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Abstract: Credit card fraud detection is a critical challenge in the financial sector due to the rapidly

evolving tactics of fraudsters and the significant class imbalance betweenegitimate and fraudulent

transactions. Traditional models, while effective to some extent, often suffer from high false positive

rates and fail to generalize well to emerging fraud patterns. In this paper, we propose a novel

approach that integrates a Mixture of Experts (MoE) model with a Deep Neural Network-based

Synthetic Minority Over-sampling Technique (DNN-SMOTE) to enhance fraud detection performance.

The MoE modeleverages multiple specialized expert networks, each trained to detect specific types

of fraud, while the DNN-SMOTE generates high-quality synthetic samples to address the class

imbalance. Our experimental results on a publicly available dataset demonstrate that the proposed

method achieves a classification accuracy of 99.93%, a true positive rate of 84.69%, and a true negative

rate of 99.95%. The Matthews Correlation Coefficient (MCC) of 0.7883 further highlights the model’s

balanced performance in detecting fraudulent transactions. These results underscore the effectiveness

of combining MoE with DNN-SMOTE, offering a robust solution for real-world credit card fraud

detection scenarios.

Keywords: credit card fraud detection; financial security; mixture of experts; ensembleearning;

synthetic data generation

1. Introduction

In the rapidly evolving digital era, credit card fraud has emerged as a formidable chal-
lenge, posing significant threats to the financial security of individuals and
institutions [1,2]. This is because the prevalence of credit card fraud has escalated with
the advent of online banking and e-commerce, making it a critical concern for the finan-
cial industry [3]. The increasing reliance on electronic transactions has been paralleled
by a surge in fraudulent activities. According to recent studies [4–6], globalosses due
to credit card fraud have been increasing exponentially. These fraudulent activities not
onlyead to substantial financialosses but also erode consumer trust in digital financial
transactions [7]. For example, according to the Consumer Sentinel Network Data Book [8]
from the Federal Trade Commission (FTC), in 2023 alone, consumers reportedosses exceed-
ing USD 10 billion due to fraud, marking a significant 14% increase from the previous year.
This figure represents the highest reported fraudosses on record. Investment scams were
particularly devastating, accounting for more than USD 4.6 billion of the totalosses, while
imposter scams contributed nearly USD 2.7 billion.

Therefore, credit card fraud detection has become an increasingly critical issue in the
financial industry as the proliferation of online transactions hased to a corresponding rise
in fraudulent activities. However, there are two major challenges for credit card fraud
detection tasks:
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1. First, the rapid evolution of fraud patterns, driven by the continuous adaptation
and sophistication of fraudsters, presents a significant challenge to existing detection
systems. Traditional fraud detection methods, primarily based on supervisedearning
techniques, rely on historical data to identify fraudulent behavior. While these meth-
ods can be effective, they are oftenimited by their inability to detect new or emerging
fraud patterns that do not conform to previously observed behaviors.

2. The second challenge is the dataset imbalance issue. The credit card transactions,
coupled with the imbalanced nature of fraud datasets, where fraudulent transactions
constitute a tiny fraction of the total, further complicates the detection process. This
imbalance ofteneads to a high rate of false positives, whereegitimate transactions are
incorrectly flagged as fraudulent, causing inconvenience to customers and potential
financialoss to merchants. Moreover, the constantly changing tactics of fraudsters
require detection systems to adapt quickly, a demand that traditional methods struggle
to meet.

In response to these challenges, recent research has explored various advanced machi-
neearning techniques to improve the accuracy and robustness of fraud detection models.
These methods include autoencoders [9–12], ensemble methods [9,13,14], and hybrid mod-
els combining these approaches. While these methods have demonstrated improved
accuracy and robustness, they often struggle with significant class imbalance and the dy-
namic nature of fraud patterns. For instance, traditional models tend to overfit the majority
class or fail to generalize well to new, unseen fraud cases.

Recently, Mixture of Experts (MoE) models [15,16] have emerged as a promising ap-
proach and have been employed extensively across different fields such as naturalanguage
processing, computer vision, and robotics. In naturalanguage processing, Mixture of Ex-
perts (MoE) models have proven effective in addressing tasks such as machine translation
and speech recognition. These models excel because they can accommodate the diversein-
guistic features and subtleties inherent inanguage, which are often better processed by
specialized sub-models rather than a single, all-encompassing model. Similarly, in com-
puter vision, MoE models have been employed in image recognition endeavors. Here,
distinct experts within the MoE framework can focus on identifying different categories of
objects, each with its unique set of characteristics, thereby enhancing the overall accuracy
and efficiency of the recognition process. MoE models utilize a collection of specialized
sub-models, referred to as “experts”, each of which is trained to address distinct facets of
the fraud detection challenge. By integrating the predictions generated by these experts,
the MoE model is capable of delivering more precise forecasts, especially in intricate and
volatile settings where fraudulent behaviors are not straightforward to discern. This ap-
proach allows the model to capture a broader range of fraud patterns and adapt to the
ever-changing nature of fraudulent activities.

Traditional oversampling techniques, such as the synthetic minority over-sampling
technique (SMOTE) [17], have proven effective in classical machineearning models but
struggle to integrate seamlessly with deepearning architectures, especially when working
with complex, high-dimensional data. The recent DeepSMOTE [18] addresses theseimita-
tions by combining the strengths of SMOTE with a convolutional architecture. Inspired by
this, we propose an encoder–decoder to handle the challenge of data imbalance for credit
card fraud detection. Our proposed DNN-SMOTE allows for the generation of high-quality
synthetic instances that enhance the minority class representation. This approach not only
balances the dataset but also enhances the model’s ability to discriminate between classes.

