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ABSTRACT. In [8] the second and third authors showed that if the least inac-
cessible cardinal is the least measurable cardinal, then there is an inner model
with o(k) > 2. In this paper we improve this to o(k) >  + 1 and show that
if k is a kT T-supercompact cardinal, then there is a symmetric extension in
which it is the least inaccessible and the least measurable cardinal.

1. INTRODUCTION

Large cardinal axioms form the yardstick with which we measure the consistency
strength of various mathematical statements. In other words, given a mathemat-
ical statement, we can use large cardinals to give lower and upper bounds as to
the question “how strong of a mathematical foundation is required to prove the
statement is possibly true?”. Perhaps the most famous large cardinal axiom is the
one positing the existence of an inaccessible cardinal, or a “Tarski—Grothendieck
universe”.!

Measurable cardinals, in the standard context of set theory, where the axiom of
choice is taken as true, can be defined by two equivalent formulations: the existence
of ultrafilters;? or as the critical points of elementary embeddings. The equivalence,
which relies heavily on Lo§” theorem, can fail without the axiom of choice. In the
1960s, Jech proved that w;, the least uncountable cardinal which can never be a
critical point of an elementary embedding,® could be a measurable cardinal [9].

A sequence of results under the axiom of determinacy, starting with Solovay’s
proof of the measurability of w; and we, and reaching its final form in Steel’s
theorem that assuming V' = L(R), every uncountable regular cardinals below © is
measurable ([15, Theorem 8.27]), shows that measurable cardinals are common in
some natural models of ZF.

In [7], the second and third authors isolated the notion of a “critical cardinal”
which is a critical point of an elementary embedding, and studied some of the
consequences of the existence of critical cardinals without the axiom of choice.

That work led to the question of how small can the least measurable cardinal be,
if the axiom of choice is allowed to fail. Of course, it can be the least uncountable
cardinal, but that is not a satisfying answer to the question. Specifically, we want
to understand this phenomenon within the context of the large cardinal hierarchy,
whereas w; is a successor cardinal. In [8] the two authors show that the least Mahlo
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1Without the axiom of choice the many definitions of an inaccessible cardinal which are equiva-
lent in ZFC will no longer need to be equivalent (see [4] for details). In this work “k is inaccessible”
means that Vi = ZFg, that is ZF formulated in second-order logic, or equivalently there is no
z € Vi, and a function f: x — k whose image is a cofinal subset of .

2A cardinal & is measurable if and only if there is a non-principal k-complete ultrafilter on &.

3At least not if we require the embedding to be definable or at least amenable, that is.
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cardinal? can be the least measurable cardinal as well, and that the large cardinal
strength of this assertion is merely “there exists a measurable cardinal”, that is
to say that in order to produce a model where the least measurable cardinal is
the least Mahlo cardinal, it was enough to start with a model in which a single
measurable cardinal exists. However, in trying to reduce the measurability even
lower we run into an intriguing situation. If the least measurable cardinal is also
the least inaccessible cardinal, then we must have began with a model with many
measurable cardinals.’

This means that producing a model where the least measurable cardinal is the
least inaccessible cardinal requires us to work harder and start with stronger as-
sumptions. The difficulty does not lie in the fact that this the first inaccessible,
but rather in the fact that the cardinal is not Mahlo. Once the set of inaccessible,
or even regular, cardinals is negligible (namely, non-stationary), all manner of dif-
ficulties start to arise. This phenomenon, and therefore the question that we are
concerned with here, is not unique to situations where the axiom of choice fails. For
example, even in ZFC it is not known if the tree property can hold at a non-Mahlo
weakly inaccessible cardinal, whether it is consistent that there is no Suslin tree
on a non-Mahlo inaccessible cardinal, and it is known that the failure of diamond
principles at the least inaccessible cardinal also has a perhaps-surprisingly strong
large cardinal lower bound.

If one replaces a (strongly) inaccessible by a weakly inaccessible, then starting
from AD + V = L(R), Apter constructed a model of ZF in which the least mea-
surable and the least weakly inaccessible coincide (see [1]). Namely, basing on the
aforementioned result of Steel [15], he uses the Prikry forcing (in a ZF context) to
turn any given set A C O of measurable cardinals into singulars and preserving
measurability of the rest. However, weakly inaccessible cardinals, in particular in
the context of ZF, tend to feel quite unsatisfactory for the same reasons that w
does not answer our question.

1.1. In this paper. In this work we establish an upper bound for the statements
“there is a measurable cardinal that is not a Mahlo cardinal” and “the least inac-
cessible cardinal is the least measurable cardinal”, as well as far improved lower
bounds. Indeed, we show that if & is a kT T-supercompact cardinal, then there is a
symmetric extension in which it is a non-Mahlo measurable cardinal, and a further
symmetric extension in which it is also the least inaccessible cardinal. In both of
these, we show that DC., holds, and ZFC holds below x. We also show that the
lower bound required for these results is at least as high as “there is an inner model
with o(k) > k + 17

We use supercompact Radin forcing to construct the symmetric extension, and
the Mitchell covering lemma (for “there is no inner model with o(a) = a™*7) to
provide the lower bounds. Some questions and conjectures are given at the end as
well.

