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Abstract

Introduction: This study evaluates the clinical value of a deep learning–based artifi-

cial intelligence (AI) system that performs rapid brain volumetry with automatic lobe

segmentation and age- and sex-adjusted percentile comparisons.

Methods: Fifty-five patients—17with Alzheimer’s disease (AD), 18 with frontotempo-

ral dementia (FTD), and 20 healthy controls—underwent cranial magnetic resonance

imaging scans. Two board-certified neuroradiologists (BCNR), two board-certified

radiologists (BCR), and three radiology residents (RR) assessed the scans twice: first

without AI support and thenwith AI assistance.

Results: AI significantly improved diagnostic accuracy for AD (area under the curve

−AI: 0.800, +AI: 0.926, p < 0.05), with increased correct diagnoses (p < 0.01) and

reduced errors (p < 0.03). BCR and RR showed notable performance gains (BCR:

p < 0.04; RR: p < 0.02). For the diagnosis FTD, overall consensus (p < 0.01), BCNR

(p< 0.02), and BCR (p< 0.05) recorded significantly more correct diagnoses.

Discussion: AI-assisted volumetry improves diagnostic performance in differentiating

AD and FTD, benefiting all reader groups, including BCNR.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.
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Highlights

∙ Artificial intelligence (AI)-supported brain volumetry significantly improved the

diagnostic accuracy for Alzheimer’s disease (AD) and frontotemporal dementia

(FTD), with notable performance gains across radiologists of varying expertise

levels.

∙ The presented AI tool is readily clinically available and reduces brain volumetry pro-

cessing time from12 to24hours tounder5minutes,with full integration intopicture

archiving and communication systems, streamlining the workflow and facilitating

real-time clinical decisionmaking.

∙ AI-supported rapid brain volumetry has the potential to improve early diagnosis and

to improve patient management.

1 INTRODUCTION

Cognitive decline caused by dementia not only leads to suffering

for affected patients and their caregivers but also carries substantial

socioeconomic cost.1–3 As Western societies rapidly age, the inci-

dence and prevalence of dementia increase accordingly, signifying the

urgent need for improved diagnosis and early detection.4–7 In recent

years, artificial intelligence (AI) has been increasingly used in health

care, including in the diagnosis of Alzheimer’s disease (AD) and other

dementias. AI models can already analyze a wide range of diagnos-

tic markers, including neuroimaging results, but also other factors

such as lifestyle data.8,9 Brain volumetry, as a tool for quantifying the

volume of brain structures by layer-by-layer segmentation, can sub-

stantially contribute to the differential diagnosis of dementia patients

by revealing anatomical patterns of atrophy.10–12 It can also facili-

tate monitoring disease progression and treatment response, which

is of particular interest as novel biological therapies for dementia are

currently emerging.13–16

Automated brain volumetry based on three-dimensional magnetic

resonance imaging (MRI) has long been established17–19 but has not

yet been included in routine radiological reporting of MRI scans of

dementia patients. The reason is at least threefold. First, conven-

tional segmentation and volumetry are time consuming and require

dedicated computational resources. Second, the volumetry results are

mostly not integrated in the picture archiving and communication sys-

tem (PACS) environment of the radiologist and are thus not readily

available for clinical decision making. Third, standardized, age- and

sex-adapted reference values for each segmented brain structure are

currently lacking.20

Here we analyze the clinical value of an AI-based brain segmenta-

tion tool using deep learning methodology, which reduces computa-

tional time from ≈ 12 to 24 hours using conventional segmentation

to under 5 minutes (considering an ordinary consumer grade personal

computer with a graphics processing unit). In combination with full

PACS integration and provided reference values, this brain volume-

try tool considerably increases clinical applicability and enables the

radiologist to include and interpret volumetry results in their report.

Our study hypothesis was that radiologists with varying levels of

training could enhance their performance in the differential diagno-

sis of dementia by integrating the supplementary information provided

by brain volumetry into their routine clinical practice. To test this

hypothesis, we conducted a reading study involving highly special-

ized board-certified neuroradiologists (BCNRs), board-certified radi-

ologists (BCRs), and radiology residents (RRs) at various stages of

residency training. These participants evaluated magnetic resonance

(MR) images for the presence of AD and frontotemporal dementia

(FTD), both with and without the support of AI-based automated

brain segmentation, and comparison of volumetry results to age- and

sex-adapted percentiles.