In this work, we propose a novel framework consisting of MoE and DNN-SMOTE to
address theseimitations. The integration of MoE with DNN-SMOTE offers a promising
solution. The MoE model, with its ability toeverage multiple specialized expert models,
enhances the model’s adaptability and precision in detecting complex fraud patterns.
Meanwhile, DNN-SMOTE effectively mitigates the class imbalance by generating high-
quality synthetic samples for the minority class, ensuring that the model is trained on a more
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representative dataset. This combination allows for a more nuanced and accurate detection
system, capable of handling the challenges that have hindered previous approaches.

2. Related Works

2.1. Traditional Fraud Detection Methods

Traditional approaches to fraud detection were predominantly rule-based, relying
on fixed parameters and thresholds [19,20]. These systems, effective in identifying overt
anomalies, often struggled with the subtleties and complexities of sophisticated fraud
tactics [21]. As digital transactions advanced, these methods began showingimitations,
primarily in scalability and adaptability [22]. The introduction of decision trees and basic
statistical models, such asogistic regression, marked an evolution, offering more nuanced
detection capabilities [23–25]. However, these methods still faced challenges in handling
the dynamic nature of fraud, often resulting in high false-positive rates and the inability to
adapt quickly to new fraud patterns [26]. Recent developments have seen the integration
of hybrid models that combine rule-based systems with early machineearning techniques,
aiming to improve accuracy and reduce false positives [27]. Nevertheless, the inherentimi-
tations of traditional fraud detection frameworks became increasingly apparent. They were
often unable to keep pace with the rapid evolution of fraud strategies, as they relied on
historical trends that could become quickly outdated. The manual creation and updating
of rules presented a significant operational burden, making it difficult to respond to fraud
in real-time. Additionally, these systems did not account for the complex and evolving pat-
terns ofegitimate user behavior,eading to a high rate of false alarms, which could alienate
customers and strain resources. This recognition ofimitations prompted a shift towards
more advanced analytics and machineearning-based approaches, setting the stage for a
new era in fraud detection methodologies.

2.2. Deep Learning and Ensemble Methods

Recent advancements in credit card fraud detection haveargely focused on the devel-
opment of machineearning and deepearning techniques to improve accuracy and resilience
against evolving fraud patterns.

Deepearning approaches have also gained traction, with modelsike autoencoders [10]
combined with Restricted Boltzmann Machines (RBMs) [12] being used to detect anomalies
in transaction data. These workseveraged the unsupervisedearning capabilities of autoen-
coders to identify suspicious transactions, offering a solution to the challenge of evolving
fraud patterns without relying heavily onabeled datasets. The integration of variational
autoencoders with generative adversarial networks (VAE-GANs) has been introduced to
generate synthetic data [11,28], thereby improving model training and addressing class
imbalance. This approach enhances the representation of the minority class,eading to more
effective fraud detection.

Additionally, enhanced autoencoder-based models combined with SMOTE [10,29]
have shown promise in reducing false positives while improving the detection of fraudulent
transactions. This hybrid approach not only mitigates data imbalance but also enhances
overall detection performance. Ensemble methods [9,13,14] have proven effective by
combining multiple classifiers to enhance detection rates. The integration of ensemble
methods with deepearning models, as seen in hybrid systems, continues to push the
boundaries of fraud detection. These systemseverage the strengths of both approaches,
offering superior performance in identifying complex fraud patterns compared to single-
model techniques.

2.3. Utilizing Data Augmentation Techniques

Data augmentation has become increasingly vital, especially in scenarios whereabeled
data are scarce [30,31]. This approach marks a departure from the reliance on extensive-
abeled datasets common in traditional machineearning paradigms [32,33]. By artificially
enhancing data through various augmentation techniques, such as introducing controlled
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noise [34], rotation [35], or distortion, data augmentation helps unveil hidden patterns
and anomalies within the dataset [36,37]. This method has shown significant potential in
diverse areasike image processing, naturalanguage processing, and cybersecurity, enabling
the detection of anomalies in complex and evolving datasets [38]. The flexibility and effec-
tiveness of data augmentation make it a promising tool for addressing the intricate and
dynamic nature of credit card fraud detection. Moreover, data augmentation techniques
have been instrumental in mitigating the problem of overfitting in machineearning models,
particularly those that are prone toearning noise in the training data. By expanding the
diversity of the training examples, models areessikely to memorize specific instances and
insteadearn to generalize better to unseen data. This results in improved model robustness
and reliability, essential qualities for systems deployed in critical sectors such as finance.
As theandscape of fraud continues to evolve, data augmentation stands as a critical com-
ponent in the arsenal of tools available to data scientists and fraud analysts, ensuring that
machineearning models remain effective in the ongoing battle against financial fraud.

2.4. Limitations of Existing Works

Traditional oversampling techniques have been widely used to address class imbalance
by generating synthetic samples for the minority class [36–38]. However, these methods
often fall short when applied to high-dimensional or complex datasets, as they are unable to
capture the non-linear relationships and feature interactions in real-world data. SMOTE [17],
while effective in classical machineearning, can also suffer from the issue of generating
synthetic samples that are overly simplistic and prone to overlapping with outliers, which
introduces noise into the training process. This not only degrades model performance but
also results in overfitting to the majority class in highly imbalanced datasets. To overcome
theseimitations, we proposed the DNN-SMOTE model thateverages an encoder–decoder
structure to learn a more nuanced representation of the minority class. By generating
synthetic samples from aatent spaceearned by the network, DNN-SMOTE produces more
diverse and realistic data points that better capture the complexity of the minority class,
ultimatelyeading to improved generalization and model robustness.

