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Abstract: Leaf diseases such as Mosaic disease and Black Rot are among the most common diseases
affecting apple leaves, significantly reducing apple yield and quality. Detecting leaf diseases is
crucial for the prevention and control of these conditions. In this paper, we propose incorporating
rotated bounding boxes into deep learning-based detection, introducing the ProbIoU loss function
to better quantify the difference between model predictions and real results in practice. Specifically,
we integrated the Plant Village dataset with an on-site dataset of apple leaves from an orchard in
Weifang City, Shandong Province, China. Additionally, data augmentation techniques were em-
ployed to expand the dataset and address the class imbalance issue. We utilized the EfficientNetV2
architecture with inverted residual structures (FusedMBConv and S-MBConv modules) in the back-
bone network to build sparse features using a top–down approach, minimizing information loss.
The inclusion of the SimAM attention mechanism effectively captures both channel and spatial
attention, expanding the receptive field and enhancing feature extraction. Furthermore, we intro-
duced depth-wise separable convolution and the CAFM in the neck network to improve feature
fusion capabilities. Finally, experimental results demonstrate that our model outperforms other
detection models, achieving 93.3% mAP@0.5, 88.7% Precision, and 89.6% Recall. This approach
provides a highly effective solution for the early detection of apple leaf diseases, with the potential to
significantly improve disease management in apple orchards.

Keywords: apple leaf disease; object detection; rotated bounding box; attention mechanism;
depth-separable convolution

1. Introduction

The apple industry is the largest fruit industry in China, with its production volume
and cultivation area ranking first in the country’s fruit production. The apple industry plays
a vital role in China’s economic development and holds an irreplaceable, leading position
in the economic growth of certain rural regions [1]. As the apple cultivation area continues
to expand, sudden and large-scale disease outbreaks are becoming increasingly frequent [2].
The delayed diagnosis and treatment of diseases can result in substantial economic losses.
The effective early management of pests and diseases requires collaboration at multiple
levels, with farmers playing a key role in regularly monitoring and diagnosing apple
diseases. By identifying diseases early and accurately, and implementing timely control
measures, economic losses for fruit farmers can be minimized [3].

With the ongoing advancements in computer vision technology, research into the
identification and detection of apple leaf diseases continues to progress. Techniques from
image processing and machine learning have been widely employed in the detection of
apple leaf diseases [4–6]. These methods primarily involve lesion segmentation and feature
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extraction for classification and have achieved significant progress. Mohammed et al. [7]
optimized neural networks using genetic algorithms and employed support vector ma-
chines for crop disease detection. The detection accuracy for tomato leaf disease was 98.1%.
This approach successfully eliminated unnecessary features, significantly improving the
detection rates and effectiveness for various diseases. Radha et al. [8] employed support
vector machines (SVMs) as classifiers and applied preprocessing techniques, including
image loading and contrast enhancement, to detect various plant diseases, achieving an
accuracy of 90.6%. Kaur [9,10] proposed a recognition method for grape leaf diseases based
on fractional-order Zernike moments (FZMs) combined with an SVM. The performance
of this classifier outperformed the others, achieving a classification result of 97.34% at an
order of 30. Zou et al. [11] presented a method for recognizing tea diseases relying on
spectral reflectance, which included a decision tree-based feature selector and random
forest-based tea disease recognizer. The experimental results demonstrated improvements
in the recognition accuracy and recall rate. The adulteration of Laochuan tea tree manna
was quantitatively analyzed, and the accuracy of the test set was 0.968 [12]. Zhang et al. [13]
successfully extracted 38 different color, texture, and shape features by integrating the HSI,
YUV, and grayscale models and utilized support vector machine technology to identify
three apple diseases. The experimental results demonstrated that this approach achieved
an accuracy rate exceeding 90%.

