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Understanding and predicting animal movement is fundamental to ecology and con-
servation management. Models that estimate and then predict animal movement and 
habitat selection parameters underpin diverse conservation applications, from mitigat-
ing invasive species spread to enhancing landscape connectivity. However, many pre-
dictive models overlook fine-scale temporal dynamics within their predictions, despite 
animals often displaying fine-scale behavioural variability that might significantly alter 
their movement, habitat selection and distribution over time. Incorporating fine-scale 
temporal dynamics, such as circadian rhythms, within predictive models might reduce 
the averaging out of such behaviours, thereby enhancing our ability to make predic-
tions in both the short and long term. We tested whether the inclusion of fine-scale 
temporal dynamics improved both fine-scale (hourly) and long-term (seasonal) spatial 
predictions for a significant invasive species of northern Australia, the water buffalo 
Bubalus bubalis. Water buffalo require intensive management actions over vast, remote 
areas and display distinct circadian rhythms linked to habitat use. To inform manage-
ment operations we generated hourly and dry season prediction maps by simulating 
trajectories from static and temporally dynamic step selection functions (SSFs) that 
were fitted to the GPS data of 13 water buffalo. We found that simulations gener-
ated from temporally dynamic models replicated the buffalo crepuscular movement 
patterns and dynamic habitat selection, resulting in more informative and accurate 
hourly predictions. Additionally, when the simulations were aggregated into long-
term predictions, the dynamic models were more accurate and better able to highlight 
areas of concentrated habitat use that might indicate high-risk areas for environmental 
damage. Our findings emphasise the importance of incorporating fine-scale temporal 
dynamics in predictive models for species with clear dynamic behavioural patterns. 
By integrating temporally dynamic processes into animal movement trajectories, we 
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demonstrate an approach that can enhance conservation management strategies and deepen our understanding of ecological 
and behavioural patterns across multiple timescales.
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dynamics

Introduction

The movement of animals through space and time is critical 
to ecosystem functioning. Predicting the movement and dis-
tribution of animals across a landscape is difficult, however, 
as the successive fine-scale behavioural decisions that animals 
make are complex and rarely match the scale of our obser-
vations or the target of our predictions (Levin 1992). These 
complex decision-making processes relate to extrinsic factors 
such as resources, weather and other animals, and intrinsic 
factors such as age, sex, memory and energetic state (Turchin 
1998, Nathan et al. 2008, Morales et al. 2010, Fagan et al. 
2013). These movement and habitat selection behaviours also 
change throughout time across various scales, which often 
relate to natural cycles. Animals typically have daily rhythms 
that mediate foraging or hunting behaviours, resting, ther-
moregulation and finding water (Ouled-Cheikh et al. 2020, 
Richter  et  al. 2020, Toro-Cardona  et  al. 2023), and often 
have seasonal rhythms determined by the climate, avail-
ability of resources and breeding behaviour (Tulloch 1970, 
Ager et al. 2003, Rafiq et al. 2023).

There are countless examples of diel cycles (periodic over 
24 hours) in the animal kingdom, and these rhythms are 
often defined by significant changes in movement and habi-
tat selection behaviour (Fryxell et al. 2008, Webb et al. 2010, 
Buderman et al. 2018, Thaker et al. 2019, Meese and Lowe 
2020, Richter  et  al. 2020, Nisi  et  al. 2022). The mention 
of a diurnal, crepuscular or nocturnal species evokes sub-
stantial diel behavioural changes, and in some cases animals 
show opposing trends between different periods throughout 
the daily period, such as an animal that needs to forage in 
open areas but seeks shelter when it is vulnerable to predation 
(Leblond et al. 2010, Kohl et al. 2018, Richter et al. 2020, 
Palmer et al. 2022). In many fishes, diel patterns of activity 
are common, and a range of diurnal, nocturnal and crepuscu-
lar foraging strategies define niche segmentation, as there are 
specific adaptations that are beneficial to each strategy (Fox 
and Bellwood 2011, Currey et al. 2015).

Despite our understanding that animal behaviour is 
temporally variable on fine scales, these dynamics are often 
overlooked when developing predictive models. We pose 
that including them can allow for two-fold benefits. Firstly, 
including fine-scale temporal dynamics allows for temporally 
fine-scale predictions. There are many examples where tempo-
rally fine-scale predictions would be valuable, such as for pre-
dicting human–wildlife conflict and poaching (Carter et al. 
2012, Buderman et al. 2018, Forrest et al. 2024a), identify-
ing high-risk locations and times for zoonotic disease transfer 
(Parsons et al. 2014), mitigating the impacts of fisheries on 
wildlife (Fernández and Anderson 2000, Ouled-Cheikh et al. 

2020) and for optimising intensive conservation management 
actions such as trapping, shooting and mustering. Secondly, 
including fine-scale temporal dynamics has the potential to 
provide more accurate long-term predictions, as the dynamic 
processes of movement and habitat selection are explicitly 
represented rather than being averaged out. An animal that 
selects between open and closed vegetation at different times 
of the day (Leblond et al. 2010, Kohl et al. 2018) will have 
qualitatively different patterns of space use than a species that 
selects for medium canopy cover at all times, but ignoring the 
dynamic behaviour will result in the average effect (selection 
for medium canopy), leading to different and possibly less 
accurate predictions. To the best of our knowledge, assessing 
whether fine-scale temporally dynamic processes lead to more 
accurate long-term predictions has not been formally tested 
in the literature.