On the other hand, existing fraud detection models and classifiers [9,10,13,14,29] often
struggle with the challenge of capturing diverse patterns in highly imbalanced datasets,
where fraudulent activities exhibit wide variability. Traditional classifiers such as decision
trees, random forests, and even deep neural networks treat the entire dataset uniformly,
which canead to poor performance when faced with new, previously unseen fraud patterns.
These models areimited by their inability to specialize in different regions of the data
space, often resulting in high false positives or missed fraud detections. In this work, we
exploit the Mixture of Experts (MoE) model, which addresses theseimitations by using
multiple specialized expert networks, each trained to capture distinct aspects of the data.
Its hierarchical structure allows the MoE classifier to balance precision and recall more
effectively, reducing false positives while improving detection rates for minority class
instances such as fraudulent transactions.

3. Proposed MoE with DNN-SMOTE Model for Fraud Detection with Class Imbalance

The core aim of this paper is to precisely identify and categorize credit card fraud
events using the proposed algorithm. Figure 1 illustrates the overall framework of the
proposed Mixture of Experts (MoE) model integrated with the DNN-SMOTE oversampling
method for credit card fraud detection. This framework effectively addresses the challenges
posed by imbalanced datasets in fraud detection, combining the strengths of DNN-SMOTE
and MoE to create a more accurate and reliable detection model.

Figure 1 is divided into three phases to handle a dataset with a class imbalance during
training and inference:
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Figure 1. The overall framework and algorithmic flow of the proposed MoE model with the DNN-

SMOTE oversampling method.

• Phase 1: DNN-SMOTE Training: In this phase, the DNN-SMOTE module is trained
using the training set derived from the imbalanced dataset. The DNN-SMOTE mod-
ule is responsible forearning the characteristics of the minority class (in this case,
fraudulent transactions) and generating high-quality synthetic samples for better
representation of the minority class during training.

• Phase 2: DNN-SMOTE Oversampling: Once the DNN-SMOTE module is trained, it
is used to perform minority oversampling on the imbalanced dataset. This process
generates oversampled minority data points, which results in a more balanced training
dataset. The oversampled dataset combines both real and synthetic data, ensuring the
minority class (fraudulent transactions) is better represented.

• Phase 3: MoE Training/Inference: In this phase, the MoE (Mixture of Experts) classifier
is trained using the newly oversampled dataset. During inference, the MoE classifier
makes predictions using the trained expert networks, with the goal of accurately
classifying both majority and minority class instances, particularly in the presence of
imbalanced datasets.

3.1. Mixture of Experts (MoE) Model for Credit Fraud Detection

Figure 2 illustrates the architecture of the proposed MoE model for credit card fraud
detection. The MoE model is an ensembleearning technique that combines the predictions
of multiple expert models, each specialized in different aspects of the input space. The key
components of this architecture are the expert models, the gating network, and the weighted
combination of expert outputs to produce the final prediction.

This MoE framework is particularly effective for handling complex and high-dimensional
data, such as in credit card fraud detection, where different experts can focus on captur-
ing different types of fraud patterns. The flexibility and adaptability of the MoE model
allow it to provide more accurate and reliable predictions by dynamically weighting the
contribution of each expert based on the specific characteristics of the input data.

3.1.1. Expert Networks

The MoE model in Figure 2 consists of N expert models, denoted as Expert 1, Expert 2,
. . . , Expert N. Each expert model Ei(x) receives the same input x but generates a different
output. Each expert in the MoE model is a neural network trained on the training data.
The experts are designed to become specialists, each excelling in a specific region of the
input space. Mathematically, the output of each expert i for an input x can be represented as:

Ei(x) = fi(x) = σ(θT
i x + b), (1)
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where fi is the function modeled by the i-th expert, and θi denotes the parameters of the
expert. Here, we use ainearayer with non-linear activation σ(·) as the expert function.

Expert 1 Expert 2 Expert N

Gating Network

......

Input

Output

Expert Weights

Figure 2. Diagram of the MoE model.

3.1.2. Gating Network

The gating network determines the weight or contribution of each expert for a given input.
For a given input x, the gating network computes a set of weights g1(x), g2(x), . . . , gN(x),
where each gi(x) represents the weight assigned to the output of the corresponding expert
Ei(x). These weights are typically determined by a Softmax function, ensuring that the
sum of all weights equals one:

gi(x) =
exp(w⊤

i x + bi)

∑
N
j=1 exp(w⊤

j x + bj)
(2)

where wi and bi are the weights and bias for the i-th expert within the gating network,
and N is the total number of experts.

3.1.3. Weighted Model Output

The final output of the MoE model is a weighted sum of the outputs from all expert
networks, where the weights are provided by the gating network. For a given input x,
the model output Y is computed as:

Y(x) =
N

∑
i=1

gi(x) · Ei(x) (3)

Equation (3) allows the MoE model to adaptively choose which experts to rely on
based on the input, making it highly flexible and capable of handling diverse and complex
data distributions effectively. The weighted combination allows the MoE model toeverage
the strengths of each expert, thereby improving the overall model performance.

3.1.4. Weighted Cross Entropy

Using a standard binary cross-entropyoss function may cause the model to be biased
towards the majority class. To address the issue of class imbalance in binary classification
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tasks, we use the weighted binary cross-entropyoss, which is a variation in the standard
binary cross-entropyoss as follows:

Weighted BCE(y, ŷ) = −[w1 · y · log(ŷ) + w0 · (1 − y) · log(1 − ŷ)], (4)

where weights w0 and w1 are introduced for the negative class (label 0) and positive class
(label 1), respectively. The weighted binary cross-entropyoss assigns different weights to
the positive and negative classes to ensure that the model does not become biased towards
the majority class, thus maintaining a better balance between precision and recall.

3.2. Oversampling with DNN-SMOTE

Data augmentation in credit card fraud detection plays a crucial role in addressing the
challenge ofimitedabeled anomaly data. SMOTE [17] has been widely adopted in previous
works [9–11] where the imbalance in class distribution is prevalent. Its capability to enhance
the representativeness of the minority class helps in building more robust classifiers. While
SMOTE is effective in creating a balanced dataset, it may also introduce noise, especially
when the minority class samples are outliers or when the feature spaceacks coherence.
Hence, it is crucial to apply SMOTE in conjunction with appropriate outlier detection and
feature selection techniques to maximize its effectiveness.

