Zotov

Levin, Olshanetsky and Zotov proposed a quantisation of the Zhukovsky-Volterra top (kα 6= 0) [6].
Basing on the reflection equation algebra they found a quantum algebra defined by the following ideal:

JLOZ = 〈ŜαŜβ − ŜβŜα− i(Ŝ0Ŝγ + ŜγŜ0), ŜγŜ0− Ŝ0Ŝγ + i
(Jα − Jβ)

Jγ

(ŜαŜβ + ŜβŜα) +
i

Jγ

(lαŜβ − lβŜα)〉.

(53)
The re-scaling of the variables

Ŝ0 → ihŜ0, Ŝα →
√

JαJβŜα, lα → h
√

JαJβlα, α ∈ 1, 3

transforms the ideal (53) to the form

J = 〈ŜαŜβ− ŜβŜα+
h

Jγ

(Ŝ0Ŝγ+ ŜγŜ0), ŜγŜ0− Ŝ0Ŝγ+
(Jα − Jβ)

h
(ŜαŜβ+ ŜβŜα)+(lαŜβ− lβŜα)〉. (54)

The ideal J is a partial case of the ideal I (22), corresponding to the following choice of the parameters

Aα =
h

Jα

, Bα =
(Jβ − Jγ)

h
, Kα = 0, Mα = 0, Nα = 0, α ∈ 1, 3. (55)

The parametrisation (55) satisfy the condition (24), (25) of our Theorem 3.1, and therefore the quantum
algebra of Levin, Olshanetsky and Zotov possess PBW property up to monomials of the third order.

The Heisenberg equations with the Hamiltonian Ŝ0 in [6] are not equivalent to the dynamical system
(15) on the free algebra A = C〈Ŝ0, . . . , Ŝ3〉, in other words, the coefficients Bα do not have the form
(31), since the ideal (54), (55) is not invariant with respect to the non-Abelian dynamics (15). The
quantisation presented in [6] can be regarded as a simultaneous deformation of both the commutative
algebra of functions on the phase space and the constants jα of the dynamical system (1). This
deformation depends on a single parameter ~

Jα =

√

(1 + h2jβ)(1 + h2jγ)
√

(1 + h2jα)
, α ∈ 1, 3. (56)

where h2 = 1/℘(i~) with g2 = −4(j1j2+ j2j3+ j3j1), g3 = −4j1j2j3, and j1+ j2+ j3 = 0. In the classical
limit ~ → 0 we get

Jα = 1 + ~
2jα +O(~4), α ∈ 1, 3,

the commutation relations yield the quadratic Poisson structure (11) with c = 1, a = b = d = 0, and
the limiting system coincides with (1).

4 Conclusion and Discussion

The results of this paper pose several interesting mathematical and physical problems. The quantisation
obtained depends on five parameters, one of which can be identified with the Planck constant. This
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quantisation is a generalisation of the commonly used deformation of the so(3) standard Poisson bracket
and Sklyanin’s quadratic Poisson structure in the case of the Euler top. In the classical limit, it results
in a four-parametric family of Poisson brackets, which lead to the same dynamical system as the
Zhukovsky-Volterra (and Euler) top, thereby yielding identical dynamics.

In the quantum case, the problem is more subtle. Although the equations of motion formally
coincide, the observables Ŝα satisfy commutation relations that essentially depend on a choice of the
quantisation parameters. We have reasons to believe that the resulting spectrum of the Hamiltonian
also depends on the choice of the parameters. In order to compare our results with experimental data,
it is necessary to develop a representation theory for the obtained five-parametric algebra and solve the
spectral problem for the corresponding Hamiltonian.
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