1.2. Technical preliminaries. We assume that the readers are familiar with the
techniques of forcing and symmetric extensions, but we include a brief outline of
the latter. Fixing a forcing notion PP, an automorphism, 7, of P acts on the P-names
in a recursive definition given by

mi = {{mp,7y) | (p,y) € &}
Unsurprisingly, as I is defined from the order, p - ¢(&) if and only if mp IF p(r).
4This is “the next step” after inaccessibility, in the sense that the set of inaccessible cardinals

below a Mahlo cardinal is not negligible, i.e. stationary.
5In the previous paper the lower bound was o(k) > 2.
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Fixing a group of automorphisms, G, we define sym(z), for a P-name z, as
{m € G| mi = i}. Since interpretation of names by a generic filter, G, satisfies the
equation

(ﬂ,fli)G = 7 “G7
we get that ¢ = #™ ¢ when 7i = .

We want, therefore, to isolate a notion which allows us to say when a P-name is
interpreted the same way by “most” generic filters. Towards that goal, F is a filter
of subgroups if it is a non-empty collection of subgroups of G which is closed under
supergroups and finite intersections. We say that it is a normal filter of subgroups
if whenever H € F and 7 € G, then 7Hr~! € F as well.%

Let a P-name, &, be called symmetric if sym(&) € F, and if this property holds
hereditarily for all names appearing in &, we say that it is hereditarily symmetric.
The class of hereditarily symmetric names is denoted by HS and if G is a generic
filter, HS® = {#% | & € HS} is a transitive model of ZF intermediate between V/
and V]G], and we refer to it as a symmetric extension.

We say that a class M is k-closed (in V, or in a larger class) if whenever v < k
and f:~ — M, then f € M. We say that a forcing notion is k-closed if every
descending sequence of fewer than s conditions has a lower bound, and a tree is
r~closed if it is k-closed as a forcing notion (which necessitate reversing its order in
our convention). In our context, (T, <) is a tree if it is a well-founded partial order
with a minimum element, such that whenever ty,t; < ¢t we have that ¢y and ¢; are
comparable.

In these symmetric extensions we often want to preserve some fragments of the
axiom of choice, and in this work we will be primarily focused on Dependent Choice.
Amongst the many interesting equivalences, DC,; can be formulated as “Every x-
closed tree has a maximal node or a chain of type k”, and DC., means that for
every A < k, DC, holds.

For a set of ordinals, x, we write accz to denote its accumulation points, i.e.
{a | a =supana}. We denote by 7, the Mostowski collapse of z, i.e. the order
isomorphism with its order type. And we say that £ is a successor in z if 7,(£) is a
successor ordinal. For a set of ordinals x C A, we can naturally extend 7, to P()\)
and even P(P(X)). For a € P(X\) we define m,(a) = 7, “(x Na). For A € P(P(N)),
we let 7m,(A) = 7, “ A.

Finally, for z,y € P\ we write z C y to mean x C y and |z| < |y N k|.”

2. MEASURABLE, BUT NOT MAHLO

This section will be devoted for the proof of the following theorem.

Theorem 2.1 (ZFC). Assume GCH and let k be k™ -supercompact. Then, there is
a symmetric extension in which k is non-Mahlo inaccessible and there is a normal
measure on K.

The idea of the proof of this theorem is to work in an intermediate model between
the generic extension by the supercompact Radin club and the standard Radin club.
Let us begin by recalling some basic facts about the supercompact Radin forcing
and its connection (in this specific case) with the standard Radin forcing.

6The clash in terminology with normal filters in the sense of diagonal intersections is known.
We will refer to ultrafilters on ordinals as measures whenever any confusion may arise.
"In our context, y N k will be a cardinal.
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2.1. Radin Forcing. We will follow Krueger’s presentation of supercompact Radin
forcing ([12]). This presentation translates the classical construction of Foreman
and Woodin ([5]) to the context of coherent sequences of supercompact measures,
for which we have a clear presentation of the relevant automorphisms.

Since x is kT T-supercompact, by Proposition 2.2 of [12], there are sequences
oW:k+1 — Ord, with ow(m) = k1T, and a coherent sequence of measures,
W= (W(a,i) | @ < k,i <0 (a)). In our context this means that:®

(1) For every a < k and i < 0"Y(a), W () is a normal measure on Poa™.
(2) For every a < k and i < 0" («),

Iw(epyW)(a) =W(a) ['i = (W(a, k) | k <i),
where W(a) := (W(a,4) | i < oV (a)).
Given a coherent sequence W the supercompact Radin forcing, R(W), as defined
by Krueger, see [12, Section 3]. For the completeness of the paper we will provide

a definition of the forcing in our specific case.
A condition p € R(W) is a finite sequence of the form (do, ds, ..., d,—1, A) where:
(1) The set A lies in (e ,w () W(K, (),
(2) n >0, and for every i < n, d; is either a member of P,k or a pair of the
form (a;, A;).
o If d; € P.x™ we set a; = d; and p; = a; N k and require p; € k.
e Otherwise, d; = (a;, 4;), we set p; = a; N Kk and require p; € k.
Moreover, A; € (e ,w (1) W(pi, C).-

For a condition p we will denote by a?, d¥ and A? the corresponding objects in p
and denote n by lenp. We also set p, = k, a® = k™ and A,, = A.

In order to define the extension of a condition, let us first define pure extension
and one-point extension. We say that p is a pure extension of g, or p <* ¢ if
lenp = leng and for every i, a¥ = al. For n € A; for some i < n, we let p~n (the

one-step extension of p by 1) to be the condition defined as either
hd <d0a tee di—la <7Ta_,i1(77)77r77(‘4i)>7di7 s 7dn—17A>a if OW(T] N K‘) > 07 or
o (do,...,d;—1, 77;1_1(77)7di, coydp 1, A), if (N k) =0.