As the distribution of animals from one hour to the next 
is correlated due to the animal’s movement dynamics, tem-
porally fine-scale predictions can be difficult to generate 
analytically. However, a flexible and robust approach to gen-
erating temporally fine-scale predictions is to simulate sto-
chastic animal movement trajectories (Morales  et  al. 2010, 
Osipova et al. 2019, Hooker et al. 2021, Whittington et al. 
2022, Aiello  et  al. 2023, Hofmann  et  al. 2023, Potts and 
Börger 2023, Sells et al. 2023). Simulation-based models can 
include temporal dynamics on any scale, and they explicitly 
incorporate the animal’s movement dynamics. Step selec-
tion functions (SSFs) are particularly advantageous as they 
can be used to simulate trajectories (Signer et al. 2017, Potts 
and Börger 2023, Signer  et  al. 2023), are straightforward 
to parameterise and can incorporate temporal dynamics 
(Ager et al. 2003, Forester et al. 2009, Tsalyuk et al. 2019, 
Richter  et  al. 2020, Klappstein  et  al. 2024). An SSF com-
bines a movement and a habitat selection kernel, can take a 
range of forms (Munden et al. 2021, Klappstein et al. 2022, 
Beumer et al. 2023, Eisaguirre et al. 2024, Pohle et al. 2024) 
and can accommodate a wide range of covariates including 
habitat, linear features, distance-to-feature variables, proxim-
ity to other animals (Potts  et  al. 2022, Ellison et  al. 2024) 
and representations of previous space use (Schlägel and Lewis 
2014, Oliveira-Santos et al. 2016, Rheault et al. 2021).

The water buffalo Bubalus bubalis population in northern 
Australia’s tropical savannas requires accurate spatiotemporal 
predictions on both fine scales and longer periods for manag-
ers to make informed conservation decisions (Werner 2005, 
Mihailou and Massaro 2021). Globally, tropical savanna eco-
systems are undergoing significant change and degradation 
(Williams et al. 2022), and in northern Australia, feral ani-
mals such as pigs Sus scrofa, cattle (predominately Bos indicus) 
and buffalo are a major destructive force, causing significant 
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environmental damage and presenting a major disease threat 
to Australia’s agricultural systems (e.g. brucellosis, tuberculo-
sis and African swine fever) (Skeat et al. 1996, Werner 2005, 
Petty et al. 2007, Mihailou and Massaro 2021). Management 
of these feral vertebrates is usually carried out using costly 
and intensive mustering or culling operations. With accurate 
predictions of distribution at temporally fine scales, conserva-
tion managers can more effectively target control measures, 
with the potential to simulate alternative scenarios (Warwick-
Evans  et  al. 2018). With accurate long-term predictions, 
areas that are most at-risk can be identified by high predicted 
buffalo use, allowing for persistent management operations 
such as exclusion fencing to be considered (Ens et al. 2016, 
Sloane et al. 2024).

To assess the benefits of including fine-scale temporal 
dynamics in predictive models, our objectives in this paper 
are to 1) investigate whether incorporating fine-scale tem-
poral dynamics into SSFs can be used to generate accurate 
hourly predictions via simulated trajectories, and 2) examine 
whether predictions over the longer time scales reveal emer-
gent features that are captured only with dynamic models, 
and provide higher prediction accuracy than models that 
only incorporate static parameters. To assess these objectives, 
we compared models that include circadian temporal dynam-
ics with varying flexibility to a static model, which were fitted 
to and validated against hourly GPS tracking data of buf-
falo. We hypothesised that the predictions from the dynamic 
models on the hourly scale would be more informative than 
the static model, as they would indicate where buffalo may be 
found at different periods throughout the day, as the circadian 
behaviour of buffalo is highly variable in northern Australia’s 
tropical savannas. These areas are subject to high daily tem-
peratures, and over the course of the day buffalo are likely to 
balance thermoregulation and foraging. We also hypothesised 
that the long-term predictions from the dynamic models will 
more closely match the observed locations of the buffalo 
GPS data, as there are landscape features that buffalo use that 
will be ignored when using a static model that averages over 
movement and habitat selection behaviour.

Material and methods

Study area and data collection

Data were collected from the Djelk Indigenous Protected Area 
in western Arnhem Land, Northern Territory, Australia. The 
area is a culturally significant landscape comprising tropical 
savanna with areas of open woodland, rainforest, a varied river 
and wetland system, and open floodplains. To understand 
their fine-scale and long-term movement and habitat selec-
tion behaviours, water buffalo B. bubalis were GPS-tracked 
in collaboration with Djelk rangers between July 2018 and 
November 2019. Due to their size and potential risk to han-
dlers, wild buffalo were immobilised via a helicopter using 
tranquiliser darts following a modified version of the methods 

described in McMahon and Bradshaw (2008). All anaesthesia 
procedures on buffalo were undertaken by a qualified wild-
life veterinarian. Animals were equipped with a device that 
was a combination of a commercial VHF tracking collar 
(Telonics MOD-500) and a custom-developed LoRa (long-
range) radio-enabled GPS tracking pod. In total the VHF col-
lar and LoRa-GPS pod weighed 1.2 kg. The LoRa-GPS pods 
were scheduled to collect a GPS location once an hour with 
an accuracy of 10 m, and attempted to transmit GPS loca-
tions over a custom-installed LoRa network. GPS locations 
were also logged onboard the device, which are the data that 
were used in this study. In total 17 female buffalo were GPS-
tracked, all devices were retrieved, and of those we used 13 
individuals that had high-quality data with temporally consis-
tent fixes for at least three months. The hourly GPS locations 
had a fix-success rate of 88% on average (range = 59–95%).

