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Neural ordinary differential equations for
predicting the temporal dynamics of a ZnO
solid electrolyte FET†

Ankit Gaurav,a Xiaoyao Song,b Sanjeev Kumar Manhasa and

Maria Merlyne De Souza *b

Efficient storage and processing are essential for temporal data processing applications to make

informed decisions, especially when handling large volumes of real-time data. Physical reservoir compu-

ting provides effective solutions to this problem, making them ideal for edge systems. These devices

typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML)

can quickly predict the behaviour of novel materials/devices without explicitly defining any material

properties and device physics. However, previously reported ML device models are limited by their fixed

hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex

system. Here, we propose a novel approach that utilizes a continuous-time model based on neural

ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a

solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance

that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental

dataset successfully captures device transient and steady state behaviour for previously unseen examples

of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20–240 milli-

seconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device

dynamics in B5 seconds, with 60% reduced error over a conventional physics-based model, which

takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of

device characteristics from device to device by a simple change in frequency of applied signal, making it

a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we

demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of

classification of spoken digits.

1. Introduction

In recent years, there has been a significant increase of interest

in neuromorphic computing, driven by artificial intelligence

and novel multi-state devices that mimic biological neural

capabilities such as memristors,1 ferroelectric FET,2 and anti-

ferroelectric FET.3 Such devices necessitate compact models for

device-circuit co-design4 to accelerate the development time of

neuromorphic systems. Although most models are based on

well-known principles of current continuity and electrostatics,

as described by the Poisson equation, some devices can be

more complex and not fully simulated by these laws.5 For

example, an electrical stimulus in an insulating memristor

causes oxygen vacancies or metal ions to move within the

switching layer,6,7 causing either short or long term changes

to the device resistance, leading to a volatile or non-volatile

memory effect.8,9 Several models based on physical principles

have been introduced to model this complex behaviour. These

models typically include two main components: (1) the switch-

ing model, which explains the changes in resistance states, and

(2) the conduction model, which describes the current flow in

response to an applied voltage. The switching mechanisms are

explained by theories of filament growth and rupture,10 ion

migration and redox reactions.7,11 Conduction mechanisms are

described by Poole–Frenkel emission12 (trap-assisted electron

transport in insulators), Schottky emission13 (electric field-

induced reduction of the energy barrier for electron emission),

and space charge limited current14 (excess charge carriers

in poorly conducting materials). Additionally, these devices,
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display distinctive features including hysteresis, plasticity,

negative capacitance, stochasticity, and nonlinearity which add

to their complexity.

To address this challenge various machine learning models

based on multilayer perceptron (MLP) neural networks have

been proposed.15–17 In multi-state devices, a single voltage can

result in different current values corresponding to low and high

resistance states, necessitating a separate model for each state.

For instance, researchers have explored two distinct appro-

aches using MLP neural networks to model memristors. One

approach involves decoupling the switching and conducting

behaviours,17 whereas the second emulates the physical equa-

tions governing state variables and current.16 Additionally,

some models directly use the state variable as input to the

MLP network for accurate predictions.15

In an alternative approach,18 a memristor device model

based on long short-term memory (LSTM) was introduced, that

treats the device switching and conducting behaviour as a time-

series problem. This approach eliminates the need for two

separate models, as the LSTM output depends on the previous

input and output states.

However, LSTM is limited by its dependency on previously

measured signals in the training dataset, necessitating separate

models for distinct signal types i.e. sine and random sine

variations, which hinders its compactness and practical use

in circuit simulations. These approaches result in increased

model complexity, due to separate models for switching/

conducting behaviour or distinct signal types, and the need

for a larger dataset to accurately capture device dynamics.

Additionally, these models encounter challenges in continuous

time modelling due to their structure consisting of a fixed

number of discrete hidden layers. This inflexibility hampers

their ability to adjust to changing temporal dynamics, reducing

their effectiveness for real-time processing and continuous

learning applications of truly neuromorphic systems.