In conventional machine learning approaches, the accuracy of handcrafted feature
extraction greatly affects the accuracy of identifying plant leaf diseases and detection [14].
The feature extraction process is both resource-intensive and prone to subjectivity. As artifi-
cial intelligence continues to advance, deep learning has demonstrated its power to replace
human intelligence [15]. Deep learning excels at learning features that surpass human
capabilities, extracting features with richer semantic information than manually designed
features [16]. Recently, deep learning has gained widespread use in plant disease detection,
surpassing the performance of traditional handcrafted feature techniques. Turkoglu et al.
employed three networks, namely AlexNet, GoogleNet, and DenseNet201, to pretrain a
multimodal LSTM model. The deep features obtained were fed into the LSTM layers, and
the results from the three LSTM layers were classified using a majority voting classifier [17].
Testing on two groups of apple disease images demonstrated that the proposed algorithm
achieved good recognition performance. Yu et al. [18] developed a novel two-layer struc-
tured model for detecting and identifying diseases in apple leaves. This model organically
integrates a classification subnet and a feature extraction subnet, allowing the more accurate
extraction of leaf features through training, which achieves 99.94% accuracy on Plant Vil-
lage. Gao et al. [19] suggested a method utilizing an optimized lightweight YOLOv4 neural
network for counting maize seedlings, with an accuracy rate of 96.25%. The method first
employed GhostNet for feature extraction and introduced attention mechanisms and the
K-means clustering algorithm to enhance the detection accuracy of maize seedling quantity.
Then, depth-wise separable convolutions were employed in place of standard convolutions
to reduce the network’s complexity and make it more lightweight [20]. In the final step, an
optimized multi-scale feature fusion network structure was employed to further minimize
the total number of model parameters. The experimental results demonstrated the accurate
identification of maize seedling quantity using this framework [21].

However, apple leaf diseases exhibit different morphologies and susceptibility to
infection, and disease targets often have irregular shapes. There is also similarity between
different diseases in local regions.

If the disease positions are not accurately localized during detection, it can easily lead
to false positives or false negatives [22]. Accurately identifying the position of the disease
is critical for improving the confidence of detection results and enhancing the robustness of
the model [23]. To address this, we ensured that high-quality images and precise disease
position annotations were used throughout the model training phase. However, it is
designed to be robust, meaning it can still effectively detect diseases even in cases where
the exact positions are not perfectly marked. This robustness is achieved by enabling
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the model to learn broader disease patterns and features beyond just specific localized
positions. By doing so, the model can minimize false positives and false negatives while
maintaining high accuracy even under less-than-perfect conditions.

This study introduces a detection method for apple leaf diseases utilizing rotating
bounding boxes. Then, a Probabilistic IoU (ProbIoU) method for calculating the target
similarity is proposed, taking into account the characteristics of the 2D Gaussian distribu-
tion [24]. It meets all measurement standards and can represent the real distance between
different distributions, effectively improving the accuracy of the oriented bounding box
detection. Second, an effective feature extraction backbone combined with SimAM is
introduced to capture long-range dependencies and correlations between neighboring
regions, enhancing the model’s feature extraction capability. Simultaneously, we optimize
the feature fusion mode by using global context information and local features to boost
detection precision in the neck network.

2. Materials and Methods

2.1. Dataset Setting

2.1.1. Data Acquisition and Annotation

The study area is located within Weifang City (36◦.37′ N, 119◦, 74′ E),
Shandong Province, China. We utilized images from an apple orchard in Weifang City,
where more than 40% of the vegetation is made up of apple trees, as shown in Figure 1.
The image data used in this study were captured using an aerial drone equipped with a
high-definition camera (DJI MINI4). Since the camera’s perspective can cause variations
in the number and size of targets, the images were collected from multiple angles and
distances. The collected images were then filtered to include those representing different
stages of disease progression for use in this study. This area is an important apple-growing
region and is representative, offering valuable insights for other apple-growing areas.
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Figure 1. Study area location and corresponding natural color image.