By introducing artificial variations that mimic fraudulent behavior, we can enhance
the diversity of the training dataset. In this work, we propose the DNN-SMOTE model,
whicheverages deepearning techniques to enhance the traditional SMOTE approach [17],
generating high-quality synthetic samples that improve the performance of fraud detection
models on imbalanced datasets. Figure 3 illustrates the proposed DNN-SMOTE model
designed for data oversampling in the context of credit card fraud detection. This model
addresses the issue of imbalanced datasets, where fraudulent transactions are significant-
lyess frequent than non-fraudulent ones. The figure is divided into two parts: (a) the
DNN-SMOTE oversampling model and (b) the GeLU-based encoder/decoder architecture.

Imbalanced Credit Card
Transaction Data

Encoder

D
ecoder

SM
O

TE
Sam

pling

MSE
Reconstruction

Loss

GeLU

Dropout

FC Layer

(a) DNN-SMOTE Oversamlping Model (b) Encoder/Decoder Architecture

Testing

Training

Figure 3. (a) Diagram of proposed DNN-SMOTE oversampling method. (b) GeLU-based en-

coder/decoder architecture.

The DNN-SMOTE model integrates deepearning with the SMOTE to generate syn-
thetic samples for the minority class (fraudulent transactions). The process begins with the
imbalanced credit card transaction data being fed into an encoder, which compresses the
data into aower-dimensional representation. The encoder encodes the input data x into
aatent space representation z:

z = fencoder(x) = GeLU(FC(x)) (5)

This compressed representation is then passed to a decoder, which reconstructs the
data. The decoder reconstructs the data from theatent space representation:

x̂ = fdecoder(z) = GeLU(FC(z)) (6)
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The encoder and decoder are both built using GeLU (Gaussian Error Linear Unit)
activation functions, dropoutayers, and fully connected (FC)ayers. The GeLU activation
function is particularly effective in deepearning models as it allows for smoother and more
effectiveearning, compared to traditional ReLU activations. The fully connectedayers are
responsible forearning the complex patterns and features in the data that are essential for
the effective reconstruction and synthesis of minority class samples. Dropoutayers are
included to prevent overfitting by randomly disabling certain neurons during training,
thereby improving the generalization of the model.

The Mean Squared Error (MSE) reconstructionoss is used to evaluate the difference
between the original data and the reconstructed data, guiding the training process to
minimize thisoss.

MSE =
1

n

n

∑
i=1

(xi − x̂i)
2 (7)

This oss function ensures that the reconstructed data closely matches the original input,
thus preserving the essential characteristics of the minority class during oversampling.

During testing, the trained model applies SMOTE to the encoded representations to
generate synthetic samples, effectively balancing the dataset. The SMOTE for the encoded
representations involves the following steps to generate synthetic data:

1. Selecting the k-nearest neighbors: For each instance in the minority class, identify
the k-nearest neighbors in encoded space for the minority class using the Euclidean
distance metric.

2. Synthetic sample generation by interpolation: For each minority class sample,
the synthetic samples are generated by choosing one of the k-nearest neighbors
and interpolating between the two points. The synthetic samples in the encoded
representation are created as follows:

znew = z + (znn − z)× δ (8)

where z is a vector representing the encoded vectors of minority data points, znn

is one of its nearest neighbors, and δ is a random number between 0 and 1. This
interpolation approach ensures that the synthetic samples are a variation within the
feature space between the existing minority instances, thereby contributing to a more
general and diversified representation of the minority class.

3. Decoding: The generated encoded samples znew are then decoded back into the
original data space and combined with the original dataset, providing a more balanced
and representative set of training data for the classifier.

4. Experiments

This section delves into a comprehensive discussion and analysis of the following
aspects: key hyperparameter selection and performance comparison of various credit card
fraud detection models using a publicly available dataset. The goal is to assess the effec-
tiveness of these models in identifying fraudulent transactions from an imbalanced dataset,
where fraudulent transactions are significantlyess frequent than non-fraudulent ones.

4.1. Experimental Environment

The experiments were conducted using a computing environment equipped with
NVIDIA GeForce RTX 4060 Ti with Intel Xeon Platinum 8276 CPU to accelerate model train-
ing. To implement the proposed DNN-SMOTE algorithm, the deepearning frameworks
used for this research included PyTorch v2.1.0, which enabled efficient implementation
of neural networks and flexible model configurations. We used scikit-learn for the other
traditional machineearning baselines and preprocessing tasks such as data scaling and
model evaluation.
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4.2. Dataset Introduction and Preprocessing

The dataset utilized in this study is accessible on Kaggle [39] and was contributed by
the Machine Learning Group at Université Libre de Bruxelles (ULB). The dataset consists
of 30 features. It encompasses transactions conducted by European credit card holders
within a two-day period in September 2013, totaling 284,807 transactions. Notably, only
492 of these transactions are identified as fraudulent, representing a mere 0.172% of the
total dataset. This significant class imbalance renders the dataset particularly suitable for
evaluating the efficacy of sophisticated machineearning approaches, including the MoE
model enhanced with DNN-SMOTE, in identifying infrequent fraudulent activities.

The raw data are first preprocessed to handle missing values, normalize the features,
and encode categorical variables if necessary. Due to confidentiality issues, all feature
names except for “Time” and “Amount” have been anonymized. Feature scaling is applied
to standardize the range of independent variables or features of data. This step is crucial for
models sensitive to the scale of data. The dataset is split into training, validation, and testing
subsets, following a distribution of 80%, 10%, and 10%, respectively. This partitioning
ensures a comprehensive approach to model training and performance evaluation.