2 MATERIALS AND METHODS

2.1 Ethics statement

Investigators only used fully anonymized data. The acquisition of MRI

data for the associated studies was approved by the local ethics

committees of the involved sites of the German Center for Neurode-

generative Diseases (DZNE). DZNE approved the use of anonymized

data for this study. Theuseof the applied artificial intelligence software

for study purposes was approved by the institutional legal depart-

ment of theUniversity Hospital of the LudwigMaximilianUniversity of

Munich. The study was conducted in accordance with the Declaration

of Helsinki.
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RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature on brain

volumetry, searching PubMed and Google Scholar, with a

focus on its role in the diagnosis of Alzheimer’s disease

(AD) and frontotemporal dementia (FTD). Despite the

proven utility of brain volumetry in identifying anatom-

ical patterns of atrophy, its adoption in routine clinical

practice remains limited due to factors such as time-

consuming segmentation processes, unavailable refer-

ence standards for volumetry results, and lack of picture

archiving and communication system (PACS) integration.

2. Interpretation: Our study demonstrates that artificial

intelligence (AI)-supported brain segmentation combined

with the comparison of volumetry results to age- and

sex-adapted reference values significantly enhances the

diagnostic accuracy of radiologists, including those with

extensive experience, in the differential diagnosis of AD

and FTD. The demonstrated AI tool, with its rapid data

processing and full PACS integration, facilitates the incor-

poration of volumetric data into routine clinical report-

ing, which might lead to more accurate diagnoses and

potentially earlier detection of dementia, which might

ultimately improve patient management.

3. Future directions: Further research should focus on eval-

uating the long-term clinical benefits of AI-assisted brain

volumetry, including its impact on patient outcomes and

treatment pathways.

2.2 Consent statement

All human study participants gave informed consent for the use of their

clinical, diagnostic, and imaging data as part of DZNE-related studies.

2.3 Patient cohort

Fully anonymized cranial MRI data of 161 participants were obtained

from the DZNE. The datasets are part of the study cohorts DEL-

CODE (DZNE—Longitudinal Cognitive Impairment and Dementia

Study), DESCRIBE-FTD (DZNE—Clinical Registry Study on Frontotem-

poral Dementia), and DANCER (Degeneration Controls and Relatives).

Images were acquired at different centers of the DZNE, resulting in

heterogeneity of MRI scanners. All involved investigators in our data

analysis had no access to any personal information of the patients

(name, birthday, address, etc.).

In all delivered cases, clinically confirmed diagnosis of either AD,

FTD, or no neurodegenerative disease/healthy control was available.

Patient characteristics, including clinical test results, are presented in

Table 1. Among the FTD cases, the following variants are represented:

behavioral variant of frontotemporal dementia (bvFTD), progressive

non-fluent aphasia (PNFA), and semantic dementia (SemD). The diag-

nosis of possible AD was based on the diagnostic criteria of the

National Institute of Neurological and Communicative Disorders and

Stroke and the Alzheimer’s Disease and Related Disorders Associa-

tion (NINCDS/ADRDA).21 Disease assessment included a standardized

medical history including medications taken; a comprehensive clin-

ical neurological examination including various established tests of

memory, language, andmotor function; a systematic analysis of bioma-

terials (including recurrent blood, urine, and cerebrospinal fluid [CSF]

diagnostics); biomarker diagnostics (including amyloid beta [Aβ]42,

Aβ40, tau, phosphorylated tau [p-tau]); and imaging diagnostics such as

MRI and nuclear medicine examinations (e.g., amyloid positron emis-

sion tomography). For detailed information on data analysis in the

DELCODE cohort, see Jessen et al.22

In the FTD cohort, Rascovsky et al.’s diagnosis criteria23 were used

for the diagnosis of bvFTD, and Gorno-Tempini et al.’s criteria24 were

used for primaryprogressive aphasias (PNFAandSemD). The spectrum

of investigations in the FTD cohort included clinical examination, med-

ical history, concomitant medication, as well as biomarker diagnostics

(e.g., Aβ42, Aβ40, tau, p-tau in CSF), genetics (whole genome/whole

exome, C9orf, progranulin, tau), imaging diagnostics such as MRI, and

a large battery of neuropsychological tests, some ofwhich overlapwith

the DELCODE cohort.