We say that 7 is a legitimate extension, if p~7 is a condition. We let p < ¢ if p can
be obtained from ¢ using a sequence of legitimate one-point extensions and direct
extensions. We will work under the implicit assumption that if a € P,a™, then
aNa is a cardinal and |a| = |a N «|T, note that these sets form a large set in all of
our measures, and so we can simply restrict our conditions to these sets. For the
basic properties of the forcing, see [12, Section 3].

For a normal measure over P.x™, W, let us denote by W |  the projection of
this measure to a normal measure on k:

Wik={ACk|3IBeW, A={znNk|x € B}}

While this projection always induces a normal measure on x, the coherence of the
sequence of projections is more subtle.

Lemma 2.2. Assume GCH. Let W be a coherent sequence of P.r™ -supercompact
measures with 0" (a) < at* for all o < k. Then, (W (i) | o | a < ki < 0™ («))
is coherent.

Proof. Let ¢ be the ultrapower embedding by W («, i) | «, j the ultrapower embed-
ding by W(a,1), and k be the quotient map. Namely, k([f]) = j(f)(«). We have

the following commutative diagram

8In [12] two additional conditions are required that hold automatically in our context.
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V. —— N=Ul(V,W(a,i) | a)

M = Ult(V, W (e, 1))

The map k must have a critical point (as for example the V-cofinality of ¢(a™) is
o™ while the V-cofinality of j(a™) is ™). The critical point of k& must be an
N-cardinal which is not in the image of k. Therefore crit k > crit j = a. Equality,
however, is impossible, as for id: a — «, j(id)(a) = a, and it cannot be a™ as for
s:a— a, V¢, s(¢) = (¢t [s] = a™ (using the fact that N computes at correctly)
and clearly j(s)(a) = a™.

Therefore, crit k > (a*)N. A simple computation shows that |(a*T)V|V = a™
and thus it has to move under k, so critk = (a*)V.

Since 0"V (¢) < ¢** for all ¢ < a, we have that 1(0)(a) =i < (a™F)N = crit k.
In particular, for every ¢ < 4,

keW)(a, Q) Ta) = j(W)(a, () o =W(a, () T,
where the last equality follows from the fact that P(a) C N and critk > a. O

We will use W to denote the sequence of projected measures.

Remark 2.3. Lemma 2.2 does not make sense for longer sequences. Under GCH,
2% = kT and thus there is no Mitchell increasing sequence of normal measures on
k of length > k1, but a coherent sequence of measures on P.k™ can be as long as
(2%*)—&- > l€+3.

Lemma 2.4. In the Radin generic extension by R(W), & remains inaccessible.

The proof is standard, and the result itself appeared implicitly in the literature.
We include it for the convenience of the reader.

Proof. First, let us derive a strong Prikry Property from the standard Prikry Pro-
prety. We will prove it only for conditions of length 0 where the proof of the general
case can be obtained using the factorization property (see [12, Section 4]).

Claim 2.5. Let p = (@, A) be a condition of length 0 and let D be a dense open
set in the supercompact Radin forcing. Then, there are:

(1) a direct extension q <* p,
(2) a natural number n < w and
(3) a rooted tree of height n, T C (P.rx™)<", such that for eachn € T with |n| <
n, there is ¢, < 0" (k) such that {x € Por™ | n~(z) € T} € W(k,(,)."
such that for every n in the top level of T, there is a direct extension of ¢”n in D.

Proof. By applying the Prikry Property and the o-closure of the measures, we
can conclude that there is (&, A7) = g <* p that decides the minimal length of a
condition in the generic extension which is in D. Let n be this length.

For every x € A9, let us check whether there is a direct extension of ¢ (x) that
forces that there is a condition r in the generic of length n, in D, such that mind"” =
x, and x is minimal in the generic club with such property. Note that this set must
be positive (with respect to the filter (. ,w () W(x,()), as otherwise we could
shrink A9 to avoid it and get a contradiction. So, there is some ¢ < 0"V (k) such
that for a large set T of = with respect to U, there is ¢, = ((z, AF), A7) <* ¢~ (z)
that forces the existence of a condition 7 in D N G with length n and mind” = .

For each such z € Ty we repeat the process, and find an ordinal ¢, < 0"V (k) and
measure one many y (relative to W(k, (,)) with the property that there is a direct

9n particular, every maximal node in the tree is of height n.
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extension of ¢} (y) forcing (z,%) to be the first two elements in d” for » € D NG of
length n. Continuing this way for n steps we get the existence of T', which proves
the claim. O

Let us consider the name f for a function from X to & for A < k. For each
a < A, let D, be the dense open set of all conditions deciding a value for f(d)
Applying our version of the strong Prikry Property for each o < A\ we obtain a direct
extension ¢ <* p and a sequence of trees (T, | @ < A\) of various finite heights. We
can attach to each one of the nodes of the trees n € T, the corresponding direct
extension g, < ¢~ n from D,.

Let us consider all ¢, for n € T. As there are £T such ordinals and 0"V (k) = kT,
there is an ordinal (* < k™" bounding all of them.