4.3. Model Configuration

The encoder and decoder in the DNN-SMOTE oversampling method are both 3-layer
models. The k value for kNN, SMOTE and DNN-SMOTE is k = 5. The hidden dimension of
each expert network is 64. The training for DNN-SMOTE and MoE models was conducted
over 300 epochs using the Adam optimizer with a weight decay of 0.02 and an initialearning
rate of 1× 10−4. A cosine decayearning rate scheduler, coupled with ainear warm-up phase
spanning the first 10 epochs, was employed to facilitate faster convergence.

Table 1 provides a summary of the evaluated algorithms used in this paper for credit
card fraud detection. The table categorizes the algorithms into two main groups: conven-
tional machineearning and deepearning or ensemble methods. Including both conventional
and advanced algorithms allows for a comprehensive evaluation of different approaches,
providing insights into the strengths and weaknesses of each method. The first category
includes widely-used conventional machineearning algorithms such asogistic regression,
random forest, AdaBoost, bagging, gradient boosting, and k-Nearest Neighbors (kNN).
These models are often employed in various classification tasks due to their simplicity,
interpretability, and relatively fast training times. The second category consists of more
advanced deepearning and ensemble-based methods, which are designed to handle the
intricacies of complex data distributions. This group includes models such as Autoencoder
(AE), Support Vector Machine (SVM) combined with AdaBoost, Autoencoder with Proba-
bilistic Random Forest (PRF), and Autoencoder combined with LightGBM (AE-LGB) using
SMOTE for oversampling. This category also includes the proposed models in this research:
MoE combined with SMOTE and MoE combined with DNN-SMOTE.

Table 1. Summary of evaluated algorithms for credit card fraud detection.

Category Algorithm

Conventional Machine Learning

Logistic Regression
Random Forest
AdaBoost
Bagging
Gradient Boosting
kNN [40]

Deep Learning or Ensemble

AE [12]
SVM with AdaBoost [13]
AE with PRF [9]
AE-LGB with SMOTE [10]
MoE with SMOTE (This Work)
MoE with DNN-SMOTE (This Work)
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4.4. Evaluation Metrics

The effectiveness of the credit card fraud detection algorithms is assessed using a test
dataset comprising unseen transactions. Several key metrics are employed to assess the
model performance. These metrics include accuracy, the true positive rate, the true negative
rate, the false positive rate, the confusion matrix, the Matthews correlation coefficient
(MCC) [41], and the receiver operating characteristic (ROC) curve [42]. These metrics enable
a comprehensive evaluation of its effectiveness in identifying fraudulent activities.

Accuracy (ACC) measures the proportion of correctly classified instances, both fraud-
ulent andegitimate, out of the total instances. The accuracy is calculated as:

ACC =
TP + TN

TP + TN + FP + FN
(9)

where TP (True Positives) represents the number of correctly identified fraudulent transac-
tions, TN (True Negatives) represents the number of correctly identifiedegitimate transac-
tions, FP (False Positives) denotesegitimate transactions incorrectly classified as fraudulent,
and FN (False Negatives) denotes fraudulent transactions incorrectly classified as legitimate.
True Positive Rate (TPR), also known as sensitivity or recall, measures the proportion of
actual fraudulent transactions that are correctly identified by the model. It reflects the
model’s ability to detect fraud when it is present. The TPR is calculated as follows:

TPR =
TP

TP + FN
(10)

True Negative Rate (TNR), or specificity, quantifies the proportion of actualegitimate
transactions that are correctly identified as such by the model. It complements the TPR by
focusing on the model’s performance in recognizing non-fraudulent activities. The TNR is
given by:

TNR =
TN

TN + FP
(11)

False Positive Rate (FPR) is the proportion ofegitimate transactions that are incor-
rectly classified as fraudulent. A high FPR canead to unnecessary alerts and customer
dissatisfaction. The FPR is calculated as:

FPR =
FP

FP + TN
(12)

The Matthews Correlation Coefficient (MCC) [41] is a more comprehensive metric that
takes into account the true and false positives and negatives, providing a balanced measure
of the model’s performance even when the classes are imbalanced. The MCC value ranges
from −1 to +1, where +1 indicates perfect prediction, while -1 indicates total disagreement
between prediction and observation. The MCC is calculated as:

MCC =
(TP × TN)− (FP × FN)

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(13)

The confusion matrix is a table that summarizes the performance of a classification
algorithm by displaying the counts of true positives, true negatives, false positives, and false
negatives. It provides a detailed breakdown of how well the model is performing and helps
in calculating other metrics. The confusion matrix is typically structured as follows:

Predicted Negative Predicted Positive

Actual Negative FP TN
Actual Positive TP FN

A Receiver Operating Characteristic (ROC) curve [42] is considered to provide a
graphical representation that illustrates the diagnostic ability of a binary classifier system
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as its discrimination threshold is varied. The ROC curve is plotted by comparing the TPR
against the FPR at various threshold settings.

These metrics collectively provide a comprehensive view of the model’s performance,
ensuring that both the detection of fraud and the minimization of false positives are
adequately balanced in the evaluation of the fraud detection model.