Landscape covariates

Buffalo movement decisions are driven by factors such as veg-
etation composition and density for resource acquisition and 
shade, access to water, and the terrain (Campbell et al. 2020). 
In monsoonal ecosystems of northern Australia, vegetation 
and the distribution of water changes dramatically through-
out the year. To represent the seasonal changes in vegetation, 
we used a monthly normalised difference vegetation index 
(NDVI), which was derived from Sentinel-2 remote sens-
ing data and measures photosynthetic activity and approxi-
mates the density and health of vegetation (Reed et al. 1994, 
Myneni et al. 1995). NDVI is an informative covariate in this 
landscape (Campbell et al. 2020) as it distinguishes between 
the broad vegetation classes, identifies wet and flooded areas, 
and can quantify buffalo forage resources as they are typically 
under open canopy. Monthly NDVI layers were generated 
from Sentinel-2 spectral imagery at 10 × 10 m resolution 
using Google Earth Engine by taking the clearest pixels from 
a range of images for that month to alleviate the effects of 
obstruction from clouds. We selected the highest quality-
band-score, which is based on cloud and shadow probability 
for each pixel, resulting in a single obstruction-free image of 
the NDVI values for each month of each year. We also used 
temporally static layers for canopy cover and herbaceous veg-
etation, which are derivatives of Landsat-7 imagery and were 
sourced from Geoscience Australia at 25 × 25 m resolution 
(source: Geoscience Australia; Landsat-7 image courtesy of 
the US Geological Survey). We represented the terrain by 
including a slope covariate, which was summarised from 
a 25 × 25 m digital elevation model using the ‘terra’ R 
package (Hijmans 2024, www.r-project.org), and was calcu-
lated using the methodology of Horn (1981). The canopy 
cover layer was a proportion from 0 (completely open) to 1 
(completely closed), and the herbaceous vegetation layer was 
binary, with 1 representing grasses and forbs, and 0 represent-
ing other (which is predominately woody growth). All spatial 
variables were discretised into grids (i.e. rasters) and resam-
pled to be 25 × 25 m resolution.
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SSF model and temporally varying parameters

Step selection functions (SSFs) are statistical models com-
monly applied to telemetry data to infer movement and habi-
tat selection behaviour (Fortin et al. 2005, Potts et al. 2014, 
Thurfjell et al. 2014, Avgar et al. 2016, Northrup et al. 2022, 
Potts and Börger 2023, Michelot et al. 2024). To denote the 
SSF, p is the likelihood of observing an animal at location st 
given its last two observed locations st−1, st−2 with locations 
indexed by discrete time t and within a spatial domain S. Let 
X be a multivariate spatial field indexed by a location st, and 
where X(st) = (X1(st), …, Xn(st)) is a vector with a length equal 
to the number of spatial covariates (Eq. 1):
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Here, ϕ denotes the movement kernel, with parameters relat-
ing to step lengths and turning angles contained in θ(τ;α), 
which may be some function of time which we denote here 
as τ, as this time component may be cyclic and therefore 
not be equal to the absolute time, t. The parameter vector α 
defines the functional relationship between θ and τ, as well 
as between β and τ in the ω component. The ω component 
is the habitat selection kernel, and the term in the denomina-
tor ensures that the probability density, p(∙), integrates to 1, 
which in practice is typically approximated through numeri-
cal integration, where we sample a set of proposed next steps 
given what is ‘available’ to the animal as determined by the 
movement kernel (Avgar et al. 2016, Michelot et al. 2024).

The habitat selection term is typically modelled analo-
gously to a resource-selection function (RSF), that assumes 
an exponential (log-linear) form as (Eq. 2):
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where β(τ;α) = (β1(τ;α1), …, βn(τ;αn)) (Eq. 3):
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and αi = (αi,0, …, αi,2P), where P is the number of pairs of 
harmonics, e.g. for P = 2, for each covariate there would 
be two sine terms and two cosine terms, as well as the lin-
ear term denoted by αi,0. The +P term in the α index of the 
cosine term ensures that each αi coefficient in αi is unique. 
Here, we have used harmonic terms to define the functional 

relationship between τ and β (Ager et al. 2003, Forester et al. 
2009, Tsalyuk  et  al. 2019, Richter  et  al. 2020). These are 
pairs of sine and cosine terms that have cyclic periods of 
varying frequency, such as sin(2πτ/T) and cos(2πτ/T), and 
sin(4πτ/T) and cos(4πτ/T), where ��T . Including more 
pairs of harmonics results in a more flexible function that can 
accommodate higher periodicity, although they may be more 
prone to overfitting. Harmonics are a natural choice as they 
are cyclic, which often aligns with temporal changes that ani-
mals respond to, such as daily or seasonal cycles (Boyce et al. 
2010), although other additive terms such as splines are 
another obvious choice (Hanks et al. 2015, Klappstein et al. 
2024). For a yearly cycle for instance, τ would represent the 
day of the year, and T would equal 365, although τ does not 
need to be integer-valued and can be arbitrarily fine.

SSF data preparation and model fitting

Buffalo have temporally dynamic patterns in their move-
ment and habitat selection behaviours across two predomi-
nant time-scales: daily and seasonal. Daily rhythms are 
predominately driven by daylight and temperature, and sea-
sonal rhythms are predominately driven by the distribution 
of water and the availability of forage (Tulloch et al. 1970, 
Campbell et al. 2020). As we wanted to generate temporally 
fine-scale distributions, we used harmonic terms that have 
a daily periodicity. As buffalo management actions such as 
mustering predominately take place during the dry season 
because the landscape is more accessible, we separated data 
into wet and dry seasons and focused on dry season models 
with fine-scale temporal dynamics. An extension of this work 
might be to incorporate multiple interacting time-scales, 
such as daily rhythms that also change across the seasons.