In the ultrapower by W (k,(*) the we have j“T, for all @ < X as well as the
corresponding j(n) — j(qy)-

Consider [id]yy (x,¢+) = j“#T. It is easy to verify that one can add this element
to each one of the j(g,) for each n € T,.

Moreover, as all measures mentioned by the trees are below (*, for each o < A,
{j(n) € T, | nis a node} forms a maximal antichains in the Radin forcing below
j“kT. Thus for each element in T,, j(n), the condition j(q)~{j(n),j“k") =
§(q)"~ (G “KT,j(n)) is forcing a value to j(f)(&), as it extends the condition j(g).
By elementarity this value must be the j-image of the one that ¢, forced for f (&)
and thus below k.

We conclude that j(¢)™(j “ k™) forces j(f) to have a range boudned by . Re-
flecting this, we obtain a W (k, (*)-large set such that adding each x in this set to
the stem forces the range of f to be bounded by x N k. O

Let G be generic for R(W). Let us denote the generic continuous and increasing
sequence in P.xT by Cg, so

Ce={z|3peqG,z € stemp}.

Let C = {z Nk |z € Cg}. Since Cg is continuous and cofinal, C C  is a club.
To prove that C is a Radin club for R(V) we will need to use the Mathias Criterion
for genericity.

Recall that a condition p € R(W) is compatible with C' C & if stemp C C and
whenever d; < d;;1 are two successive points in stem p, then C' N (v, iy1) € Aiyq
ifdiy1 = <Ozi+1,Ai+1> or else C'N (ai, Ozi_;,_l) = .

Fact 2.6 (Mathias Criterion). Let C C k be a club. Let G be the collection of all
conditions in R(W) compatible with C. Then G is a generic filter iff

(1) For every a € accC, C'Na is generic for ROV | a + 1).

(2) For every A € e w () WI(K,(), there is 1 < K such that C\nCA.

Lemma 2.7. C is a generic Radin club for R(W).

Proof. This follows from the Mathias Criterion for genericity of the Radin club.
Indeed, let us prove by induction on a € acc C that the criteria holds. Let A € W,
when by the definition of W, the set A = {2 € Poat | zNa € A} € NW. For
every condition p € R(W) with o € stem p there is a direct extension ¢ such that
the large set associated with « is contained in A. In particular, ¢ forces that a tail
of elements in C' N «, is contained in A. O

Lemma 2.8. Every a € accCg is singular in V[G].

Proof. First, by the factorization argument, this statement is equivalent to the
statement that forcing with supercomapct Radin forcing for the coherent sequence
W | @+ 1 with top cardinal a and 0" (a) = ¢ < at™ singularizes a.
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Claim 2.9. Fiz o < k. Assume that ( < o*. The measures {W(, ) | € < (}
are discrete in the sense that there is a partition of Poa™, (B; | i < () such that
B; € W(a,j) iffi =j.

Proof. Let (U; | i < i,) be an enumeration (W (a, ) | € < ¢) with i* < a™. Without
loss of generality, ¢* is a cardinal.
For each i < j <, let B, ; € U; \U; and B;j; = Poat \ B; ;. Let B;; = Paa™.
Let B; = {x € Poa™ | i € z} N Aj<;, B; ; where
Aj<i*Bi,j = {y (S ,PO(OlJr | \V/j cy n ’i*, Yy € Bi,j}-
So, B; € U; by the normality of U;.

Moreover, for i < j, B; N B; = @. Indeed, if x € B; N B; then 7,j € x and thus
x € B;j and x € B;;, a contradiction. O

Let h: i, — ¢ be the bijection used in the proof above. As the set B, = UiQ7 B;
belongs to ;. W(a, §), for any large enough y € Cg, with yNr < a, y € Bs. So,
for such y, we can find the unique £ < ¢ such that y € B; for £ = h(:). Without loss
of generality, all the elements of the Radin club below « belong to B,. Moreover, we
may assume (by shrinking B; if necessary), that for every x € B;, Ww(Uh(§)<h(z‘) Be)
belongs to the intersection of measures of x Nk, that is, ﬂa<ow(m,€) W(zNk,a)t0

Let us now split into cases.

Case 0: If ¢f { < a, let (§; | i < cf¢) be a cofinal sequence at (. Let y; be
the least element in the Radin club below « such that y; € By-1(;5,) (generically,
there must be such an element). If sup; ;. % N & < a, then by the closure of Cg,
y« = Jyi € Cg and its intersection with « lies below a. So, y. € B, for some p,
but this is impossible as for all but boundedly many 7 < cf p, §; > h(p). This is a
contradiction, as by genericity, for any large enough element in Ci below y. belongs
to 7y, (Un(e)<n(p) Be) and in particular do not belong to By,-1(s,) for é; > h(§).

Case 1: if ¢f ( € {a,a"}. Let z, be the element in Cg with 2z, Nk = a. Let
(0; | i < cf ¢) be a cofinal sequence at . Let us shrink B; so that for all z € Bj,-1s,),
sup(m,, (x) Necf ) > 1.

Pick yg € Cg arbitrary and let us recursively define y,, 11 € Cg to be an element
of By-1(5,) for & = m.(yn Nef ).

Let us show that U, ., ¥n = 2.. Indeed, let |J, ., ¥n = y» and let us assume
that y. Nk < . Then, there is £ such that vy, € Be.