Further image preselection for this study was conducted by an

experienced radiology resident with 5 years of experience in neu-

roradiology. Inclusion criteria were: presence of a three-dimensional

T1-weighted sequence (3D T1w) and a 3D fluid-attenuated inversion

recovery sequence (FLAIR) acquired in native technology (without

prior injection of contrast agent), sufficient image quality (visual check

by the radiology resident, e.g., no motion or susceptibility artifacts), no

whitematter lesions≥Fazekas grade2, no signof prior ischemic infarc-

tion, and successful completion of quality check by AI tool according

to Digital Imaging and Communications in Medicine tag–based image

criteria [see Table S1 in supporting information]). The resulting collec-

tive included 17 patients with AD, 18 patients with FTD (12 bvFTD, 5

PFNA, and 1 SemD), and 20 healthy controls. All images were acquired

on 3T scanners. ForMR imaging parameters, please refer to Table S2 in

supporting information.

2.4 Reading/questionnaire/consensus formation

3D T1w and 3D FLAIR sequences were case-wise extracted and

handedover to seven readers—twoBCNRs (BCNR I: 10yearsof experi-

ence in image level dementia differential diagnostics (YOE) and BCNR

II: 10 YOE), two BCR (BCR I: 7 YOE and BCR II: 5 YOE), and three RR

(RR; RR I: 0 YOE, RR II: 1 YOE, and RR III: 1 YOE, including a special

neuroradiologic training). All readers were blinded to the individual’s

diagnosis. Additionally, 3D T1w images were sent to the fully PACS

integrated pipeline of the AI system mdbrain (Mediaire GmbH, ver-

sion 3.3.0), installed at our institution (see section 2.6). The AI tool

functioned uniformly across all scans, returning user readable results.
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TABLE 1 Clinical parameter of enrolled patients sorted by study groups.

Parameter / cohorts Alzheimer’s disease Frontotemporal dementia Healthy controls

n / % 17 / 30.9% 18 / 32.7% 20 / 36.4%

Age at examination (mean / standard deviation / range) 74.5 / 5.9 / 64–87 years 63.2 / 9.9 / 41–80 years 68.6 / 7.6 / 55–80

Sex (female count / %) 13 / 76.5% 5 / 27.8% 11 / 55.5%

Bodymass index (mean / standard deviation / range) 25.0 / 3.4 / 21–32 kg/m2 25.1 / 3.3 / 19–30 kg/m2 26.3 / 2.9 /

22–30 kg/m2

Smoker (n / % /mean pack years of smoker) 0 / 0% / none 5 / 27.8% / 22.3 pack years 1 / 5.0% / 2 pack years

Educational years (mean / standard deviation / range) 12.5 / 1.9 / 10–18 years 14.4 / 2.5 / 12–19 years 14.4 / 2.7 / 11–19

years

Scores in clinical tests (mean / standard deviation /

range)

MiniMental State Examination (MMSE) 23.2 / 3.5 / 16–28 22.7 / 6.8 / 5–29 29.2 / 0.8 / 28–30

Geriatric Depression Scale (GDS) 1.3 / 1.6 / 0–5 3.4 / 4.1 / 0–14 0.6 / 0.6 / 0–2

Neuropsychiatric InventoryQuestionnaire (NPI-Q) 3.4 / 3.4 / 0–12 11.2 / 7.4 / 2–23 0.4 / 0.8 / 0–2

Clinical Dementia Rating Global (CDR) 0.8 / 0.4 / 0.5–2 1.0 / 0.7 / 0–2 0.0 / 0.1 / 0–0.5

Clinical Dementia Rating Sum of Boxes (CDR-SB) 4.4 / 2.8 / 0.5–12 6.5 / 4.1 / 0.5–14 0.1 / 0.2 / 0–0.5

Results were displayed in the form of individual “volumetry reports”

(for a truncated version, see Figure 1). The reports were exported as

PDF files and handed over to the readers during the reading process.

All readers had to evaluate the cases in a two-step reading procedure.

Caseswere assessed in termsof the suspected pathology present using

a likelihood score (0–5), adding up to a sum of 5 for all three diagnos-

tic categories (AD, FTD, and healthy control). Here are two examples:

If the reader is certain that FTD is present, he/she may award 5 points

to FTD but must award 0 for the AD and healthy control categories.