Alternatively, a new family of deep neural network models

called neural ordinary differential equations (neural ODEs) was

introduced, which offers an effective approach for continuous-

time modeling.19 Instead of specifying a discrete sequence of

hidden layers as in traditional neural networks, such as MLP, or

LSTM, neural ODEs parameterize the derivative of the hidden

state using a neural network. Neural ODE models operate at

continuous depths, which means they adapt their evaluation

strategy to each input dynamically. Unlike fixed-depth archi-

tectures, neural ODEs can have varying depths based on the

problem at hand. The output is computed using a black-box

differential equation solver for any given time t, making them

also useful for irregularly sampled data. Moreover, neural ODEs

are both parameter–efficient, typically requiring fewer parameters

than traditional neural networks, and memory-efficient, because

the initial state is sufficient to predict the dynamical state. This

efficiency translates to better performance with smaller datasets

during training.19

As an example, the transformation of the input state x0 using

a discrete sequence of hidden layers as in traditional neural

networks vs. neural ODEs is shown in Fig. 1a and b. Consider

the transformation of input from x0 to x1 by a residual network

(ResNet), as shown in Fig. 1a.

x1 = x0 + f1(x0,y1) (1)

where x0 is the current value, x1 is the next estimated value and

f1 is a function (usually a multilayer perceptron) with parameter

y1 (corresponding to the weight and bias of the network). This

transformation of the input using a hidden state f1 is a special

case of the Euler method for solving ODEs, where the size of

Fig. 1 (a) A residual network showing the transformation of the input state x0 using a discrete sequence of hidden layers defined by three different

functions f1, f2 and f3 as an example where y1, y2 and y3 are parameters of the function, respectively. (b) An ODE network showing the continuous

transformation of the input state x0 using single function f (x(t),y,t) where y is a parameter and time (t) defines the continuous depth of the network.

(c) Modification of a neural ODE function to train and predict any solid-state device. The input to the neural ODE function consists of two parts, the first is

an n dimensional vector of observed system dynamics, where x1 is a variable reflecting the observed dynamics and x2 to xn represent previous dynamical

states of x1 where (x2 = x1 (t � Dtd), xn = x1 (t � (n � 1)Dtd)). The second part augments the delay vector of observed dynamics (i.e., time-dependent

external inputs), where I1 is the input at time t and I2 to In are time-delayed previous versions of I1 where (I2 = I1 (t � Dtd), In = I1 (t � (n � 1)Dtd)). The output

of the neural ODE is a vector of time derivatives (
:

x1,
:

x2, . . .,
:

xn) at t = T of the corresponding input system dynamics (x1, x2, . . ., xn,) t = 0.
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each step is 1, and can be considered as a Euler discretization

of a continuous transformation. In contrast to using a discrete

sequence of hidden layers defined by different functions f1, f2,

and f3 as shown in Fig. 1a, in a neural ODE, by considering

smaller steps, the transformation of hidden states can be

parameterized in a continuous manner using a single neural

ODE function f as shown in Fig. 1b.

_x ¼
dxðtÞ

dt
¼ f ðxðtÞ; t; yÞ (2)

where f is expressed as a neural network with parameter y,

which, instead of being explicitly defined, can be learned in a

supervised manner. Any output layer x(t) such as x1, x2, . . . can

be predicted by solving the neural ODE using a differential

equation solver, starting from the input layer x0, as an initial

value problem at time t = 0 to any given specific time t. This

predicted value can subsequently be used to train the function

f, by calculating the loss between the actual and the corres-

ponding predicted value. Once the neural ODE has been

properly trained, the corresponding equation (in the form of

a neural network) becomes an appropriate model to predict the

system dynamics. However, neural ODEs tend to preserve the

topology of the input space, referring to the properties of a

space that are preserved under continuous transformations.