4.5. Evaluation for MoE Models and Oversampling Algorithms

Figure 4 presents three plots showing the performance of the DNN-SMOTE module
and the MoE classification module across 300 training epochs. In Figure 4a, the trainingoss
initially starts higher above 20, and sharply decreases in the first 100 epochs. After the
initial drop, the loss continues to decrease gradually, eventually flattening out, suggesting
that the model converges as training progresses. The test accuracy plot demonstrates strong
overall performance, with average accuracy nearing 1.0 and balanced accuracy remaining
high, indicating the model’s robustness in the presence of class imbalance, thanks to the
DNN-SMOTE module. The smooth convergence in bothoss plots and the stabilization in
accuracy suggest that the models are well-optimized and trained effectively. Figure 4b
represents the trainingoss of the MoE classification module. The loss starts around 0.35
and shows a steady, significant decrease over the first 100 epochs. After 300 training
epochs, the loss plateaus at approximately 0.175, indicating convergence similar to the
DNN-SMOTE module. Figure 4c shows the test accuracy of the MoE classification module,
where two metrics are plotted: the overall accuracy across all classes (average accuracy),
and balanced accuracy that accounts for class imbalance. Balanced accuracy (orangeine)
improves sharply but stabilizes at around 0.95, showing good performance in accounting
for both classes in the imbalanced dataset. The slight gap between the two accuracy metrics
indicates the effectiveness of the proposed DNN-SMOTE and MoE models in handling
class imbalance.

0 100 200 300
Training Epoch

5

10

15

20

Tr
ai

ni
ng

 L
os

s

(a)

0 100 200 300
Training Epoch

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Tr
ai

ni
ng

 L
os

s

(b)

0 100 200 300
Training Epoch

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 A

cc
ur

ac
y

Average Acc.
Balanced Acc.

(c)

Figure 4. Training oss and testing accuracy for the DNN-SMOTE module and MoE classification mod-

ule. (a) DNN-SMOTE training. (b) MoE training loss. (c) MoE testing accuracy.

In Figures 5 and 6, we first compare the impact of different oversampling techniques,
SMOTE and DNN-SMOTE, on the distribution of training data points in the context of credit
card fraud detection. We used t-Distributed Stochastic Neighbor Embedding (t-SNE) [43]
to visualize high-dimensional data. The technique first reduces the data to two dimensions,
enabling easier exploration and interpretation. Figures 5 and 6 depict how the data points
are distributed across two dimensions under various oversampling ratios: 0.1, 0.3, 0.5,
and 0.7. The oversampling ratio is defined as the ratio of the minority class (fraudulent
transactions) with respect to the majority class (non-fraudulent transactions). The blue
points represent the majority class, and the orange points represent the minority class.
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Figure 5. Visualization of sampled training data points for fraud detection under various oversam-

pling ratios. The oversampling method is SMOTE. Blue: majority class. Orange: minority class.
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Figure 6. Visualization of sampled training data points for fraud detection under various oversam-

pling ratios. The oversampling method is the proposed method DNN-SMOTE. Blue: majority class.

Orange: minority class.

SMOTE generates synthetic samples by performinginear interpolation between exist-
ing minority class samples in the feature space. SMOTE works reasonably well for simple
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datasets. However, it hasimitations in high-dimensional or complex data. A common issue
with SMOTE is: if there are outliers in the minority class, SMOTE may generate synthetic
samples close to these outliers, thereby introducing noise into the training data. In compar-
ison, DNN-SMOTEeverages an encoder–decoder architecture toearn aatent representation
of the data. This network compresses the minority class data into aower-dimensional space
using the encoder and then reconstructs it using the decoder. DNN-SMOTE mitigates this
issue byearning aatent space representation of the minority data, which helps the model
smooth out outliers.

In Figure 5 with SMOTE oversampling, as the oversampling ratio increases, the minor-
ity data points become more spread out and integrated with the majority class. At lower
oversampling ratios, the minority data points are relatively sparse and mostly clustered
near the majority class points, indicatingimited oversampling. As the ratio increases to
0.3 and 0.5, the orange points representing the minority class begin to fill in the space,
but they remain somewhat close to the majority class, suggesting that SMOTE is interpolat-
ing between existing minority class samples. In Figure 6 with the proposed DNN-SMOTE
method, at theower oversampling ratios, the minority data points are dispersed compared
to SMOTE, indicating that DNN-SMOTE is generating more diverse synthetic samples
even with minimal oversampling. As the ratio increases to 0.3 and 0.5, the distribution
of the minority data points becomes more varied andess clustered than in the SMOTE
figure, suggesting that DNN-SMOTE is better at creating synthetic samples that span
a broader region of the feature space. DNN-SMOTE provides a more diversified and
better-distributed set of minority data samples across different oversampling ratios. This
improved distributionikely contributes to better generalization in the model, as it allows
the classifier toearn more varied examples of fraudulent transactions, reducing the risk of
overfitting to a narrow set of minority class features.

We first study the impact of the MoE model and training configurations on the clas-
sification performance. We plot a series of confusion matrices in Figure 7 that depict the
performance of the proposed MoE model using DNN-SMOTE with an oversampling ratio
of 0.2 across various configurations ofoss weights and expert configurations (2/4, 2/8,
4/16). Each subfigure (a) through (d) represents differentoss weights (0.5 to 0.8), and within
each subfigure, the performance is evaluated for different expert configurations. With-
oweross weights (e.g., 0.5), the model maintains a relatively high number of true negatives
and true positives, as seen by theower misclassification rates in both the positive and
negative classes. However, as the weight increases, the number of false negatives and
false positives begins to rise. This indicates a potential trade-off between precision and
recall as the model is adjusted to focus more on one aspect, possiblyeading to increased
misclassification in another area. The expert configuration also plays a significant role.
For example, in subfigure (d) with weight 0.8, the confusion matrix with a 2/4 expert
configuration shows relatively balanced performance, but as the expert configuration in-
creases to 2/8 and 4/16, the number of false positives and false negatives rises, suggesting
that higher complexity in the model mightead to overfitting or misclassification in this
specific setup. This analysis suggests that while increasing model complexity and adjusting
weights can potentially enhance certain aspects of performance, it also introduces risks
of misclassification, particularly in a highly imbalanced context such as fraud detection.
Therefore, fine-tuning these parameters is crucial for achieving a balanced and effective
fraud detection model.
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Figure 7. Confusion matrix for weighted cross-entropyoss with DNN-SMOTE oversampling ratio = 0.2.