The effectiveness of using Convolutional Neural Networks (CNNs) for apple leaf
disease detection is strongly dependent on the dataset’s quality and size [25]. With a
high-quality dataset, deep learning models can learn more features and exhibit excellent
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generalization capabilities. This study selected healthy leaf samples and seven common
apple leaf diseases (Alternaria Blotch, Black Rot, Brown Spot, Gray Spot, Mosaic, Rust, Scab)
as research subjects [26]. These diseases are widely distributed in apple-growing regions,
have high incidence rates, and can survive and spread through multiple channels under
different climatic conditions, affecting nearly all major apple-producing areas. Additionally,
the characteristics of these diseases are relatively distinct and can be preliminarily identified
through changes in the leaves, which facilitates early detection and control. Some of the data
came from Plant Village, while others were from the apple orchard we photographed [27].
During the dataset integration process, we applied certain screening criteria based on image
clarity, disease typicality, and distribution uniformity. The collected disease images served
as experimental data to validate the practicality of the detection method. Images with
blur from the initial dataset were removed to prevent interference. When conducting data
sample screening, we ensured that the dataset includes images captured under different
climatic conditions and growing environments, striving for sample diversity. Such a
diverse dataset helps improve the robustness of the model, making it more adaptable in
practical applications. After screening, a final set of 3000 images was selected, covering
various angles and environmental backgrounds to ensure the model’s generalization ability.
Figure 2 presents some representative samples.
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Figure 2. Sample images from the dataset: (a) Alternaria Blotch, (b) Black Rot, (c) Brown Spot,
(d) Gray Spot, (e) Mosaic, (f) Rust, (g) Scab, and (h) healthy apple leaves.

2.1.2. Data Augmentation

Alternaria Blotch showed a gradual transformation from the initial brown round spots
to reddish-brown spots, as shown in Figure 2a. During the initial phases of Black Rot,
the lesions appear round, measuring 2–3 mm, and are purple. As the disease progresses,
they turn dark brown, with a depressed center and raised edges. The middle of the lesion
becomes dark gray, densely populated with small black dots, as shown in Figure 2b. The
lesions of Brown Spot can be divided into the concentric wheel pattern, needle-hair type,
and mixed type. The plaques of the concentric wheel pattern are dark brown round spots
with small black spots arranged in a wheel pattern. Needle-awning type lesions are needle-
awning outward spread. Mixed-type lesions are widespread, dark brown, and round or
irregular in shape, as shown in Figure 2c. The spots of Gray Spot first appear as yellowish-
brown round spots with clear edges and then turn grayish-white, as shown in Figure 2d.
Mosaic disease spots are mainly divided into Mosaic type, along-the-vein discoloration
type, stripe type, and ring type. The Mosaic pattern is present with yellow spots. The
vein discoloration pattern is netted and yellowed along the vein, often accompanied by
yellow spots. The streaky lesions yellow along the vein of the leaf and extend to the nearby
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mesophyll tissue, and the discolored area is wider. The ring pattern has a bright yellow ring
or similar ring pattern, but the inner ring is still green, as shown in Figure 2e. Rust disease
manifests on leaves as small spots that are yellow or orange. These spots are round or
semi-circular and form raised lesions on the leaf surface, as shown in Figure 2f. Scab disease
presents as small, round dark brown spots. The color of the lesions gradually changes to
black or dark brown, with edges that are typically sharp and ring-like or irregular in shape,
as shown in Figure 2g.

After integrating as many apple leaf disease datasets as possible, the dataset’s sample
count is still limited. Such small samples are more prone to overfitting during subsequent
training. To tackle this problem, we employ data augmentation to increase the sample
size by generating new samples that follow the same distribution as the original samples.
This is a straightforward and effective approach, particularly in preventing overfitting.
In this study, before dividing the dataset, we randomly adjust the hue, saturation, and
brightness of the sample batches to introduce variability. Additionally, we further increase
the sample count by applying geometric transformations such as scaling, flipping, and
certain filtering operations.