Let o = y« N k. Then, as before, h(€) = 0o, (as otherwise, if o, > h(€) there
is n < w such that y,, N & is strictly larger than A(£) and if a, < h(§), than for all
large n, the &’ such that y, € By is bounded). But this is impossible as for all
x € Be, sup(m..(x) Ncf ) > daq, - O

The following lemma is due to Radin, [14, Claim §]
Lemma 2.10. In the generic extension by W, k remains measurable.

2.2. Symmetric Model. So, to summarize, we obtained two models: in the full
Radin generic extension by W, V|[G], x is an inaccessible cardinal. Moreover, for
every a < & in the normal Radin club, C, « is singular.

In the submodel V[G]—the generic extension by the Radin club obtained from
the projected measures—« is measurable. We would like now to consider an inter-
mediate symmetric model, Wy, in which x remains measurable, G exists but every
a in the Radin club is singular.

To make the definition of the automorphisms easier to understand we will adopt

the conventions and represent a condition (do,...,d,—1, A) as a finite sequence of

10Here we use the coherence of the sequence.
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pairs, d = (df),...,d.), whose last element is d/, = (x*, A) where A was previously
the full measure set, and that for d; € P,x" will be replaced by d; = (d;, @). In all
other cases, d; = d. The stem of p under this convention, therefore, is p without
its last coordinate.

Let us work in the symmetric model with respect to symmetries as the ones
from [7, Section 5]. Note, that unlike the case in [7], here the filter of groups is
actually xT-complete. For the completeness of this paper, let us spell out the group

of automorphisms and the normal filter of groups.

Definition 2.11. Let g: k¥ — kT be a bijection, then g lifts to g1: Purt — Pur™
by g1(z) = g“x. Going further, we can lift g1 to ga: P(Pxrt) = P(Pyx™) defined
by g2(A) = g1 “ A. We define o, as the pointwise application of g1 and ga. Namely,

09(<<a07 BO>7 R <an7 Bn>>) = <<gl(a0)ag2(30)>7 ERRE <gl(an)ag2(Bn)>>'

It is easy to verify that o, is an automorphism of a dense subset of R(W), and
so extends to an automorphism of the Boolean completion. So we can let G be the
group of all the automorphisms of the form o, for some bijection g: KT — ™.

Definition 2.12. For every a < k" let H, be the group of automorphisms o, for
g such that g | a« =id. Let F = ({Hy | a < kT}).

Proposition 2.13. F is a normal filter of groups over G.

Proof. Note that o, € Ugl-laag_1 if and only if & | (¢“«) = id. Since 7 is regular,
let 0 = supg“a, then Hs C ogHyo, " O

Claim 2.14. Ifa € Cg, then Pyn.a’€c] € Wy

Proof. Let a € Cg. Then, § = supa N k™ is bounded. Thus, Hs must fix the
canonical name for a and any subset of a will have a name fixed by Hs as well. [

Claim 2.15. C € W;.
Proof. {(p,&) | & € x € stem p} is a name for C, and it is preserved by H,. O

In order to show that x remains measurable in the symmetric extension, we need
to show that every symmetric subset of k is introduced by a small forcing over the

model V[C].

Lemma 2.16. Let X be a symmetric set of ordinals. Then, there is a forcing

notion of cardinality < k, Q, such that A is introduced by Q over VI[C].

Proof. Let X € HS be a name for the set A. So, there is ¢ < 1 such that H
witnesses that X € HS. Without loss of generality, > k.

Fix a well order of H(k™*) and let D be the club of all x € P,x™ which satisfy
T = HullH(“++)(x) N k1.1 Shrinking D to a measure one set, we may assume that
otpr = (zNk)T for all z € D.

We claim that for every z € D, such that ( € z, z N ( is fully determined by
z N k. Indeed, in HullH(“++)({§}) there is a bijection h between x and (, and thus
as z = Hull? & () Nkt hé(znk) = 2NC.

Let us isolate a forcing notion of cardinality <« that introduces X over V[C].

Fix a condition p = <d_; (kT, A)). By shrinking the large set A, we may assume
that AC DN {z € P.xt | (€ x}.

Without loss of generality we may assume that lenp > 0, and let y = aﬁnpfl.
Below p, the forcing is isomorphic with the product Ry x Ry, where R is the forcing

HFor a structure M with a fixed well order, we denote the Skolem hull of a set x C M in M
by HullM ().
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R(OW | p+ 1) below some condition, where p = y N x, and R; is R(W) below the
condition ((kT, A)).

The forcing Ry introduces the initial segment of C up to p, so the forcing Q =
Ro/(C | p) is a well defined forcing notion in V[C], introducing m,(Ce Ny). Note

that |Q| < 21l < k. Let us show that p forces that X is introduced by Q over V[C].

Let ¢ < p such that g I+ ﬁv € X. We claim that whenever ¢’ < p is a condition of

the same length as ¢ and ag/ = af for al, ag/ C y and for every i, al Nk = af/ Nk, it
is impossible that q - B ¢ X. This would be enough, as we can define a Q-name
Y in V[C] by

s kg BeEY < Tre Ry /(C | [p,k)), (s,7) < p, (s,7) [ ) BeX.

(Note that we identify Ry x Ry with R(W) below p.)
Indeed, by extending g and ¢’ if needed, we may assume that

q: <d07"'7d7l>7q/:< /07""d;'L>

with d; = (y;, Bi), d; = (y}, B}). For some k < n, y,, = y, and so for all j < k,
Y = y; and for every j > k, y; Nk = yg N k. Given such j > k, we have that
¢ €yjNyj, and so (Ny; =(NY;.