4.6. Performance Evaluation

4.6.1. Performance Comparison with Other Machine Learning Models

Figure 8 presents confusion matrices comparing the performance of several machi-
neearning algorithms (logistic regression, random forest, AdaBoost, bagging, gradient
boosting, kNN, and MoE) across three scenarios: (a) no oversampling, (b) SMOTE over-
sampling, and (c) DNN-SMOTE oversampling. For the no oversampling scenario, random
forest andogistic regression perform well, with random forest achieving the highest number
of true positives and theowest number of false positives. AdaBoost and gradient boosting
show a higher number of false positives, suggesting that they may overfit the majority class.
When SMOTE oversampling is applied, the performance of most algorithms improves in
terms of reducing false negatives. Notably, the AdaBoost model, which previously had
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high false negatives, now shows a marked improvement, although it still suffers from a
relatively high number of false positives (494). Random forest continues to show balanced
performance with aow false positive rate (7), but logistic regression and bagging show an
increase in false positives compared to the no oversampling scenario. MoE balances well be-
tween false negatives and false positives. DNN-SMOTE oversampling further enhances the
model’s performance, with random forest and MoE showing a significant reduction in both
false positives and false negatives. MoE, in particular, shows a substantial improvement
with a more balanced confusion matrix, indicating that it effectively handles the minority
class with DNN-SMOTE. The reduction in false positives across most models indicates that
DNN-SMOTE provides better generalization and a more nuanced understanding of the
minority class than SMOTE.
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Figure 8. Confusion matrix of different algorithms. (a) No oversampling. (b) SMOTE oversampling.

(c) DNN-SMOTE oversampling.

Figure 9 provides the ROC curve of various machineearning algorithms (logistic regres-
sion, random forest, AdaBoost, bagging, gradient boosting, kNN, and MoE) in detecting
credit card fraud without oversampling techniques. Random forest, AdaBoost, and logistic
regression demonstrate the best performance, with curves that closely hug the top-left cor-
ner of the plot, indicating high true positive rates andow false positive rates across various
thresholds. On the other hand, kNN and MoE exhibit suboptimal performance, as indicated
by their curves, which are closer to the diagonaline representing random guessing. The
comparative analysis highlights that ensemble methodsike random forest and AdaBoost
generally outperform other models in this imbalanced dataset scenario, achieving higher
true positive rates while maintainingower false positive rates. The underperformance of
kNN and MoE suggests that these models may require additional techniques, such as
oversampling, to handle the imbalance in the data effectively.

Figure 10a shows the ROC curve with SMOTE oversampling. The ROC curves for all
the algorithms show significant improvement, closely hugging the top-left corner of the
plot. This indicates that SMOTE effectively addresses the class imbalance by enhancing the
models’ ability to correctly identify fraudulent transactions while minimizing false positives.
The kNN and MoE models, which showedower performance without oversampling, exhibit
marked improvement with SMOTE, as evidenced by their ROC curves moving closer to the
ideal top-left region. This indicates that SMOTE has effectively helped these models better
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handle the minority class, improving their overall classification performance. The ROC
curve analysis with SMOTE oversampling highlights that the application of this technique
significantly enhances the performance of all the models.
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Figure 9. ROC curve without oversampling.
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(b) DNN-SMOTE oversampling

Figure 10. ROC curve with (a) SMOTE and (b) DNN-SMOTE oversampling and sampling ratio = 0.2.

Figure 10b depicts the ROC curve with proposed DNN-SMOTE oversampling. The
ROC curves for all algorithms show further improvement compared to standard SMOTE.
The curves are tightly clustered near the top-left corner of the plot, indicating that all models
achieve high true positive rates while maintainingow false positive rates. Notably, the MoE
model, which had shown considerable improvement with SMOTE, now exhibits even better
performance with DNN-SMOTE, placing it closer to the top-tier modelsike random forest
and AdaBoost. This indicates that the advanced synthetic sampling provided by DNN-
SMOTE helps MoE and other models generalize better and improve their ability to correctly
classify both fraudulent and non-fraudulent transactions. Overall, this analysis suggests
that DNN-SMOTE is a powerful tool for improving fraud detection models, offering
superior performance and making previouslyess effective models more competitive in
highly imbalanced datasets.

4.6.2. Performance Comparison with Existing Algorithms

We compare the proposed MoE-based model to various algorithms for credit card
fraud detection, including kNN [40], AE [12], SVM with AdaBoost [13], AE with PRF [9],
AE-LGB with SMOTE [10]. Table 2 provides an insightful comparison of these fraud de-
tection algorithms, highlighting performance metrics such as ACC, TPR, TNR, and MCC.
Our proposed MoE with DNN-SMOTE model achieved the highest accuracy of 0.9993,
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indicating an almost perfect classification. However, as mentioned earlier, it can be mis-
leading in highly imbalanced datasets. TPR measures the ability of the model to correctly
identify fraudulent transactions. The AE with PRF model achieved the highest TPR of
0.8910. Conversely, while the SVM with AdaBoost has an excellent TNR of 0.9995, its TPR
isower at 0.8231, indicating that it might miss some fraudulent transactions despite its high
overall accuracy. The MoE with DNN-SMOTE, developed in this work, strikes a balance
with a TPR of 0.8469 and a TNR of 0.9995, suggesting it provides a more robust detection
capability by minimizing false negatives while maintaining high specificity.

Table 2. Model performance comparison for different algorithms. Bold font indicates the best one.