This means they can struggle to learn complex functions that

require changes in topology. To address these limitations,

augmented neural ODEs (ANODEs) were proposed, which aug-

ment the space in which the ODE is solved. This involves

adding extra dimensions to the input space.20

Recently, a new approach was proposed for modeling spin-

tronic devices using a modified neural ODE framework.21 This

approach incorporates an embedding theorem, which recon-

structs the state space of a dynamical system from a series of

observations. By doing so, it addresses the challenge of

unknown internal variables and external time-varying inputs

by utilizing multiple successive previous states, which is

equivalent to information provided by higher-order derivatives:

X(t) = (x1(t), x1(t � Dtd),. . ., x1(t � (n � 1)Dtd)) (3)

where n is the dimension of the vector and Dtd denotes a time

delay over a single interval. Similarly, a device with a time-

varying input is modelled by augmenting the corresponding

external inputs of eqn (3) using extra variables (I1(t), I1(t � Dtd),

. . ., I1(t � (n � 1)Dtd)) and used as input to the function f.

With these two adjustments, a new model of the neural ODE

function can be defined as:

_x ¼
dXðtÞ

dt
¼ f ðXðtÞ; IðtÞ; t; yÞ (4)

The general schematic of the modified neural ODE function

is shown in Fig. 1c, and the neural ODE network with the new

function is shown in Fig. S1 (ESI†). Adding extra dimensions

with time delay to the input space allows for learning more

complex functions with simpler flows. However, this increases

the computational overhead, making the ODE solver work

harder due to the added complexity.20 Once trained, the

prediction speed of neural ODEs and ANODEs is influenced by

model complexity and available computational resources. Gener-

ally, they are quite efficient during prediction, as most intensive

computations occur during training. Further, to deal with incon-

sistencies in the data, advanced ODE solvers that are designed for

stability and consistency such as Nesterov’s accelerated gradient22

can be used. Alternatively, pre-data processing techniques such as

interpolation can be applied to fill in gaps in the data.

In a different approach,23 a physics-informed neural ODE

was proposed. This method incorporates physical principles

into reduced-order models (ROMs) by employing collocation-

based loss terms. This strategy notably improves the performance

in data-scarce and high-noise environments to predict the beha-

viour of complex systems viz., acoustics, gas and fluid dynamics,

and traffic flows. Similarly in another study,24 a physics-enhanced

neural ODE combined partially known mechanistic models

(based on physical laws) with universal surrogate approximators

(neural networks). This hybrid approach allows for more accurate

modelling from limited datasets, particularly applied to industrial

chemical reaction systems. Such studies demonstrate the adapt-

ability of neural ODEs in accurately predicting the behaviour of

complex systems, even when data is limited.

In this paper, we demonstrate a neural ODE based continuous-

time model of an electronic charge-based system. We incorporate

time-delay embedding of a single observable and external input in

a neural ODE as proposed in ref. 21. Using this approach, we

demonstrate that neural ODEs can accurately predict the complex

behaviour of a three-terminal, non-filamentary, solid electrolyte-

based thin film transistor (SE-FET) with a unique negative differ-

ential resistance in its gate current characteristics.7 The model

achieves high accuracy in dynamically predicting the performance

of the SE-FET after training on a minimal experimental dataset

spanning only 240 seconds. Furthermore, we compare the perfor-

mance of the neural ODE model with a previous conventional

physics-based model25 and experimental measurement using

distinct input not belonging to the training dataset. Our model

is able to predict the temporal dynamics of the SE-FET such as

excitatory postsynaptic current (EPSC) measured as the time-

dependent channel conductance after the application of a voltage

pulse (presynaptic pulse) on the gate electrode, notably, where

previousmultilayer perceptron and long short-termmemory-based

models of memristor fail.15–18 Moreover, we show that transient,

steady state response, and device-to-device variation can also be

predicted using the neural ODE model without training a separate

model. Additionally, we demonstrated the SE-FET-based reservoir

system using the neural ODEmodel of the device. The performance

of this reservoir system was benchmarked using the standard

spoken-digit recognition task.

2. Experimental
2.1 Device fabrication and mechanism

Our bottom-gated SE-FET (W � L = 100 mm � 1.5 mm) is

fabricated via RF sputtering at room temperature and fully

compatible with BEOL processing. A conducting indium tin
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oxide with a resistance of 20 O square�1 is used as the gate.