We can now define an automorphism oy sending the stem of ¢ to the stem of
¢', similarly to the automorphism defined in [7]. By induction on j > k, let us
define a bijection f;: y; — y; such that fi, = idy, and f; [ ¢ is the identity. Let as
assume that f;_; is defined and let us define f;. As otpy; = otpy; = (y; N w)7,
ly; \ yj—1 \ ¢l = [yj \ yj_1 \ ¢|. Indeed, the cardinality of y; N ¢ is y; N x and
the cardinality of y;_1, y3—1 is strictly smaller. So, we can find f; extending f;_1,
as needed. Finally, let f = f, and by the construction oy € H¢ and of(q) is
compatible with ¢’. Therefore they must agree on the truth value of B e X, as
both names are preserved by o;.'2 O

As every set of ordinals is added by a small forcing, any normal measure in V[C]
on k extends to a measure in Wy, as shown by Jech in [9].

Lemma 2.17. Wy is k-closed in V[Cg].

Proof. Suppose that for some § < k and f € V[Cq], f: 6§ = W;. We will show
that f € Wi as well. Fix p € G. In order to construct a symmetric name for f, we
need to show that the sequence of names f(«) is equivalent to a symmetric name.

Claim 2.18. There is an ordinal ¢ < k and a function F in'V, with domain £ and
range contained in the symmetric names, such that in V[Cg] there is a set ¢ C &
satisfying (F “¢)¢ = f¢.

Proof. Using the chain condition, for every @ < 4, we can find a collection S, of
< k¥ many pairs of the form (o, &) where 4 is a symmetric name and p forces that
(a, fG()) equals to an evaluation of a member of S,.

Let Fy be a function with domain ™ covering |J, 5 Sa. In V[Cg] we can find a
set ag of size < k such that Fy “ ag already contains for each a < § a name which is
going to be evaluated as f(a). As ofVICel k= k. ag is bounded, by some ordinal
(o- Extending p if necessary, we may decide the value of (y. Let H: k — (g a
surjection and let Fy = Fyo H, ¢ = H '(ag). Applying the same argument for
k, which remains regular in V[Cg], supc < k and by extending p again, we may
decide it to be some . Finally, let ' = Fy | €. O

12Here the main advantage of using coherent sequence instead of measure sequence manifests
itself. In order to make the stems compatible, it is make the sets of Pxx1 on the stems identical,
and we do not need to worry about the choice of the measure sequences.
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Fix a name ¢ for the set obtained in the claim.

Using [12, Lemma 3.1], if £ < a Nk for every (a, A) € stemp, we can find a
descending sequence of direct extensions p, for a < . Thus, we can decide the
value of the set ¢ from the claim using a sequence of ¢ direct extensions. As this
can be done densely below p, it means that f € W; as wanted.

If, however, it is not the case that £ < a N k for all a in the stem of p, then by
applying Lemma 4.1 and Lemma 5.8 from [12] we can split p into two parts p=™
and p~™, factorize ROWV) | p = ROW) | p=™ x R(W) | p>™ and make the above
argument in R(W) | p>™. So, the value of ¢¢ can be computed using the generic
for the lower part, ROV) | p=™, Giow. As Giow is symmetric, we conclude that
there is a symmetric name equivalent to ¢ and thus also the set of names F “ ¢ is
symmetric.

Now, in V, for each o < &, let s(o) = B be the least ordinal such that
Hg C sym(F (o)), and let ¢ < ' be large enough so that s“¢ C (. So, every
automorphism from H, that fixed the generic for R(W) | p=™ fixes every member
of F“e¢.

Thus, we obtain that W7 is k-closed in V[Cg], as wanted. O

This lemma provides us with two important corollaries.
Corollary 2.19. W7 = DC.,.

Proof. By [11, Lemma 3.2], since V[C¢] is a model of ZFC and W; is k-closed,
W1 = DCy. O

Corollary 2.20. V,.;V[CG] = VWi, In particular, VIV |= ZFC. g

3. THE LEAST INACCESSIBLE CARDINAL

Let us strengthen Theorem 2.1 by collapsing cardinals below x to make it the
least inaccessible.

Theorem 3.1. There is a symmetric extension of W1 where k remains measur-
able and is the least inaccessible cardinal. In particular, if GCH holds and k is a
kT -supercompact, then there is a symmetric extension in which x is a measurable
cardinal which is the least inaccessible cardinal.

Proof. Recall that every successor point in C' ' C K, the Radin club, is regular and
every limit point is singular in Wj. Since V[C] C Wi, we can use that to define
the symmetric extension. Let C = C U {w} be enumerated as {p, | o < x},

and define P to be the Easton-support product [],_, Col(p}, <pas1). Note that

PC VM = VKV[CG], so all of its initial segments are well-orderable, and behave as
expected. We will also write P<;s (P;5) and P> (P2?) to indicate the factorization
of P into the initial segment of the product up to ¢ and its remainder.