If the reader is unsure whether AD or FTD is present, he/she can, for

example, assign 2 points to AD and FTD, respectively, and 1 point to

healthy control. A low, odd number that cannot be divided by 3 was

deliberately chosen because this requires a stronger weighting of the

differential diagnoses. Reading Iwas adiagnostic evaluationof thebare

3D T1w and 3D FLAIR images without any AI support. In Reading II, all

readers had to evaluate the images again, given the additional informa-

tion of the AI/volumetry reports. To reduce confirmation bias, readers

received the volumetry reports after finishing Reading I, had to hand

back evaluation sheets from Reading I prior to Reading II, were given

a wash-out phase of 30 to 60 days, and were blinded for Reading I

likelihood scores during the ongoing Reading II. After Reading II, read-

ers completed a questionnaire asking for their individual assessment

of the AI tool. For subgroup analysis, reader consensus was formed by

summing up the individual likelihood scores of the readers in the spe-

cific subgroup: overall consensus (OC) considers all seven participating

readers, BCNR consensus considers the two BCNRs, BCR consensus

considers the two BCRs, and RR consensus considers the three RRs.

2.5 Statistical analysis

Individual performance and reader consensus performance (based on

the likelihood scores) with and without AI support were statistically

evaluated using receiver operating characteristic (ROC) curvewith cal-

culation of the area under the ROC curve (AUC) and operating point

optimization with the Youden J statistic. This statistical methodol-

ogy has already been established in several studies.25–29 ROC curves

were compared with paired ROC tests. Comparisons of assigned diag-

nosis points according to likelihood scores were performed using a

Student t test for paired samples. Questionnaires with Likert-scaled

choices were displayed using histograms. All statistical calculations

and graphic illustrations were performed using open-source pro-

gramming language R.30 The R code can be made available upon

request.

2.6 AI algorithm

For quantitative analysis of brain MRIs, the commercially avail-

able AI tool “mdbrain,” version 3.3.0 (Mediaire GmbH) was used.

The system leverages a custom deep learning segmentation model

based on the U-Net architecture31 to perform a highly accu-

rate side- and region-specific (e.g., lobes) rapid brain volumetry,

which was trained on a heterogeneous dataset of 3D T1w images

(n = 1851, balanced male/female). Augmentation techniques (aug-

mentation of contrast, resolution, rotation, and elastic deforma-

tion) have been used to maximize the model’s applicability in daily

routine.

The volumes of 18 brain regions, including the hippocampus, are

determined and percentiles are derived by comparison to a cohort

of healthy individuals (n = 3179, balanced male/female, age range

18–92), while accounting for age, sex, and total intracranial volume.

Volumes and percentiles are displayed in tabular format, along with

clinically relevant MRI slices and schematics to highlight pathological

values beyond two standard deviations from themean (example report

provided in Figure 1).
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F IGURE 1 Artificial intelligence–based volumetry report. Excerpt from a volumetry report of a study patient diagnosedwith frontotemporal

dementia. Themeasured volumes from in total 18 brain regions (including the hippocampus) are determined from the segmentation and then

automatically compared against an age- and sex-matched reference cohort of healthy individuals (n= 3179) to yield percentiles. The entire

analysis runs in< 5minutes. Volumes and percentiles are displayed in tabular format, along with clinically relevant magnetic resonance imaging

slices and schematics to highlight pathological values beyond two standard deviations from themean.

3 RESULTS

3.1 ROC analysis and distribution of diagnostic

points

ROC analysis and comparison tests of correctly assigned diagnos-

tic points showed that correct decision making was substantially

improved by AI support. ROC curves with according to Youden J statis-

tics optimized operation points and further metrics at the optimized

operation point (acc [accuracy], sens [sensitivity], spec [specificity], ppv

[positive predictive value], npv [negative predictive value]), fpr [false

positive rate], fnr [false negative rate], and ctl [closest top left]) are

depicted in Figures 2 (AD) and 3 (FTD), with part A of both figures

showing subfigures without AI support and part B showing subfig-

ures with AI support. Comparisons of AUCs and correctly/incorrectly

assigned diagnostic points can be found in Tables 2 (AD) and 3 (FTD).
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F IGURE 2 Performance in the radiological differential diagnosis of ADwithout (A) andwith AI support (B) and performance comparison of

consensus (C). OC, BCR, and RR consensus improved significantly with AI support, with OC reaching an AUC of up to 0.926. BCNR consensus

improved slightly (not statistically significantly) with AI support. acc, accuracy; AI, artificial intelligence; AD, Alzheimer’s disease; AUC, area under

receiver operating characteristic curve; BCR, board-certified radiologist; BCNR, board-certified neuroradiologist; ctl, closest top left; fnr, false

negative rate; fpr, false positive rate; npv, negative predictive value; OC, overall consensus; ppv, positive predictive value; RR, radiology resident;

sens, sensitivity; spec, specificity.