To incorporate the temporal dynamics on a daily time-
scale, each movement parameter and habitat covariate was 
included in the model as a linear predictor (αi,0 in Eq. 3) as 
well as interacting with pairs of harmonic terms relating to 
the hour of the day (Forester et al. 2009, Street et al. 2016, 
Tsalyuk et al. 2019, Warton 2022). To allow for habitat selec-
tion to operate over a region of the habitat space (rather than 
monotonically increasing or decreasing), we also included 
quadratic parameters for NDVI (i.e. NDVI + NDVI2) and 
canopy cover, which were also interacted with the harmonic 
terms. The final set of models that were fitted to the dry 
season buffalo data were models with 0 pairs of harmonics 
(denoted 0p, or the static or ‘daily average’ model), and mod-
els with 1, 2 and 3 pairs of harmonics (dynamic models), 
which we denoted as 1p, 2p and 3p, respectively.

As we were fitting a model across all individuals simulta-
neously, we generated ‘available’ steps using the ‘amt’ pack-
age (Signer  et  al. 2019) by fitting a gamma distribution to 
the observed step lengths and a von Mises distribution to the 
observed turning angles of all individuals, which makes ‘updat-
ing’ the movement parameters after fitting the SSF straightfor-
ward (Fieberg et al. 2021). We sampled independently from 
these distributions to generate new steps, and matched each 
observed step with 10 randomly generated available steps.
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Due to the large number of covariates when including 
several pairs of harmonics, particularly when also includ-
ing quadratic terms, we had difficulty fitting population-
level models with the ‘glmmTMB’ (Brooks et al. 2017) and 
‘INLA’ (Rue et al. 2009) model fitting approaches (Muff et al. 
2020). We therefore fitted models to all individuals using the 
two-step approach from the ‘TwoStepCLogit’ package 
(Craiu et al. 2011, 2016) in R, which can be considered as 
a computationally efficient alternative to fitting models with 
individual-level random effects, providing certain conditions 
are met, namely that all individuals visit every category level 
when using categorical covariates (Muff  et  al. 2020). The 
first step of the two-step approach is to fit individual-level 
conditional logistic regression models, which are then com-
bined in the second step using the expectation-maximisation 
(EM) algorithm in conjunction with conditional restricted 
maximum likelihood to estimate the population-level param-
eters (Craiu et  al. 2011). For computational stability, prior 
to model fitting we centred and scaled all variables by sub-
tracting mean values and dividing by the SD, using the data 
from all used and random steps. The centring and scaling 
were done immediately prior to model fitting, and therefore 
after creating the quadratic terms and multiplying the covari-
ates with the harmonics. Following model fitting, the coef-
ficients and covariates were returned to their natural scale for 
interpretation and prediction, and the movement parameters 
(shape and scale of the gamma distribution and concentration 
parameter of the von Mises distribution) were updated across 
τ following Avgar et al. (2016) and Fieberg et al. (2021). A 
conceptual overview of the model fitting, visualisation of 
estimated parameters, and process of generating temporally 
dynamic trajectories is shown in Fig. 1.

Generating trajectories from the fitted model

To generate trajectories, we first select a starting location 
from the domain that we are predicting over. Then n possible 
next steps are drawn from the ‘updated’ movement kernel 
(Fieberg  et  al. 2021) by sampling independently from the 
updated gamma and von Mises distributions of step-lengths 
and turning angles, respectively, for time τ. For each proposed 
step, exp(β(τ;α)X(st)) (Eq. 2) is evaluated, resulting in a value 
for each proposed step that is proportional to the probability 
of being selected, and a single step is probabilistically selected 
based on these values. This new step is added to the trajectory 
and becomes the starting point for the next step, and the pro-
cess is repeated until the specified number of steps are reached. 
At each step we proposed n = 50 possible next steps from the 
movement kernel, and each trajectory was a total length of 
3000 steps. To minimise boundary effects, we used a wrapped 
boundary, where proposed steps that fell outside the extent 
were wrapped to the opposite side using a modulo operator.

Landscape-scale predictions

As the landscape in which we collected our data was large 
(ca 60 × 60 km), and mostly without observed buffalo GPS 

locations, we selected a 20 × 20 km subset as our domain 
to generate landscape-scale predictions of expected buffalo 
distribution. We chose this subset as it contained a high 
density of buffalo locations for the late dry season in 2018 
(n = 13 940 from eight individuals, mean ± SD = 1742 ± 
596 GPS locations per buffalo), which we used as valida-
tion data. To estimate the expected distribution of buffalo 
predicted by the models for each hour of the day and for 
the late dry season, we simulated 100 000 trajectories with 
3000 steps each from the coefficients estimated by the four 
models (0p, 1p, 2p and 3p). The covariates included in 
the simulations were the four spatial layers used to fit the 
models (average NDVI for the late dry season 2018, can-
opy cover, herbaceous vegetation and slope) at 25 × 25 m 
resolution. To create the landscape-scale maps of expected 
buffalo distribution, we overlaid a template raster layer with 
50 × 50 m cells and summed the number of simulated loca-
tions that fell within each cell. For the long-term distribu-
tion maps all locations were considered for each model, 
resulting in a single prediction map per model. For the 
hourly distribution maps we separated the simulated loca-
tions into the respective hours and summed the number of 
simulated locations that fell within each template raster cell 
for each hour, resulting in 24 prediction maps per model 
(one for each hour of the day). We considered the number 
of simulated locations within each cell to approximate the 
expected spatial distribution of buffalo that was predicted 
by each model.

We assessed the convergence of the simulations by ran-
domly sampling 10 subsets of increasing numbers of trajec-
tories (without replacement), and calculating the standard 
deviation of normalised (from 0 to 1) prediction values in 
1000 randomly distributed but consistent cells (Supporting 
information). Each simulated trajectory took approximately 
1 minute to run, which can easily be parallelised as each sim-
ulation is independent, and which we ran on a high perfor-
mance computing cluster.