A 275 nm layer of tantalum oxide (Ta2O5) serves as the bottom

gate insulator, and a 40 nm layer of ZnO is sputtered on top as

the channel. Aluminium contacts are evaporated over the ZnO

to form the top contact. Electrical characterization is performed

using Keysight B2902A.

The unique redox reaction occurring within the insulator of

SE-FET7 defines the device mechanism.26 The accumulation

of positively charged vacancies near the channel end of the

insulator, induced by a gate voltage, leads to an additional

electrolytic capacitance. During the reverse sweep, this capaci-

tance becomes negative25 due to a rapid collapse of the internal

electric field in the device, resulting in steep switching as

shown in Fig. 2, without any filamentary process. The charac-

teristics of the SE-FET such as hysteresis, plasticity, negative

capacitance, short term memory and non-linearity facilitate a

broad spectrum of neuromorphic analogue computing appli-

cations such as vision, speech recognition, and time series

forecasting.27,28 However, modelling the SE-FET gate current

characteristics in insulators is challenging due to the inherent

differences between insulators and semiconductors, particu-

larly with respect to the behaviour of charge carriers in semi-

conductors versus insulators.

In semiconductors, the current continuity equation governs

the flow of electrons and holes, ensuring charge conservation

and accounting for the drift and diffusion of charge carriers

under the influence of electric fields and concentration gradi-

ents. Conversely, in insulators, the absence of free charge

carriers necessitates consideration of alternative phenomena

to explain any observed electrical behaviour. These include

space charge effects,29 where charge accumulation at interfaces

or within the material influences the electric field; Ion generation

and movement,30 involving ion migration within the insulator

under an electric field; and tunneling,31 a quantum mechanical

process where electrons pass through potential barriers, they

classically shouldn’t be able to cross. This introduces challenges

in conventional TCAD tools, especially when trying to model

current continuity at the same time as these other phenomena.

We have earlier used a simple point ion model of Mott and

Gurney32,33 to define the motion of the ions in the insulator,

coupled with a 1D-Poisson model to evaluate the charge in the

channel. The rate of change of sheet charge density at the inter-

face was modelled by a balance between the drift and diffusion

current densities. However, the model does not include any gate

current characteristics, including the unique redox reaction in the

gate insulator (Fig. 2) that underlies the sub-60 nm decade�1 steep

switching observed during the reverse sweep of the gate bias.25

Therefore, this model is not sufficient to capture the dynamic

characteristics of the device.

2.2 Training of the neural ODE model

An experimental single-trajectory dataset consisting of 2400

data points xtrue of IDS (drain to source current) of random

input voltages is used for training. The time interval (Dt)

between each point is kept the same as in measurement which

is 100 ms per data point. The mean squared error (MSE) is used

to define the loss function between the actual point (xtrue) and

the corresponding predicted point (xpred):

MSE ¼
1

n

X

n

i¼1

xitrue � xipred

� �2

(5)

To minimize the loss function, the gradients of the loss with

respect to the parameter y are computed using the adjoint

sensitivity method, then y is updated using the adaptive

moment estimation (Adam) optimization algorithm in a super-

vised manner.

Our neural ODE function is given by eqn (4) (i.e., X(t) =

(x1(t),. . .,x1(t � (n � 1)Dtd)), I(t) = (I1(t),. . .,I1(t � (n � 1)Dtd))) and

consists of a feedforward neural network, as shown in Fig. 1c,

with three hidden layers, each featuring 200 neurons, with

tanh
ex � e�x

ex þ e�x

� �

as an activation function. A fourth-order fixed

step Runge–Kutta with 3/8 rule is used as the ODE solver to

solve this neural ODE function. To prevent overfitting, we use

batch sampling without replacement to ensure diversity in the

batches. We add dropout layers, which randomly set a fraction

of input units to zero during each update in training. This stops

the network from becoming overly reliant on specific neurons.

Additionally, we initialize weights with a normal distribution to

promote stable training. These techniques together make the

model more robust and less likely to overfit.