F IGURE 3 Performance in the radiological differential diagnosis of FTDwithout (A) andwith AI support (B) and performance comparison of

consensus (C). Consensus improved for themost part with AI support (not statistically significant). Outliers with poor performance become fewer

with AI support. acc, accuracy; AI, artificial intelligence; AUC, area under receiver operating characteristic curve; BCR, board-certified radiologist;

BCNR, board-certified neuroradiologist; ctl, closest top left; fnr, false negative rate; fpr, false positive rate; FTD, frontotemporal dementia; npv,

negative predictive value; OC, overall consensus; ppv, positive predictive value; RR, radiology resident; sens, sensitivity; spec, specificity.

Evaluations for the correct detection of healthy controls can be found

in Figure S1 and Table S3 in supporting information.

AD diagnosis was clearly improved by AI support, showing a statis-

tically significant performance improvement in OC (p < 0.05) with a

resulting AUC with AI support (+AI) of 0.926 compared to an AUC of

0.800 without AI support (–AI) and an (according to Youden J statistic

optimized) accuracy of 0.89 with AI support compared to an accuracy

of 0.82 without AI support. Considering a potential maximum of 275

points (likelihood score 0–5; 5 points/case × 55 cases) and a maximum

number of correct points of 85 for AD diagnosis (17 correct cases),

overall reader consensus allocated 10.5 additional points correctly to

the AD diagnosis. This increase in correctly distributed points was sta-

tistically significant (p < 0.01). Also, reduction of incorrectly assigned

AD diagnostic points was statistically significant (–AI: 42.1, +AI: 32.1,

p< 0.03). In the subgroup analysis, performance improvementwas sta-

tistically significant for BCR (AUCs: –AI: 0.794, +AI: 0.902, p < 0.04)

and RR consensus (AUCs: −AI: 0.692, +AI: 0.889, p < 0.02), while in

BCNR consensus performance non-significantly exceeded the results

without AI support (AUCs –AI: 0.838, +AI: 0.884, p = 0.354). Looking

at the assigned points, RR consensus assigned 17.3/48% more points

to the correct AD diagnosis (−AI: 36.0, + AI: 53.3, p < 0.01) and non-

significantly decreased the number of incorrectly assigned diagnostic
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TABLE 2 Individual and consensus performance in the detection of Alzheimer’s disease. AUCs are givenwith 95%CI in parentheses.

AUC –AI AUC+AI p

Correct

points

–AI

Correct

points

+AI p

False

points

−AI

False

points

+AI p

Overall consensus 0.800

(0.652–0.949)

0.926

(0.857–0.994)

<0.05 40.6 51.1 <0.01 42.1 32.1 <0.03

BCNR consensus 0.838

(0.707–0.970)

0.884

(0.787–0.981)

0.354 47.0 53.0 0.159 36.0 22.5 <0.01

BCNR I 0.786

(0.650–0.922)

0.822

(0.701–0.943)

0.303 54 55 0.859 47 28 <0.01

BCNR II 0.827

(0.686–0.967)

0.882

(0.776–0.989)

0.297 40 51 <0.02 25 17 0.088

BCR consensus 0.794

(0.659–0.929)

0.902

(0.825–0.979)

<0.04 41.0 46.0 0.151 34.5 24.0 <0.04

BCR I 0.782

(0.652–0.909)

0.866

(0.765–0.967)

0.053 50 62 0.070 43 34 0.228

BCR II 0.721

(0.562–0.881)

0.793

(0.662–0.923)

0.134 32 30 0.622 26 14 0.101

RR consensus 0.692

(0.532–0.852)

0.889

(0.805–0.974)

<0.02 36.0 53.3 <0.01 51.3 44.0 0.350

RR I 0.594

(0.435–0.754)

0.782

(0.664–0.900)

<0.04 35 48 <0.05 63 54 0.355

RR II 0.629

(0.471–0.786)