Let us claim first that in the generic extension the cardinals below k are exactly
the cardinals {p, | @ < K} U {(p2)"* | @ < k}. Clearly, every other cardinal is
collapsed, so we need to show that those cardinals are not collapsed. Let u = pt. If
w is collapsed, then its cofinality must be < p,. If p, is regular, then « is non-limit
and a successor ordinal. So the forcing P, is po-c.c. If « is a limit ordinal, then
Po 1s singular in W; and thus the new cofinality of g must be strictly below p,.
Fix 8 < « successor ordinal such that cf u > pg. Now, the forcing P=8 is pg—closed
and thus cannot change p-s cofinalty to be less than pg. The forcing P<g pg-c.c.

and thus cannot change the cofinality of ;1 over the generic extension by P=Z#, as it
is > pz; as this intermediate model.
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Our group, G, is the Easton-support product of Aut(Col(pf, <pa+1)), acting
pointwise on P. The filter is generated by fix(a) = {m € G | 7 | P« = id} for
a < k. Let Wy be the symmetric extension of Wi, given by some generic filter.

It is a standard argument that P is homogeneous, that every proper initial seg-
ment of the generic is hereditarily symmetric, and that every set of ordinals in
the symmetric extension is added by a proper initial segment of the generic. In
particular, Jech’s theorem applies and k remains measurable in Ws.

Let @ < K be an uncountable regular cardinal in W5. As the regular cardinals
in Wy below x are the same as the regular cardinals in the generic extension of
W1, no uncountable regular cardinal below « is a limit cardinal, so « is the least
inaccessible cardinal. (]

Theorem 3.2. Wy = DC,.

Proof. Working in W7, given any successor ordinal a < k let § = p,. Decompose
P into P, x P=%. Then W, |= |P.,| = 6 and P=% is §*-closed. Moreover, we
can naturally decompose the symmetric system itself into a product of symmetric
systems given by these two component. Since P, is fixed pointwise, the restriction
of the generic filter to that part belongs to the symmetric extension W5. There-
fore Wy is the generic extension of Ws ., the symmetric extension given by Pz«
component.

Since W; = DCs and P2 is a 6T-closed with the filter being 6 T-complete, we
get by [11, Lemma 3.1] that W3 , = DCs. Finally, by [6, Theorem 2.1], we get that
W5 = DCjs as well. As this holds for unboundedly many § < k, Wy = DC. O

4. LOWER BOUNDS ON THE CONSISTENCY STRENGTH

As with many similar results, one is left to wonder if the use of supercompactness
is truly necessary, at least in terms of consistency strength. The trivial lower bound
of a single measurable cardinal was improved by the second and third authors in
[8, Theorem 3.6] to show that in the core model, a cardinal with Mitchell order 2
must exist. In this section we improve this result.

Throughout this section, o(«) denotes the Mitchell order of a and K is Mitchell’s
core model for the anti-large cardinal hypothesis “there is no « such that o(a) =
at* 7 13 The proof of the theorem relies heavily on Mitchell’s covering lemma [13,
Theorem 4.19]. We assume that the reader is familiar with the basic definitions
and theorems of [13].

Theorem 4.1 (ZF). Let x be a strongly inaccessible non-Mahlo measurable cardi-
nal, then KHOP = o(k) > K + 1.

Proof. Let k be a measurable cardinal, and let U be a k-complete ultrafilter on x.*

Let C' C k be a club of singular cardinals.

Lemma 4.2. KHOD _ KHOD[C] _ KHOD[C’][UOHOD[C’}]‘

Proof. By Vopénka’s theorem [16] (see also [10, Theorem 15.46]), every set or or-
dinals is generic over HOD. Since K is generically absolute, KHOPICl — gHOD,
Applying this to the set U N HOD[C] (or rather to a set of ordinals encoding it,
which exists as (P())"OPI] is well orderable) we obtain the second equality. [

13Slightly modified argument can be phrased under the more permissive hypothesis of “there
is no inner model with a strong cardinal”, but as our current result is much weaker than that,
there is no need to weaken the hypothesis in this direction.

14By [3], it might be that x does not carry any normal measures, which is why we cannot
assume U is normal.
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Let K = KHOP, Let M = HOD[C]. The ultrafilter U measures every set in M
and thus we can define in V' and elementary embedding j: M — N, with critical
point k (using the fact that M is a model of ZFC). Using this j we can derive an
M-normal measure on kK, D = {A C k| A€ M, k € j(A)}, containing every club
from M.

Next, since k is regular, N = “k is regular”. Therefore, the set of all M-regular
cardinals below £ must be in D and in particular, C' must contain cardinals which
are regular in M and thus in K, but singular in V.

Finally, since D € M[U N M], by the maximality of K, the K-normal measure
D N K belongs to K.

Let us denote by A = Reg Nw = {¢ < x | M |= ¢ is regular}. In [8] the
argument was that if ( € AN C, it must be measurable in K. The reason is that ¢
is singular in V| so we can find some t C ¢ witnessing that and add it generically
to M. Since, as in the lemma above, KMl = K by the covering lemma we get
that ¢ must be measurable in K. So, the set of all K-measurable cardinals belongs
to D and thus K | o(k) > 2. By conducting a much more careful analysis of the
covering models of K we will see that o(x) must be much higher.

We define a sequence of clubs:

(1) Co=C,

(2) Coy1 = accCly,

(3) for limit o, Co =y, C-
So (C, | @ < k) is the sequence of derivatives of C' up to k.
Lemma 4.3. For every ( € Co,NA, K =0(¢) > a.

Proof. We prove the lemma by induction on a. For a = 0 the claim is trivial, and
for limit « it follows easily from the definition of C,,.