For a clearer visualization, the entire procedure of our

technique is laid out in Algorithm 1.

Algorithm 1. Training of the modified neural ODE

Inputs: Observed system dynamics X(t) = (x1(t), . . ., x1(t � (n �

1)Dtd)), time-dependent external inputs I(t) = (I1(t), . . ., I1(t �

(n � 1)Dtd)) where n is the number of previous states and Dtd

Fig. 2 Measured transfer characteristics of fabricated ZnO/Ta2O5 SE-FET

(W � L = 200 mm/4 mm) as a function of scan rate and the corresponding

gate current characteristics showing a unique negative differential resis-

tance (NDR) that leads to steep switching beyond the Boltzmann limit.

A steep subthreshold swing (SS) of 26 mV dec�1 is observed during the

reverse sweep of the gate bias (inset illustrates the schematic of the SE-

FET, showing the separation of oxygen vacancy and ions upon application

of a positive gate voltage).
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denotes a time delay over a single interval, mini-batch time

length, mini-batch size, iterations N and neural ODE function

_x ¼
dXðtÞ

dt
¼ f ðXðtÞ; IðtÞ; t; yÞ.

Training steps:

1. Initialization: initialize weights and biases (y) with a normal

distribution.

2. Iteration loop:

� Randomly select a mini batch with subsets of time interval t

and external input I and system dynamics X.

� Predict the outputs over the selected time points using the

neural ODE model by solving _x ¼
dXðtÞ

dt
¼ f ðXðtÞ; IðtÞ; t; yÞ with

a numerical solver.

� Calculate the difference between the predicted (xpred) and

the true observed data (xtrue). Adjust the model parameters (y)

by minimizing the loss using optimization algorithm.

3. Results and discussion

To model the continuous dynamic behaviour of the SE-FET, the

neural ODE function is trained using a normalized single-

trajectory continuous dataset measured by applying random

DVGS (gate-source voltage as input) as shown in Fig. 3a. The

corresponding measured output i.e. the normalized DIDS (drain

to source current) (grey line) is used as the target value. The

dynamical prediction of the drain current as a function of

voltage during training is shown by the red dashed line in

Fig. 3b. The data was normalized to reduce training time and

improve the accuracy of prediction. An RMS (root mean

squared) error of 0.02 or lower is achieved for several previous

states ranging from 2 to 10 shown in Fig. 3c and the DIDS versus

time for all other previous states in Fig. S2 (ESI†).

Fig. 3d shows the positive write pulses of +2 V (normalized to

DVGS = 1) with pulse width of 180 ms continuously repeated

8 times, different from that used in training. For this test, a very

low prediction error of 0.06 (RMSE) is achieved as shown in

Fig. 3e by the red line. For a lower number of previous states,

the error as shown in the Fig. S3 (ESI†) ranges from 0.14–5.68

(RMSE). A higher number of previous states is equivalent to the

information provided by higher-order derivatives that leads to

better performance albeit for a longer training time.34 On the

other hand, our previous physics-based model as shown by the

green line in Fig. 3e, fails to capture the dynamics with a

prediction error of 0.15 (RMSE). With this new approach

(neural ODE), the prediction error is reduced by 60% compared

to our physics-based approach25 (see device fabrication and

mechanism section). Additionally, our model predicts device

dynamics in approximately 5 seconds, compared to nearly an

hour using an equivalent computer with a physics-based

model. In Fig. 3f, the EPSC response of the device is compared

with predicted results with a prediction error of 0.009 (RMSE).

The SE-FET, EPSC is measured as the channel conductance

changes over time following a voltage pulse applied to the gate

electrode. If the EPSC signal persists for a few seconds to tens of

minutes, it is analogous to a short-term memory. Conversely,

if the EPSC signal endures for several hours to a lifetime, it

represents a long-term memory. A stimulus train of different

pulse widths (20 to 240 ms) with 50% duty cycle, consisting of

10 normalized gate pulses (DVGS = 1) are used in each case.