0.885

(0.802–0.969)

<0.01 36 72 <0.001 54 52 0.869

RR III 0.713

(0.560–0.866)

0.834

(0.725–0.942)

0.090 37 40 0.666 37 26 0.188

Note: Because n= 17 and 5 points can be assigned per case, themaximumnumber of correct points was 85. The total number of points to assignwas 275. The

number of incorrect points refers to the total number of AD points incorrectly assigned in FTD cases or in healthy controls. Correct and incorrectly assigned

points therefore do not necessarily add up to 85. P values are calculated with DeLong test for correlated ROC curves and paired Student t test. Statistically

significant p values (p< 0.05) aremarked in bold print. –AI: Results without AI support,+AI: Results with AI support.

Abbreviations:AI, artificial intelligence;+AI,withAI support;−AI,withoutAI support;AD,Alzheimer’s disease;AUC, areaunder receiver operating character-

istic curve; BCR, board-certified radiologist; BCNR, board-certified neuroradiologist; CI, confidence interval; FTD, frontotemporal dementia; ROC, receiver

operating characteristic; RR, radiology resident.

points (−AI: 51.3, +AI: 44.0, p = 0.350). In BCR consensus correctly

assigned points tended to increase with AI support (–AI: 41.0, +AI:

46.0,p=0.151), and incorrectly assignedpoints decreased significantly

(-AI: 34.5,+AI: 24.0, P<0.04). In BCNRconsensus, ADdiagnostic points

falsely assigned to non-AD cases were reduced significantly with AI

support (-AI: 36.0, +AI: 22.5, p < 0.01). In the evaluation of individ-

ual readers, the most pronounced effects can be observed in the most

unexperienced readers, RR I and RR II, who have statistically signifi-

cantly improved their performance (AUCs;RR I:−AI: 0.594,+AI: 0.782,

p<0.04; RR II:−AI: 0.629,+AI: 0.885, p<0.01) and increased the num-

ber of correctly assigned AD diagnostic points (RR I: −AI: 35, +AI: 48,

p < 0.05; RR II:, −AI: 36, +AI: 72, p < 0.001), whereas RR II doubled

the correctly assigned points. RR III as a more experienced radiology

residentwith special neuroradiological training showednon-significant

performance increase (AUCs,−AI: 0.713,+AI: 0.834, p= 0.090), which

is comparable to the individual BCNR and BCR readers. Notably, even

the highly experienced BCNR I significantly reduced the number of

falsely assigned diagnostic points (−AI: 47, +AI: 28, p < 0.01) and

the highly experienced BCNR II significantly improved the number of

correctly assigned points (−AI: 40,+AI: 51, p< 0.02).

In FTD diagnosis the overall consensus slightly improved with

AI support (AUCs, −AI: 0.871, +AI: 0.885, p = 0.642) and cor-

rectly assigned points were significantly higher (−AI: 39.0, +AI: 46.1,

p < 0.01). The accuracy (optimized according to Youden J statistic)

was comparable with and without AI support (−AI: 0.87, +AI: 0.87).

Incorrectly assigned points tended to be lower (−AI: 23.6, +AI: 19.9,

p = 0.348). For the BCNR and BCR consensus, although AUC dif-

ferences were not statistically significant (AUCs; BCNR: −AI: 0.858,

+AI: 0.842, p = 0.716; BCR: −AI: 0.789, +AI: 0.874, p = 0.078), cor-

rectly assigned pointswere significantly higherwithAI support (BCNR:

−AI: 46.0, +AI: 56.0, p < 0.02; BCR: −AI: 36.5, +AI: 42.0, p < 0.05).

Incorrectly assigned points showed no statistically different results.

In RR consensus AUC and points comparisons showed no statisti-

cally significant differences. Considering the individual readers, BCNR

I and BCNR II significantly improved the number of correctly assigned

FTD diagnostic points (BCNR I: −AI: 46, +AI: 56, p < 0.04; BCNR II:

−AI: 46, +AI: 56, p < 0.04). BCR II showed a statistically significantly

higher performance with AI support (AUCs, −AI: 0.706, +AI: 0.887,

p < 0.01) and a significant reduction of incorrectly assigned diagnos-

tic points (–AI: 24, +AI: 9, p < 0.02). Also, RR II could significantly
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TABLE 3 Individual and consensus performance in the detection of Frontotemporal dementia. AUCs are givenwith 95%CI in parentheses.