Let us argue for successor ordinal. Let ¢ € Cy, 11 N A (there is such (, since as a
club Cy41 € D). In particular, ¢ € C and thus it is singular in V. Let ¢ C ( be a
cofinal sequence witnessing it with otpt = cf¥ ¢, as before KMl = K.

In M[t], let W < H()), for some A > &, with |W| < ¢ containing o U {¢,C}
(in particular, C, € W). By Mitchell’s covering lemma [13, Theorem 1.8] there
is a weak Prikry-Magidor sequence I C ¢ and g: ( — ¢ in K such that WN({ =
Ueer(9(§)\§)Up for some p < . By replacing g with a — sup{g(8) | B < a}+a, if
necessary, we may assume that g is strictly increasing. By the definition of a weak
Prikry-Magidor sequence and by shrinking I, if necessary, we may also assume that
VE < C,g(€) < min(I\ (¢ +1)).

As the function g belongs to K, the club, Dy = {n < (| g¢g“n Cn}isin K and
in particular, in M. Since ( is regular in M, C, N Dy is still a club of order type (.

If o(¢) < a < ¢, then for almost every ¢ € I, o(c) < a, by [13, Theorem 1.5]. We
will show that this is not the case.

Claim 4.4. If ¢ is a successor in I and a singular ordinal in M, then o(c) > .

Proof. As I is a weak Prikry-Magidor sequence, almost every element of I is regular
in K using [13, Theorem 1.7], taking the large set of K-regular cardinals. If ¢
is singular in M, then W must contain a sequence s witnessing that and by its
regularity in K, we may assume that s is a weak Prikry-Magidor sequence as well.
If o(c) < a, then otps < w®, using Theorem 1.7 of [13] and induction on the
Mitchell order. Thus it is fully contained in the model W. As the weak Prikry-
Magidor sequence itself is g | c-indiscernible (as it eventually enters every K-club
and g | ¢ is a function from c to itself), we conclude that I Nc is cofinal in c. O

So, without loss of generality, any ¢ € I \ acc is regular in M. We will show
that cofinally many successor point ¢ € I are in Cy, and thus o(c) > «a.
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Let v < ¢ be an arbitrary ordinal. Since |C, N D,y|M = ¢ > [I|M, we may pick
§ € (CanDy\v)\I and ¢ = min(I \ §). So, ¢ must be a successor element of [
and thus (by our assumption) regular in M. Let us show that ¢ must be in C,.

Otherwise, let n = max(C, Nc) € W. Clearly, n > 6, as 6 € C,. By the defining
property of g, if v is sufficiently large, n € |J,,c; g(u) \ d. So, there must be u < ¢ in
I such that n < g(u). Since § ¢ I, v < é. But d belongs to Dy, and so g(u) < § <7,
a contradiction.

So, ¢ € C, N A and by the inductive hypothesis, K |= o(c) > a. O

This implies that K = o(k) > k. In order to show that K = o(k) > k + 1, it is
enough to show that Ult(M,U) = o (k) > k. Indeed, in this model « is regular
and belongs to j(C,) for every a < k, so in Ult(M,U), 0¥ (k) > k. O

Remark 4.5. Why are we not continuing the proof to obtain o(k) > k + 2, or
even higher? Unfortunately, the above proof will fail. The proof of Claim 4.4 relies
on the fact that « is covered by the small model, W. Once o(k) > k is reached,
the claim can no longer work, since the covering model is not small. We are then
allowed one more step, to obtain o(k) > K+ 1 by using the ultrapower by U.

Question 4.6. (1) Can the lower bound be improved?
(2) What is the exact consistency strength of a strongly inaccessible non-Mahlo
measurable cardinal?

The proof, as written here, depends on the fact that x is Mahlo in M and there
is a club C € M such that every element of C' can be singularized in a generic
extension of M. By a slight modification of the argument, one can provide the
following better formulation.

Theorem 4.7. Assume that there is no inner model of da, o(a) = a™. Let &
be an inaccessible cardinal such that there is a club C C k through the singular
cardinals below k and there is a forcing notion singularizing k while preserving
strong limitness. Then K = o(k) > k.

Proof. Let t be a short cofinal sequence at x and let W < H(\) contain ¢,C and «
for some « < k. Let us assume, towards a contradiction, that o(k) < a.
Let I be a weak Prikry-Magidor sequence for W N k as before, so

WﬂﬁngUg(C)\g,p<m,geK.
¢el
By repeating Claim 4.4, a successor element of I must either be of Mitchell order
above «, or regular in M.

Let us argue that there are unboundedly many elements of C' are successor
elements of I, so they are singular in M. Indeed, exactly as before, for arbitrary ~
we pick 6 € (CN Dy \ )\ I and set ¢ = min(J \ §). We claim that c € C.

Otherwise, let n = max(C N ¢) and even though n € W, 5 is not covered by g
using any smaller element of I N ¢ and p, as sup(I N¢) < 6 < n, and the supremum
is not obtained. U

In [2], the problem of the consistency strength of embedding the forcing for
shooting a club through the singular cardinals into a tree Prikry forcing was studied.
The consistency strength of this situation was bounded from below by o(x) > k1 +1
and from above by a slight strengthening of a superstrong cardinal. Even though
it is unclear whether the construction of [2] can be used in our situation, it seems
reasonable that a similar method might be used in order to obtain a model with a
non-Mahlo measurable cardinal. Thus we conjecture that the consistency strength
of Theorem 2.1 can be further reduced and that the lower bounds for Theorem 4.1
are not optimal either.
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