A longer pulse width results in higher EPSC values and

extended retention time. Both these characteristics are cap-

tured well by the model.

Further, we evaluate the model using an extended input

sequence comprising 5000 time steps, with each time step

corresponding to 100 ms, consistent with experimental mea-

surements. For this test, the neural ODE accurately captures

both the transient and steady-state behaviour of the SE-FET.

Remarkably, this is achieved with a low error rate of 0.03 (RMSE),

without specifically training the model for steady-state dynamics

as shown in Fig. 4a and b. Initially the response of the SE-FET is

in transient states up to 2500 times steps which shows a gradual

increment in DIDS beyond which the device response goes into

steady state. Furthermore, experimentally, we find that when

different SE-FET devices are subjected to the same input, their

responses follow the same trend but only differ in magnitude.

We can artificially recreate this behaviour in our model by

feeding the same input at different frequencies as shown in

Fig. 4c. This is because when we apply input pulses at a lower

frequency, the device experiences longer periods of exposure to

the signal that results in a higher magnitude and vice versa.

To validate this approach, we compare the model output to that

of three different SE-FET devices, at (12.5 Hz = 80 ms, 14.28 Hz =

70 ms, and 20 Hz = 50 ms) to emulate the same level of device-to-

device variation as in experiment with RMSE = 0.03 or lower

(Fig. S4, ESI†). With this simple modification, we can use the

model to study any application, with multiple devices including

device to device variation without training a separate model of

each device.

Table 1 summarizes various machine learning based device

models. The previously reported MLP15–17 and LSTM18 based

memristor models operate in discrete time, where information

flows through a fixed number of layers (depth) during each

forward pass. Their depth is determined by the architecture,

and it remains constant regardless of the complexity.35

Whereas in neural ODEs, instead of discrete layers, they use

continuous-time dynamical systems, allowing a continuous

adaptation to their depth implicitly.19 This adaptability makes

them suitable for predicting device dynamics across different

pulse widths or frequencies using a single trained model.

Additionally, the SE-FET devices exhibit short-term memory

characteristics, allowing them to switch states from low to high

resistance in an analogue manner over time without any input.

Thus, continuous-time dynamical systems such as neural ODEs

are more effective in capturing the device dynamics and short-

term memory. Additionally, whether applied to spintronic21 or

SE-FETs, they can be effectively trained with limited experi-

mental data. This makes them valuable for predicting the

behaviour of complex systems in environments where data is

scarce. In an alternative approach,36 physics-informed neural
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networks (PINNs) have been used to model system dynamics

but differ in how they handle the underlying dynamics. PINNs

embed physical laws directly into the training process, using

differential equations as constraints. This allows them to model

physical systems using both observed data and governing

physics equations. Meanwhile, neural ODEs evolve hidden states

continuously through a differential equation solver, learning

system behaviour solely from data without the need for explicit

physical laws. This makes neural ODEs ideal for data-driven

applications where the device physics is unknown. In essence,

Fig. 4 (a) and (b) Testing the dynamic response of the SE-FET for longer sequence length and comparing the output of the neural ODE model to that of

experiment. These results show that the neural ODE can capture both the transient and steady state response with low RMSE = 0.03 without training a

separate model for the steady state response. (c) The neural ODE model of the SE-FET response shows the difference in magnitude for the same input

fed at three different frequencies (12.5 Hz = 80 ms, 14.28 Hz = 70 ms, and 20 Hz = 50 ms).

Fig. 3 Training and testing of a neural ODEmodel of the SE-FET. (a) Normalized random voltage (green line), in the form of DVGS (gate to source voltage)

is applied as input to the neural ODE. (b) The corresponding experimentally measured normalized DIDS (drain to source current) (grey line) is used to train

the neural ODE for which a low training error of 0.013 (RMSE) is obtained (red dotted line). (c) Training error with respect to iterations for a different set of

previous states to that used in training. All achieve a low training error with RMSEr 0.02. (d) and (e) Testing the dynamic characteristics of the SE-FET and