Algorithm ACC TPR TNR MCC

kNN [40] 0.9691 0.8835 0.9711 0.5903

AE [12] 0.9705 0.8367 0.9707 0.1942

SVM with AdaBoost [13] 0.9992 0.8231 0.9995 0.7960

AE with PRF [9] 0.9973 0.8910 0.9975 0.5921

AE-LGB with SMOTE [10] 0.9970 0.8275 0.9973 0.5574

MoE with SMOTE (This Work) 0.9976 0.8877 0.9978 0.6012

MoE with DNN-SMOTE (This Work) 0.9993 0.8469 0.9995 0.7883

MCC is a balanced measure that takes into account all four quadrants of the confusion
matrix (TP, TN, FP, FN), making it particularly useful in imbalanced datasets. The SVM
with AdaBoosteads with an MCC of 0.7960, indicating a strong overall performance that
considers both the true and false classifications. The MoE with DNN-SMOTE model closely
follows with an MCC of 0.7883, demonstrating that it offers a robust performance close to
that of the SVM with AdaBoost, while also providing a higher TPR. This suggests that the
MoE with DNN-SMOTE model offers a better trade-off between identifying frauds and
minimizing false positives compared to other models.

In summary, Table 2 illustrates that while traditional modelsike SVM with AdaBoost
achieve high accuracy and MCC, the newly proposed MoE models, particularly MoE with
DNN-SMOTE, provide a strong balance between sensitivity and specificity. The slight-
lyower MCC for MoE models compared to SVM with AdaBoost may be attributed to
their focus on enhancing TPR without compromising too much on TNR. This balanced
performance is crucial for real-world applications where missing a fraudulent transaction
could have significant financial repercussions. Hence, the MoE with DNN-SMOTE model
appears to be a promising approach in credit card fraud detection, providing a more reliable
detection system that mitigates the weaknesses of high-accuracy butow-sensitivity models.

4.7. Complexity and Efficiency Analysis

The complexity of the proposed MoE with DNN-SMOTE model includes two parts:
complexity for the DNN-SMOTE module (Phase 1 and 2 in Figure 1) and complexity for
the MoE classifier (Phase 3 in Figure 1). Compared to the naive SMOTE oversampling
method [17], our proposed DNN-SMOTE model needs an additional training step for the
encoder and decoder model, as in Figure 3.

DNN-SMOTE Complexity: Suppose the DNN-SMOTE model has Layers with di-
mensions di for eachayer. The complexity of forward and backward passes through the

network is approximately: O
(

∑
L
i=1 di−1 · di · Nsamples

)

, where d0 is the feature dimension,

Nsamples is the number of samples in the imbalanced dataset. The summation accounts
for the number of weight updates in eachayer during backpropagation. If the training

involves E epochs, the total training complexity becomes O

(

E · ∑
L
i=1 di−1 · di · Nsamples

)

.

We can see that DNN-SMOTE complexity growsinearly with the number of samples and
epochs, as well as the size of the encoder–decoder network. Based on our experimental
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results, the training and oversampling on GPU can be performed within 15s. Meanwhile,
the DNN-SMOTE training and oversampling steps only need to be performed once to
generate the balanced dataset. We believe the additional complexity due to DNN-SMOTE
is acceptable.

MoE Complexity: The MoE model can consist of the gating network and a few
experts. The gating network is a single-layer feedforward neural network, which takes
the input features and outputs a Softmax distribution over the experts. Suppose the
gating network has hj neurons in the j-thayer. The complexity of a forward pass through

the gating network is O

(

∑
g
j=1 hj−1 · hj

)

. Each expert network in MoE is a traditional

neural network. Suppose there are N experts, each with Layers and di neurons in the
i-thayer. If all experts were trained, the total complexity of training the expert networks

is O

(

N · ∑
L
i=1 di−1 · di · Nsamples

)

. The proposed MoE complexity is about N× of neural

network-based classifiers [9,10,12]. However, in practice, we found MoE execution on GPU
is very fast (less than 10s for training and inference on the tested GPU) since the number of
experts is small.

5. Conclusions

In the realm of financial transactions, credit card fraud detection is a critical aspect
of ensuring transactional security and consumer trust. Fraudulent activities canead to
substantial financialosses and damage the reputation of financial institutions. Credit card
fraud often unfolds over time, making its detection a challenging yet essential task. Effective
fraud detection methods are crucial for early identification and prevention of such activities,
thereby ensuring the smooth operation of financial systems.

In this paper, we have presented a novel approach to credit card fraud detection
that integrates a Mixture of Experts (MoE) model with a Deep Neural Network-based
Synthetic Minority Over-sampling Technique (DNN-SMOTE). This combination is specifi-
cally designed to address the inherent challenges in fraud detection, particularly the class
imbalance and the dynamic nature of fraudulent behaviors. The proposed methodeverages
the strengths of MoE, which uses multiple specialized experts to capture complex fraud
patterns, and DNN-SMOTE, which generates high-quality synthetic samples to improve
the representation of the minority class.

Our experimental results, conducted on a publicly available credit card transaction
dataset, demonstrate the significant improvements offered by our approach. The MoE with
DNN-SMOTE method achieved an impressive classification accuracy of 99.93%, a true
positive rate of 84.69%, and a true negative rate of 99.95%. Furthermore, the model attained
a Matthews Correlation Coefficient (MCC) of 0.7883, underscoring its balanced performance
in detecting both fraudulent and non-fraudulent transactions. These metrics clearly indicate
that our proposed method outperforms traditional models, which often struggle with either
high false positive rates or poor generalization to new fraud patterns.

In conclusion, the integration of MoE with DNN-SMOTE provides a robust and
adaptable solution to the ongoing challenge of credit card fraud detection. The success of
this approach in our experiments suggests that it has significant potential for application in
real-world financial systems, where the accurate and timely detection of fraud is crucial.
Future work could explore the extension of this framework to other domains with similar
challenges, such as insurance fraud or cyber intrusion detection, and further refine the
model to improve its scalability and efficiency in processingarge-scale transaction data.
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