AUC−AI AUC+AI p

Correct

points

–AI

Correct

points

+AI p

False

points

−AI

False

points

+AI p

Overall consensus 0.871

(0.766–0.975)

0.885

(0.777–0.994)

0.642 39.0 46.1 <0.01 23.6 19.9 0.348

BCNR consensus 0.858

(0.740–0.976)

0.842

(0.719–0.965)

0.716 46.0 56.0 <0.02 16.0 22.0 0.165

BCNR I 0.794

(0.666–0.921)

0.797

(0.667–0.928)

0.894 46 56 <0.04 12 25 0.052

BCNR II 0.843

(0.728–0.958)

0.828

(0.701–0.955)

0.792 46 56 <0.04 20 19 0.830

BCR consensus 0.798

(0.674–0.922)

0.874

(0.759–0.989)

0.078 36.5 42.0 <0.05 26.5 17.0 0.076

BCR I 0.750

(0.611–0.889)

0.747

(0.600–0.894)

0.957 42 47 0.358 29 25 0.632

BCR II 0.706

(0.555–0.856)

0.887

(0.792–0.981)

<0.01 31 37 0.057 24 9 <0.02

RR consensus 0.841

(0.736–0.945)

0.863

(0.754–0.972)

0.663 36.0 42.3 0.187 26.7 20.3 0.239

RR I 0.661

(0.520–0.803)

0.697

(0.544–0.849)

0.703 29 41 0.135 38 44 0.513

RR II 0.610

(0.453–0.766)

0.754

(0.620–0.888)

0.074 26 37 0.154 34 12 <0.03

RR III 0.865

(0.755–0.975)

0.868

(0.761–0.975)

0.943 53 49 0.532 8 5 0.261

Note: Because n= 18 and 5 points can be assigned per case, themaximumnumber of correct points was 90. The total number of points to assignwas 275. The

number of incorrect points refers to the total number of FTD points incorrectly assigned in AD cases or in healthy controls. Correct and incorrectly assigned

points therefore do not necessarily add up to 90. P values are calculated with DeLong test for correlated ROC curves and paired Student t test. Statistically

significant p values (p< 0.05) aremarked in bold print.−AI: results without AI support,+AI: results with AI support.

Abbreviations:AI, artificial intelligence;+AI,withAI support;−AI,withoutAI support;AD,Alzheimer’s disease;AUC, areaunder receiver operating character-

istic curve; BCR, board-certified radiologist; BCNR, board-certified neuroradiologist; CI, confidence interval; FTD, frontotemporal dementia; ROC, receiver

operating characteristic; RR, radiology resident.

reduce the number of false FTD diagnostic points (–AI: 34, +AI: 12,

p< 0.03).

3.2 Reader’s Questionnaire

Details on the Reader’s Questionnaire and responses are provided in

Figure S2 and Text S1 in supporting information.

4 DISCUSSION

In this study,we found that all participating radiology readers improved

their performance in diagnosing AD using AI-assisted rapid brain vol-

umetry. The greatest effect was seen in BCRs and RRs. In the diagnosis

of FTD, we found an increase in diagnostic confidence with AI sup-

port. Subjectively, readers also felt that their diagnostic confidence had

improved using the AI-assisted rapid brain volumetry, as noted in a

follow-up survey.

Specifically, we found that OC assessment of all readers showed a

statistically significant improvement in performance with AI support

for the diagnosis of AD, with a significant increase in the number of

correctly assigned diagnostic points and a significant decrease in incor-

rectly assigned points. Looking at the individual subgroups, it became

apparent that the performance with AI support for the differential

diagnosis ofAD increased significantly in theBCRandRR readers alike,

with corresponding changes in the distribution of diagnostic points.

In the RR readers, there were differences between two very inex-

perienced readers and one reader previously specifically trained in

neuroradiology, who already showed a very good performancewithout

AI support. The highly skilled BCNR also performed very well with-

out AI support but still tended to improve slightly with AI support (not

statistically significant).

For the differential diagnosis of FTD, although we did not find a sta-

tistically significant improvement in AUC with AI support, we did find

a significant increase in the number of correctly assigned diagnostic

points. Specifically, the increase could benoted in theOCand the group

of highly skilled BCNRs. Some individual readers, moreover, were able

to reduce the number of incorrect assignments.