comparison with the physics based model25 and experiment. Normalized voltage pulse, in the form of DVGS (gate to source voltage) is given as input to

the neural ODE. The neural ODE model shows a low prediction error of 0.06 (RMSE) when compared to experiment (blue line). A lack of underlying

physics that is not fully captured in,25 leads to discrepancy with experiment as shown by the green line. (f) Testing the normalized excitatory post synaptic

current (DEPSC) of the neural ODE model compared to experiment.7 The presynaptic pulse widths vary from 20 to 240 ms with 50% duty cycle and

consist of 10 normalized gate pulses (DVGS = 1) in each case. For this task, a low prediction error of 0.0093 (RMSE) is obtained.
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PINNs blend known physics with learning, whereas neural ODEs

extract dynamics purely from data.

In conclusion, we demonstrate the application of our

model in an example of physical reservoir computing (RC).

Physical dynamic reservoirs can efficiently process temporal

input with low training costs by leveraging the short-term

memory of the device for in-memory computation.27 Our

framework and process flow of an SE-FET-based reservoir

system for the task of recognition of spoken digits is high-

lighted in Fig. 5. It consists of three sections: input, reservoir,

and a readout function. For a specific input, processed via a

mask into a temporal signal of time duration (t), is fed into the

reservoir, consisting of the neural ODE model of m number of

SE-FET devices. The connection between each temporal input

to each SE-FET is fixed. The SE-FET responses are sampled

continuously such that the output of the present state also

depends upon its previous history. The sampled reservoir

output nodes S10, S
1
1. . . are used to train the weights (Wout) of

the readout network using logistic regression. Superscript

denotes the device number (m), and subscript denotes (n)

over all the sample states of a given device. We use this

framework to investigate the impact of various reservoir para-

meters on performance, such as data representation, single vs.

multi-device reservoirs, and device variation. Using the model,

we perform a standard benchmark task of recognition of

isolated spoken-digits using the NIST TI46 database37 which

consists of 500 samples.

Before feeding the audio file of isolated spoken digits (0–9)

into the reservoir as input, it is preprocessed using Lyon’s

passive ear model based on human cochlear channels (see

Supplementary note 1 for methods, ESI†). The preprocessing

using Lyon’s passive ear model transforms the audio sample

into a set of 64-dimensional vectors (corresponding to the

frequency channels) with up to 42-time steps. One example

representing the original spoken digit waveform of digit 5 is

shown in Fig. 6(a) and its preprocessed Cochlea gram by Lyon’s

passive ear model consisting of 64 channels is shown in

Fig. 6(b) where the lower channel number captures the higher

frequency components and vice versa. The preprocessed input

is then converted into an analog voltage stream by concatenat-

ing all 64 channels. The converted analog voltage stream is

applied to the SE-FET reservoir in transient states and its

response is sampled after every 0.1 second as shown in

Fig. 6(c) for spoken digit 5. The procedure is repeated for all

500 samples.

In this implementation, a single device based reservoir

achieves an overall mean accuracy of 99.80%. However, a major

drawback of a single device-based reservoir is that it takes too

much time to process each isolated spoken digit. For example,

the input consists of 64 channels with each channel 42 times

long. To process one step, it takes 0.1 seconds. Thus, the total

time required to process the entire input is (64 � 42 � 0.1) =

268.8 seconds. To resolve this problem, we can use a multi-

device-based SE-FET reservoir system consisting of 64 devices,

Table 1 Summary of various machine learning based device model

Device Machine learning Data quantity Continuous-time modeling Proposed for ref.

