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Abstract: This paper presents machine learning analysis to understand the factors impacting iron

concentrations and discolouration customer contacts in drinking water distribution systems. Four-

teen years of network sampling and additional data from a large UK utility were collated, analysed,

and interpreted using self-organising maps (SOMs), which include complex network theory (CNT)

centrality metrics for the first time, investigating how possible explanatory variables interact. The out-

puts are used to inform ensemble decision trees for risk estimation of iron exceedance and customer

contacts for each of the utility’s DMAs, helping inform proactive maintenance.
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1. Introduction and Background

Discolouration is the primary water quality issue experienced by consumers in the
Western world and comprises 65% of water quality customer contacts (CCs) that UK water
utilities receive [1]. The main cause of discolouration is the accumulation and subsequent
mobilisation of organic and inorganic material, primarily iron, from within the drinking
water distribution system (DWDS) [2]. Due to the range of possible interactions occurring
within a DWDS, the use of mechanistic models for predicting water quality impacts is
not currently practical. Water utilities, therefore, commonly rely on reacting to customer
contacts. The only other widespread source of data to inform proactive maintenance is
lab-based analysis of discrete samples collected to satisfy regulatory requirements. These
are temporally and spatially sparse due to the vast scale and complexity of DWDSs. This
sparsity limits derivation of understanding of the trends between the different water quality
variables and restricts the ability to generate actionable information that directs investment
decisions towards efficient interventions for proactive water quality management with the
best return. This sparse historical data can, however, provide key network information
via the application of data-driven methodologies, such as machine learning (ML), with the
potential to transform the current decision-making approach.

Data-driven methodologies have become popular in the hydroinformatics domain
with multiple research projects that use ML for water quality applications reported [3,4].
Regarding the management of discolouration in DWDSs, Boxall et al. [5] used a combination
of ML methodologies in a sampling dataset for the identification of key water quality
parameters related to increased iron concentrations and the prediction of district meter area
(DMA) probability of iron exceedance [5]. In this paper, additional data and further data-
driven analysis extends the work of [5] to explore relationships between iron concentrations
in DWDSs, discolouration CCs, and different water quality parameters measured from both
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the water treatment works (WTWs) and from customer taps in a large UK water utility. For
the first time, network characteristics and complexity are explored as quantified through
complex network theory (CNT) centrality metrics. With relationships established, this
paper then examines the application of different interpretable predictive ensemble decision
trees to provide a risk estimation of iron exceedance and CCs for each of the utility’s DMAs
to inform proactive maintenance for the following year.

2. Materials and Methods

2.1. Case Study, Data Collection, and Data Pre-Proccessing

This data-driven analysis was conducted for Yorkshire Water, a water utility that
serves more than 5 million customers in the Yorkshire area of the UK. The data used for this
work mainly consist of discrete water quality samples collected from WTWs and customer
taps over a period of fourteen years (2009–2022). An additional data source containing
CC data over the same period was also added. Further data included static asset data,
connectivity, and distribution main characteristics per DMA. The analysis included four
main stages: clustering, CNT, self-organising maps (SOMs), and ensemble decision trees.
Prior to this, the data extracted from multiple sources required initial pre-processing, which
included connecting customer tap samples to their associated distribution main pipes;
connecting each DMA to the WTWs that feed it; and calculating WTWs’ monthly averages
per parameter and associating this with DMAs.

2.2. Clustering of Customer Complaints

For the identification of potential discolouration events, a clustering analysis was
conducted in the CC dataset using spatial and temporal criteria. For the clustering of the
CCs, density-based spatial clustering of application with noise (DBSCAN) was applied
using two different clustering approaches to capture different scales and likely causes of
events. DMA clustering was defined as 5 or more contacts within a DMA within a 24 h
period, and water supply zone (WSZ) clustering was defined as 8 customer contacts over
a period of 48 h in a minimum of 2 DMAs [6].