Comparing models and validating predictions

We assessed whether the simulations could recreate the daily 
behavioural dynamics of the water buffalo by summarising 
movement and habitat selection behaviour for each hour 
of the day. To achieve this we binned the steps of both the 
observed and simulated trajectories into the hours of the 
day, and took the mean, median and standard deviation of 
step lengths and the four habitat covariates – NDVI, canopy 
cover, herbaceous vegetation and slope, and visually com-
pared across the hours of the day.

To assess the accuracy of the predicted distribution maps 
we used the continuous Boyce index (cBI) (Boyce et al. 2002, 
Hirzel et al. 2006), which can be used for validating against 
presence-only GPS data. The cBI uses a sweeping window 
that separates habitat suitability (in our case number of sim-
ulated locations per cell) into bins, and assesses how many 
observed locations fell into these cells relative to their preva-
lence in the landscape, denoted as the F-ratio. For simulated 
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Figure 1. Concept plot illustrating the procedure of model fitting with two pairs of harmonic terms, reconstructing the temporally dynamic 
coefficients, and generating temporally dynamic trajectories. The model is fitted with covariates interacting with the harmonic terms, where 
s1, s2, c1 and c2 in the model formula represent sin(2πτ/24), sin(4πτ/24), cos(2πτ/24) and cos(4πτ/24), respectively, and τ is the hour of 
the day where ��T , with T denoting 24 h. Any covariates can be interacted with the harmonics, including quadratic terms, movement 
parameters, memory and social covariates. The coefficients are then reconstructed into time-varying coefficients (2a), and when linear and 
quadratic terms are interacted with harmonic terms, ‘selection surfaces’ can be created (2b). The movement parameters are ‘updated’ 
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locations that were completely random within a particular 
range of habitat suitability the F-ratio would be 1, indicat-
ing that cells are used in proportion to their prevalence in 
the landscape. For an accurate model, we would expect fewer 
true locations in areas that are predicted to be unsuitable 
habitat (resulting in an F-ratio less than 1), and more true 
locations in areas that are predicted to be more favourable 
habitat (resulting in an F-ratio greater than 1). This provides 
an F-ratio curve which is used to assess the performance of 
the model. We assessed whether there was an increasing trend 
of the F-ratio curve by using the Spearman rank correla-
tion coefficient (hereafter Spearman correlation or ρ), which 
assesses monotonicity and ranges from −1 to 1, with perfect 
(monotonically increasing) predictions resulting in a value of 
1 (Hirzel et al. 2006). A high value of ρ would indicate the 
the true GPS locations were observed in a similar pattern of 
use to what was predicted by the model. For the long-term 
distribution maps all 13 940 observed buffalo GPS loca-
tions that were within the landscape were used for validation, 
resulting in a single F-ratio curve and ρ per model. For the 
hourly distribution maps we used the observed buffalo loca-
tions for that hour (mean ± SD = 580 ± 68 locations per 
hour) to validate the predictions, resulting in an F-ratio curve 
and ρ for each hour of the day for each model.

Results

For the dynamic models that included harmonic terms there 
was clear temporal variability throughout the day for buffalo 
movement and habitat selection parameters, in both the dry 
and wet seasons (Fig. 2, Fig. 3, Supporting information). The 
habitat selection parameters indicated an avoidance of her-
baceous vegetation (Fig. 2) and selection of higher values of 
NDVI and canopy cover during the middle of the day, which 
correlates with buffalo thermoregulation as they seek shelter 
from high temperatures and sun (Fig. 3). There was also posi-
tive selection for herbaceous vegetation in the early morning 
and evening, which are likely to represent foraging periods 
(Fig. 2). When the harmonic terms were not considered, the 
dynamics in relation to herbaceous vegetation averaged to a 
coefficient almost equal to 0, obscuring any relationship to 
herbaceous vegetation.

The buffalo observed movement behaviour followed a 
crepuscular pattern, with high movement around dawn and 
dusk, and the simulated behaviour from the dynamic mod-
els with 2 or 3 pairs of harmonics (2p and 3p) replicated 
the pattern that was observed in the data (Fig. 4), which was 
suggested by the estimated coefficients (Supporting infor-
mation). The simulations from the dynamic 1p, 2p and 3p 

Figure 2. Estimated time-varying coefficients over the day for the habitat selection parameters of the population-level SSF model for 13 
female buffalo in Arnhem Land, NT. Panel (A) shows the estimated coefficient for herbaceous vegetation for the four models. The static 
(0p) model averaged over the effect throughout the day, suggesting incorrectly that there is little relationship to herbaceous vegetation. The 
dynamic models, however, revealed that there was attraction in the evening and avoidance during the day, suggesting buffalo sought shelter 
from the sun in woody vegetation during the middle of the day. As there appears to be only a single period in this trend, all three dynamic 
models (1p, 2p and 3p) captured it. (B) The trend for slope appeared to have multiple modes, which was captured by the models with two 
and three pairs of harmonics.

following the typical procedure (Avgar et al. 2016, Fieberg et al. 2021), although this is performed across T (3). In our case there were nega-
tive values for the von Mises concentration parameter, suggesting that the mean of the distribution changed from 0 to π, indicating a higher 
likelihood of taking return steps in the early morning. Using the temporally dynamic habitat selection coefficients and updated movement 
parameters, we can simulate by indexing the coefficients and parameters at time τ (4). In (4), we have shown the proposed steps from the 
current (blue) point, with the size of the circle representing the probability of choosing that step based on the habitat covariates. The red 
circle was the step that was selected, and forms the starting point for the next step.