Furthermore, without AI support, AUC values were generally

higher in the FTD cohort than in the AD cohort. Therefore, it

can be assumed that most readers more easily recognized the

 2
3

5
2

8
7

2
9

, 2
0

2
4

, 4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://alz-jo
u

rn
als.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/d
ad

2
.7

0
0

3
7

 b
y

 T
est, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

8
/1

2
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



RUDOLPH ET AL. 9 of 11

frontotemporal changes characteristic of FTD than the temporal,

mesiotemporal, or hippocampal changes typical for AD.

The improvement in performance and safety with the help of the AI

tool is also accompanied by an improvement in reporting quality. With

more precise findings, an earlier decision in diagnostics can promote

potential therapy options and thus improve patient care. The pre-

sented AI solution is readily available and offers full PACS integration,

which allows for a seamless workflow during routine examinations.

With a short time of < 5 minutes for the common volumetric analy-

sis, radiologists would be able to add the data to almost every cranial

MRI report, thereby increasing sensitivity for even subtle volumetric

changes and assumably facilitating early, potentially even preclinical

diagnosis. Early diagnosis is essential, especially in view of the devel-

opment of many new and evolving targeted therapies. For example, a

recent phase III study with the compound lecanemab showed a reduc-

tion in amyloid markers in early AD and resulted in moderately less

deterioration of cognitive abilities and functions after 18months com-

pared to the placebo group;13 the drug has now been approved by the

US Food andDrug Administration.With a steadily increasingworkload

due to more examinations and an equally non-increasing number of

radiologists,32 manual brain volumetry as a time-consuming method-

ology would not be possible in routine clinical practice for capacity

reasons. Thus, the presented AI tool drastically increases the infor-

mation content and diagnostic accuracy without compromising the

valuable working time of radiologists.

An important asset of the present study is the diversity of different

radiology readers from the neuroradiology and radiology department

with on the one hand, inexperienced novices (0 years) and on the

other hand highly experienced BCNRs (10 years), with other inter-

mediate training levels being represented as well. In addition, the

evaluation was based on a small, but clinically very well validated,

study population. Patient data were collected according to a stan-

dardized multicenter procedure that has been established in recent

studies.22,33–38 The sample is clinically representative with regard to

variance of age. The reference standard was very precisely defined on

a clinical level and not based solely on image findings, as is common in

the majority of other radiological reading studies for external valida-

tion ofAI algorithms.39,40WithADandFTD, twovery common types of

dementia havebeenevaluated.Withan incidenceof0.0 to0.3per1000

person-years and≈3%of all dementia cases, FTD is not a very common

disease, but it is a common formof dementia in those< 65 years of age,

accounting for ≈ 10%.41 Methodologically, several techniques were

used to reduce the risk of confirmation bias—for example, each reader

had to hand in his/her results from Reading I and was allowed to start

Reading II only after a wash-out phase. With 3D T1w and 3D FLAIR

sequences, the readers had extensive data available without AI sup-

port, which in this form already allowed for morphological differential

diagnosis.

Limitations of the study include the low total number of cases, a

residual risk of confirmation bias (despite methodological considera-

tion), a monocentric reading (with two departments: neuroradiology

and radiology) in which some training effect may be present (e.g., BCRs

teachRRs), andapre-selectionof cases thatmight favor less ambiguous

cases. Another limitation captures the interpolation of ROC curves by

the choiceof a scaled scoring system.AUCvalues are therefore approx-

imated. The radiological reading process without clinical information

does not emulate the clinical workflow perfectly. The aim of our study

was to evaluate AI-based rapid brain volumetry of MRI data in the

assessment of dementia patients. Additional clinical information and

interdisciplinary assessment of all available patient information should

further improve diagnostic performance.

5 CONCLUSION

With a plethora of AI solutions being offered to support the radiologi-

cal workflow, critical assessment of added clinical value by radiologists

and referring physicians is crucial. Here, we showed that AI-supported

brain volumetry can add significant clinical value for the differential

diagnosis of dementia. The majority of (even well-trained) radiologists

can significantly increase their diagnostic accuracy in detecting AD

and gain more confidence to commit to the diagnosis of FTD through

the AI tool. This might lead to earlier diagnosis and, therefore, opti-

mized patient management. The presented AI tool is readily available

in the reporting workflow, offering rapid data processing and full PACS

integration.
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