2.3. Complex Network Theory

Complex network theory (CNT) centrality metrics are used as an innovative parameter
for understanding and quantifying the complexity of a utility’s DWDS. The main centrality
metrics used in this work were edge (pipe) betweenness and edge (pipe) n-degree. Edge
betweenness is a metric that calculates the number of times an edge appears in the shortest
path between two nodes, with a high number likely to relate to hydraulically active pipes
and, hence, with less potential for material accumulation. This parameter was calculated
for all the pipes of the utility’s DWDS with an assumption that each DMA is a unique
DWDS. The DMA 30th percentile of this parameter was calculated for each DMA.

2.4. Self-Organising Maps’ Application for the Identification of Factors That Influence Both
Increased Iron Concentrations and Customer Complaints

SOMs were applied for the qualitative data-driven identification of correlations be-
tween parameters. An SOM is an unsupervised neural network clustering methodology
that visualises multidimensional datasets in 2-D plots [7]. The visualisation plots can effec-
tively reveal and communicate hidden non-linear complex correlations between multiple
parameters, even when part of the dataset is missing or incomplete.

2.5. Ensemble Decision Trees for Calculating the Iron Exceedence and Customer Complaints Risk in
DMAs

The last stage of the analysis included a prediction for each of the DMAs’ probabil-
ity of exceedance of iron, CC, and DMA discolouration events (DMADEs) for the next
year using the yearly average data of the present year. For this classification problem,
a two-category approach was selected, including a low-risk non-exceedance (N) class
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(DMAs: iron < 150 µg/L, CC < 5 and DMADE = 0) and a high-risk exceedance (E) class
(DMAs: iron ≧ 150 µg/L, DMAs with CC ≧ 5, DMADE ≧ 1). Two “white-box” ML ap-
proaches were used, random forest (RF) and boosting—random under-sampling boosting
(RUS-Boost) and adapting boosting (ADA-Boost) [8]. The models’ outputs were validated
using 4 different metrics, accuracy (ACC), true positive rate (TPR), true negative rate (TNR)
and Matthews correlation coefficient (MCC).

3. Results and Discussion

3.1. Identifying Correlations with SOMs

Figure 1 shows an example of the SOM analysis including CCs and iron concentrations
with some key potential correlating parameters. The analysis was conducted by selecting
different combinations of water quality variables based on the literature, experience, and,
most importantly, an interactive process between researchers and utility practitioners.
The SOM output presented indicates a positive correlation between CCs in DMAs, high
iron, and high manganese and an inverse correlation between these parameters and edge
betweenness and DMA edge betweenness.
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Figure 1. SOM for exploring iron and CC correlations with CNT metrics and chlorine.

The overall SOM analysis indicated that the source of the water and temperature
influenced both discolouration CCs and iron concentrations. Discolouration CCs and high
iron concentrations are related, but the differences found may be due to uncertainty over
individual customer behaviour. The SOM analysis with CNT metrics notably found that
edge betweenness and DMA edge betweenness have the potential to be used as a metric
for assessing the discolouration risk of both DMAs and pipes.

3.2. Decision Tree Modelling

Predictive modelling was conducted initially using all the available variables and
all the available data and then refined using a combination of variables that improved
the model’s accuracy with reduced complexity. Random under-sampling was applied to
address the strong bias of the dataset towards the “N” class (very few network samples
had high risk exceedance); the method was applied and iterated to identify the best N to E
ratio for training the predictive model. The model was tested using the 2009–2021 data for
training and 2022 data for testing.

The performance metric results of the best iron exceedance, CC and DMADE models
are presented in Table 1. The best predictive models were then used to predict the probabil-
ity of exceedance in the DMAs for the year 2023 and their probability outputs were plotted
in the utility’s DMA map as shown in Figure 2.
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Table 1. Performance metrics of the best iron CC and DMADE predictive models.

Predictive Model ML Method
N

E
ACC TPR TNR MCC

Iron RF 3 0.811 0.714 0.812 0.12
CC RUSBoost 3 0.781 0.649 0.796 0.306

DMADE RF 1 0.84 0.545 0.846 0.151
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Figure 2. Plot of relative probability prediction for elevated iron (>150 µg/L) in utility’s DMAs.

4. Conclusions

Self-organising maps and decision trees are shown to be able to analyse and inter-
pret sparse network data to inform proactive management of iron and discolouration in
drinking water distribution systems. Complex network theory metrics were incorporated
for the first time for these water quality parameters and found to add value in complex
multidimensional space.
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