Figure 1. Continued.
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models largely captured the habitat selection during the mid-
dle of the day (Fig. 4), but the selection of NDVI and canopy 
cover outside of the middle of the day was not well captured 
by any of the models.

When considering the long-term landscape-scale predic-
tions, the static (0p) model’s predictions were more homoge-
neous, indicating an averaging-out of high habitat selection, 
such as during the middle of the day (Fig. 5). The predic-
tions of the most accurate dynamic (2p) model, on the other 
hand, highlighted areas of concentrated use in the land-
scape, which aligned better with the observed buffalo loca-
tions (Fig. 5). The continuous Boyce index (cBI) indicated 
that the 2p model was most accurate (ρ = 0.92), followed by 
the 3p (ρ = 0.82), 0p (ρ = 0.70) and 1p (ρ = 0.21) models. 
A plot similar to Fig. 5 for the 1p and 3p models is in the 
Supporting information.

The hourly predictions indicated that the 2p and 3p mod-
els were most accurate throughout the day, and that each 
model was most accurate towards the middle of the day 
(Fig. 6), which correlates with the alignment of the mean val-
ues of the observed and simulated locations for those hours 
(Fig. 4). The dynamic models revealed a higher concentration 

of buffalo during the middle of the day, presumably in denser 
canopy with high values of NDVI, which is supported by a 
concentration of observed buffalo GPS locations into smaller 
clusters. Animations of the hourly predictions are in the 
Supporting information.

Discussion

In this study we incorporated fine-scale temporal dynam-
ics into step selection functions (SSFs) for the purpose of 
generating temporally fine-scale and long-term predictions 
of water buffalo B. bubalis distribution. We also assessed 
whether including fine-scale temporal dynamics allowed for 
more accurate long-term predictions and the identification of 
emergent features. The hourly summary statistics indicated 
that the dynamic models more realistically replicated the 
daily behaviours of buffalo, which resulted in more accurate 
landscape-scale predictions across the hours of the day and, 
importantly, more accurate predictions when considering 
longer time-scales. Our simulations also identified high-use 
areas in the landscape in places that may be most susceptible 

Figure 3. As there were both linear and quadratic terms that interacted with the harmonic terms for normalised difference vegetation index 
(NDVI) and canopy cover, it was possible to construct ‘selection surfaces’ that represent the strength of association through time on the natu-
ral scale of the covariate. The colours approaching yellow with the black dashed contours indicate positive selection with an estimated β 
coefficient above 0, the solid black line shows the zero contour, and colours approaching purple with red dashed contours showing avoidance 
of those values of each covariate at those times. Due to the difference in scales of the covariates, the selection colours are scaled for each plot. 
Each column represents a model with numbers of harmonics that increase to the right (0p, 1p, 2p and 3p denote 0, 1, 2 and 3 pairs of har-
monics, respectively). Each row represents a different covariate within that model. For NDVI (top row) and canopy cover (second row), the 
models with one, two and three pairs of harmonics (1p, 2p and 3p) are similar, suggesting that increasing the number of harmonics is unlikely 
to dramatically change the model fit and therefore simulation outputs. The NDVI selection surface suggests that buffalo had an attraction for 
intermediate values of NDVI in the middle of the day, and selection against high values in the dawn and dusk periods, possibly for foraging 
and to ease transit in high movement periods. The selection surface for canopy cover indicates that buffalo preferred denser canopy in the 
middle of the day (correlating with NDVI), suggesting that buffalo were seeking refuge from high temperatures and sun.
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to environmental damage, which were not present in the 
static model due to an averaging of the movement and selec-
tion processes. The flexible, temporally dynamic responses 
in the estimated step selection parameters revealed daily pat-
terns of buffalo movement and habitat selection behaviour.

Our results showed that, in the middle of the day, buffalo 
had strong selection for woody vegetation that is character-
ised by a denser canopy and high values of NDVI, which 
likely relates to thermoregulation. We also identified two 
high-movement periods near dawn and dusk, which likely 
describes the movement between foraging areas and the 
denser canopy areas for thermoregulation. For guiding man-
agement operations, our hourly predictions revealed a highly 
variable dynamic distribution, with diffuse predictions dur-
ing the high-movement periods and concentrated use in the 
middle of the day. Despite the buffalo occupying a relatively 
small area in the middle of the day, they may be difficult to 

see from the air due to the dense canopy. Therefore, aerial 
operations such as population surveys, shooting and aggre-
gating individuals for mustering may be more effective dur-
ing the high-movement periods when buffalo are in the 
open, even though they may be spread over a larger area. The 
long-term predictions of the more accurate dynamic models 
showed there are several areas that may be at higher risk of 
damage (identified by high predicted use). If these areas are 
ecologically or culturally important, then persistent manage-
ment actions such as exclusion fencing may be considered 
(Ens et al. 2016, Sloane et al. 2024).