TaN/HfO2/Pt memristor LSTM Large Inherently not suited Process tuning 18
HfOx memristor MLP Moderate No HSPICE circuit simulation 15
Memristor MLP Moderate No Transient circuit simulation 17
TaN/HfO2/Pt memristor MLP Moderate No HSPICE circuit simulation 16
Spintronic Neural ODEs Small Yes Efficient alternative to micromagnetic

simulations
21

ZnO/Ta2O5 solid
electrolyte FET

Neural ODEs Small Yes Temporal dynamic modeling This
work

Fig. 5 Our framework and process flow of the SE-FET-based reservoir system for the classification of spoken digits.
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one device per channel processed using different devices in

parallel. Each of these 64 devices are assigned to a different

input frequency in the range of 10 Hz to 20 Hz to create device

to device variation. Each individual channel is fed to devices in

parallel, thus reducing the overall time required to process the

one isolated spoken digit from 268.8 seconds to (42 � 0.1) =

4.2 seconds. The response of the reservoir for channel numbers

23 and 64 is shown as an example in Fig. 7, similarly, under-

taken for all other channels. A multi device based reservoir

results in an overall mean accuracy of 99%. Furthermore, for

the performance summary of SE-FET based RC under various

conditions such as data representation, single vs. multi-device

reservoirs see Supplementary note 2 (ESI†).

In our recently reported work28 for the same task, each

channel was divided into 14 sub-sections mainly due to it being

practically impossible to measure 242 different input patterns.

This lead to unnecessary addition of a reset pulse in experiment

for a reasonable mask length of 3 bits sequence read at a time.

Such constraints do not exist in the present work, due to the

neural ODE model. We were also able to reduce the time to

4.2 seconds by parallel processing, which was previously more

than an hour for a single spoken digit.28 Moreover, with the

help of the neural ODE model we were able to simulate

reservoir computing in an analog mode without digitizing the

input, which removes extra preprocessing to convert analog to

digital signal, while preserving the integrity of analog information.

Our SE-FET based reservoir computing achieved a lower error

rate of 0.2% for a single device reservoir and 1% for multi

device reservoir which performs better or on par with earlier

published works, which need other physical devices as shown

in Table S3 (ESI†).

However, real-world variations of manufacturing defects and

environmental changes can be reasonably expected to affect the

performance of the model. This can be mitigated by incorpor-

ating variations in the training data to simulate these defects

and changes, helping the model to generalize better under

different conditions. Additionally, implementing anomaly

detection algorithms can identify and filter out data points

likely caused by these defects or changes, ensuring cleaner data

for training. Further, to integrate device degradation into the

model will require to gather data reflecting degradation. This

could involve collecting data from devices at various stages of

their lifecycle to show changes in performance metrics over

time. Moreover, creating features that quantify degradation,

such as the age of the device or its usage frequency, could be

beneficial.

4. Conclusions

This paper demonstrates that neural ODE models can learn

complex device physics without explicitly defining any material

properties or device physics. We have demonstrated that by

using minimal experimental data spanning 240 seconds, the

neural ODE can learn and predict the temporal dynamic

behaviour of an SE-FET in any given situation with error

reduced by 60% in comparison with physics based models.

Further, the neural ODEs offer a valuable capability to predict

device behaviour across different pulse widths or frequencies.

By doing so, they can significantly reduce development time

Fig. 6 (a) The original spoken digit waveform of digit 5. (b) Cochlea gram

of the sample spoken digit ‘5’ after being preprocessed by Lyon’s passive

ear model consisting of 64 channels, where the lower channel number

captures the higher frequency components and vice versa. (c) The neural

ODE model of an SE-FET response sampled after every 0.1 second as

shown by the red line for the preprocessed input converted into an analog

voltage stream shown by green line.

Fig. 7 The response of neural ODE model based multi-device reservoir

for (a) channel number 23 and (b) channel number 64 is shown as an

example.

Paper Journal of Materials Chemistry C

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

7
 D

ec
em

b
er

 2
0
2
4
. 
D

o
w

n
lo

ad
ed

 o
n
 1

2
/1

8
/2

0
2
4
 9

:5
5
:2

0
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



This journal is © The Royal Society of Chemistry 2024 J. Mater. Chem. C

while precisely tuning input parameters in neuromorphic systems.

For instance, in reservoir computing a type of neuromorphic

systems, for temporal data processing, these models can be

used to generate space time dependent features which can be

used to train straightforward machine learning algorithms.

This adaptability makes the SE-FET based reservoir computing

well-suited for flexible edge systems.
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