Given the pervasiveness of fine-scale temporal dynamics 
in animal behaviour, our results show that we may be missing 
out on valuable information when generating predictions. 
These findings may be even more pertinent to species that 
have greater mobility (e.g. flighted animals), central place 
foragers, or for other species that may use distinctly different 

Figure 4. To assess the habitat selection of the simulated trajectories through time, we binned 100 randomly selected trajectories into the 
hours of the day, extracted the values of the movement parameters and covariates for each hour, and took the mean, median and standard 
deviation. Here we show the mean values for the observed data and the simulations from each of the four models through time for (A) step 
length, (B) normalised difference vegetation index (NDVI), (C) herbaceous vegetation and (D) canopy cover. The shaded ribbons enclose 
the 25 and 75% quantiles, and the dashed lines are the 2.5 and 97.5% quantiles. The solid line is the mean for that hour across all trajec-
tories for the buffalo or for each of the models. The observed data are shown in red, with each light red line representing one buffalo 
(n = 13). The dashed lines for the 2.5 and 97.5% quantiles are not displayed for the observed data, as all buffalo are shown. For step length 
in panel (A) the simulated trajectories of the step selection models with two or three pairs of harmonics (2p and 3p) captured the bimodal, 
crepuscular movement pattern in the observed buffalo data. For the habitat covariates NDVI, herbaceous vegetation and canopy cover in 
panels (B–D), the simulated trajectories of the temporally dynamic models with one, two or three pairs of harmonics (1p, 2p, and 3p) 
largely captured the peak of the unimodal pattern of habitat selection in the dry season, which was likely driven by sun and high tempera-
tures during the middle of the day, leading to buffalo seeking shelter in denser, more closed vegetation. Although the general shape is rep-
resented, none of the models captured the selection of low values of NDVI and canopy cover during the early morning and night, which is 
borne out in the validation of the landscape-scale predictions, which received lower scores during these periods. The pattern of step lengths 
and habitat selection was consistent across the buffalo and within each model’s simulations, although the variance is wide, likely due to the 
area of the landscape that is available to the buffalo or the simulated trajectories.
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areas throughout the course of a day (Chapman et al. 1989, 
Leblond et al. 2010, Kohl et al. 2018, Ylitalo et al. 2021). In 
cases where temporally fine-scale predictions might be useful, 
such as predicting human–wildlife interactions (Carter et al. 
2012, Buderman  et  al. 2018), identifying areas of pos-
sible zoonotic disease transmission (Parsons  et  al. 2014), 
mitigating fishing impacts (Fernández and Anderson 2000, 

Ouled-Cheikh et al. 2020), or intensive conservation man-
agement operations, we have shown that incorporating tem-
poral dynamics into simulated trajectories can be a valuable 
approach to meet these objectives. Including the temporally 
dynamic processes into the model may also result in identi-
fying emergent features of the aggregated behaviour of the 
population, even when the temporally fine-scale predictions 

Figure 5. Landscape-scale predictions and their validation: panels (A) and (D) show landscape-scale predictions for late-dry season 2018 for 
the static model (0p), and a dynamic model with two pairs of harmonics (2p). The density of the observed buffalo locations is shown as 
white contours representing the 50% (solid) and 95% (dashed) isopleths, derived using kernel density estimation fitted to each individual 
(n = 13 933 GPS locations in total). We considered the number of simulated locations in each cell as the landscape-scale predictions of 
expected buffalo distribution. Predictions were generated by simulating 100 000 trajectories with 3000 steps each. Panels (B) and (E) each 
show histograms of the predicted and observed density of locations. The coloured bars show the density of simulated locations that fell 
within each cell, and the white bars show the distribution of the observed buffalo locations when overlaid on these predictions. The F-ratio 
shown in panels (C) and (F) is the ratio of these densities (normalised by the total number of simulated and observed locations, respectively) 
within a sweeping window, known as the continuous Boyce index (cBI) (Boyce et al. 2002, Hirzel et al. 2006), which can be used for vali-
dating with presence-only GPS data. For a model that performs well, we would expect fewer locations in areas that are predicted to be 
unsuitable habitat (resulting in an F-ratio less than 1), and more observed locations in areas that are predicted to be suitable habitat (result-
ing in an F-ratio greater than 1). We assessed whether there was an increasing trend of the F-ratio by using the Spearman rank correlation 
coefficient, ρ, which ranges from −1 to 1, with 0 indicating a random distribution of observed locations, and a value of 1 indicating perfect 
predictions (denoted by a strictly monotonic increasing F-ratio). In this case the static (0p) model’s predictions were more homogeneous, 
likely due to averaging over the fine-scale temporal dynamics, whereas the dynamic (2p) model revealed emergent areas of high use in the 
landscape which may be at higher risk of environmental damage. The high-use areas in the 2p model also correlated with a high relative 
proportion of buffalo locations, resulting in a higher value of ρ.
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are not of interest. We also expect that fine-scale temporal 
dynamics may affect other prediction targets, such as connec-
tivity and movement corridors, particularly due to dynamic 
representation of movement behaviour (Hooker et al. 2021, 
Whittington et al. 2022, Aiello et al. 2023, Hofmann et al. 
2023, Sells et al. 2023).

Given the potential influence on predictions, assessing 
how temporally dynamic the movement and habitat selec-
tion behaviour is would be a useful exploratory step prior 
to model fitting. It is possible to identify the trend of tem-
poral dynamics through the dynamic summary statistic 
approach we took for the step lengths and habitat covariates 
for each hour (Fig. 4). In our case, the estimated coefficients 
of NDVI, canopy cover and herbaceous vegetation exhibited 
a single mode of selection, and all dynamic models (denoted 
1p, 2p and 3p for the number of harmonic pairs) largely rep-
licated this. However, for the movement behaviour, there was 
a multimodal pattern that was only captured by the more 

flexible models that allowed for multiple modes (2p and 3p), 
likely contributing to the higher prediction accuracy for these 
models.

In the models presented in this paper we used harmonic 
terms to incorporate the temporally dynamic behaviour into 
the SSFs, although a recent paper by Klappstein et al. (2024) 
shows that splines are another natural option, which also allow 
for SSF extensions and hierarchical model fitting using the 
‘mgcv’ package (Wood 2011). Simulating trajectories from 
dynamic models fitted with spline terms would be the same 
process as we have presented here, and would just be a matter 
of indexing the coefficients for ��T  when simulating tra-
jectories. It would also be possible to fit the two-dimensional 
selection surfaces that we achieved by interacting quadratic 
terms and harmonics by using interacting spline terms, which 
would be more flexible than our approach, although it would 
add more parameters into the model. An additional benefit 
of the spline approach is that the temporal dynamics do not 

Figure 6. As the simulations were temporally dynamic on a daily time-scale, we generated landscape-scale predictions for each hour of the 
day. In panels (A) and (B) we show landscape-scale predictions from a dynamic model with two pairs of harmonics (2p) for hour 7 (07:00) 
and midday (hour 12). Hour 7 is during the buffalo period of high movement activity, which resulted in diffuse predictions that aligned 
with more open habitat and correlated with more spread out observed buffalo GPS locations (shown as white points, n = 657). Hour 12 is 
during the period when buffalo seek denser vegetation and more closed canopy to shelter from high temperatures and sun, resulting in 
predictions that were localised in certain areas, which correlated more closely with the tightly clustered observed buffalo GPS locations 
(n = 539). To aid visualisation the colours are scaled within each map, and the maximum number of simulated locations per cell are 177 
and 511 for the Hour 7 and Hour 12 maps, respectively. Panel (C) shows the Spearman rank correlation coefficient, ρ, for each of the 
models for every hour of the day. Similar to the results shown in Fig. 4, the predictions were most accurate for all models during the middle 
of the day, and the dynamic models with 2 and 3 pairs of harmonics (2p and 3p) were the most consistently accurate across all hours of the 
day. There are animations of the hourly predictions from each of the models in the Supporting information.
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need to be cyclic, which can allow for temporally dynamic 
movement and habitat selection to be inferred and simulated 
from in cases such as post-release behaviour and home range 
establishment (Maor-Cohen et al. 2021, Picardi et al. 2021, 
Cisneros-Araujo et al. 2024).

Another alternative method of incorporating temporal 
dynamics into animal movement models is through state-
switching models such as a hidden Markov model (HMM) 
(Langrock et al. 2012, McClintock et al. 2012). In HMMs, 
behaviours such as foraging, resting and transiting are rep-
resented as states with different movement parameters, and 
when combined with SSFs (HMM-SSF/HMM-iSSA), dif-
ferent habitat selection parameters (Picardi  et  al. 2022, 
Beumer  et  al. 2023, Klappstein  et  al. 2023, Pohle  et  al. 
2024). These models can easily incorporate temporal dynam-
ics as the transition matrix governing state-switching can 
depend on time, although in HMMs the states are discrete, 
whereas real behaviour changes may be gradual and continu-
ous, which may affect predictions in some cases. However, 
hierarchical HMMs may be an effective method to incorpo-
rate behavioural changes over multiple time-scales, and when 
combined with habitat selection, may produce informative 
and accurate simulation models (Leos-Barajas  et  al. 2017, 
Adam et al. 2019).

Simulated trajectories of animal movement have applica-
tions beyond what is possible compared to analytic predic-
tion approaches such as resource selection functions (Potts 
and Börger 2023), and we see many potential applications 
of using SSFs to generate trajectories, particularly when they 
can capture realistic behavioural dynamics. A promising 
application is for counter-factual analysis, where landscape 
covariates can be modified to represent a disturbance, man-
agement action, reserve or habitat corridor design, and tra-
jectories can be simulated to understand how animals may 
respond. Other applications include near-term trajectories 
that assess the likelihood of an area being used by an animal 
in the future, which may be useful to assess colonisation and 
invasion potential of introduced species (Lustig et al. 2017, 
2019, Patterson et al. 2024), or to plan upcoming manage-
ment when the locations of animals are currently known. 
Trajectories from SSFs have already seen useful application 
for connectivity, and there is potential to identify movement 
corridors and understand metapopulation dynamics in frag-
mented environments (Hooker et al. 2021, Whittington et al. 
2022, Aiello  et  al. 2023, Hofmann  et  al. 2023, Sells  et  al. 
2023), particularly when combined with additional data such 
as genetics to assess historic connectivity (Lowe and Allendorf 
2010, Dussex et al. 2015).

An additional feature of parameterised SSFs is that they 
can serve as the foundation for a more complex model 
(Hauenstein et al. 2019). Additional parameters that govern 
behavioural and ecological factors such as more sophisticated 
memory effects and home range behaviour, social interac-
tions, and more flexible relationships between the animal and 
resource covariates can be added for a more sophisticated sim-
ulation model. The model would then need to be calibrated 
to data, but the SSF estimates for the movement and resource 

selection parameters can be used as priors, and approaches 
such as simulation-based inference can be used to fit the 
updated model to data (Hartig  et  al. 2011, Cranmer et  al. 
2020, Tejero-Cantero  et  al. 2020). For an example of this 
approach see Hauenstein et al. (2019).

Conclusions

We have generated temporally fine-scale predictions of animal 
spatial distribution via simulations from step selection mod-
els that incorporated fine-scale temporal dynamics through 
harmonic terms. We found that simulations from dynamic 
models replicated the observed behaviour more closely, which 
resulted in more accurate temporally fine-scale and long-term 
predictions of distribution. Adding temporal dynamics to the 
movement behaviour and memory processes also allowed 
for useful inference towards our study species, the invasive 
water buffalo B. bubalis, which can help to guide manage-
ment operations in northern Australia. As more ecologists 
are turning to SSFs to simulate trajectories for understanding 
future distribution and connectivity, we suggest incorporat-
ing temporal dynamics to more realistically represent animal 
behaviour through time, which can improve predictions and 
identify emergent features that would otherwise be missed. 
For those wanting to better understand movement and habi-
tat selection of their species, including temporal dynamics 
can provide richer information, particularly for species with 
clear daily or seasonal patterns of behaviour.
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