Each original image is augmented to four times its initial size, resulting in a total of
13,280 images. The dataset was split into training, test, and validation sets in a 7:2:1 ratio,
finally forming a dataset that can be used for training and testing. We took particular care
to ensure that the augmentation process maintained a balanced representation of each leaf
disease, as shown in Table 1. The distribution of augmented images reflects the original
dataset’s class proportions, thereby reducing the risk of any class imbalance. Furthermore,
to further mitigate overfitting, we also considered using additional techniques such as
weight regularization and early stopping during the model training phase.

Table 1. Overview of the apple leaf detection dataset.

Type Original Quantity Enhanced Quantity

Alternaria Blotch 267 1068
Black rot 225 900

Brown Spot 293 1172
Gray Spot 258 1032

Mosaic 410 1640
Rust 403 1612
Scab 429 1716

Healthy 1035 4140
Total 3320 13,280

2.2. Gaussian Bounding Box and Rotation of Object Detection Box

2.2.1. Gaussian Bounding Box and Probabilistic IoU Method

Object detection represents a core challenge in the field of computer vision, and
remarkable advancements have been achieved in recent years owing to deep learning
methods [28]. Nevertheless, the majority of object detection approaches utilize horizontal
bounding boxes to encode the shape and position of objects, which is inadequate when
objects exhibit non-aligned rectangular shapes. This limitation is particularly apparent in
the case of apple leaf diseases, where the irregular shapes of diseases and the similarity in
textures between different diseases pose significant challenges. Failure to accurately locate
the target can easily result in the misdiagnosis of the disease.

In order to determine a two-dimensional Gaussian distribution in a two-dimensional
region, its mean µ and covariance ∑ need to be calculated. Among them, µ = (x0, y0)

T. In
the object detection task, you can directly set the parameters of the regression task in the
object detection as (x0, y0, a, b, c), or you can express the parameters of the regression task
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as (x0, y0, a′, b′, θ), and the latter is more commonly used in object detection. ∑ can be
expressed as Equation (1):

∑ =

[

a c
c b

]

= rmθ

[

a′ 0
0 b′

]

rmθ
T =

[

a′cos2θ + b′sin2θ 1
2 (a′ − b′) sin 2θ

1
2 (a′ − b′) sin 2θ a′ sin2 θ + b′ cos2 θ

]

, (1)

where rmθ is a two-dimensional rotation matrix. We begin by assuming that the object
region is represented as a continuous two-dimensional binary region Θ, which provides a
comprehensive description of its shape. It is assumed that it follows a uniform probability
density function, along with the distribution’s mean, and the covariance matrix can be
calculated as Equation (2):

µ =
1
N

∫

x∈Θ

x, ∑ =
1
N

∫

x∈Θ

(x − µ)(x − µ)T , (2)

where N represents the area of Θ. For horizontal bounding boxes, Θ reduces to a rectangular
region whose center is (x0, y0). The width of the region is W, and the height is H. In this
situation, µ = (x0, y0)

T is simply the center of the rectangular region. ∑ can be expressed
as Equation (3):

∑ =
1

WH

H/2
∫

−H/2

W/2
∫

−W/2

[

x2 xy
xy y2

]

dxdy =
1

12

[

W2 0
0 H2

]

(3)

For oriented bounding boxes, we can define uncorrelated variances a′ and b′ based on
the sides of the corresponding axis-aligned horizontal bounding boxes and also work
out the orientation angle θ. In this case, the covariance matrix ∑ can be calculated
by Equation (1).

At the beginning, we use the Bhattacharyya Distance to calculate the similarity be-
tween different Gaussian bounding boxes. The Bhattacharyya Coefficient B between
two probability density functions ℓ(x) and β(x) is defined as Equation (4):

B =
∫

ℜ2

√

ℓ(x)β(x)dx, (4)

where B ∈ [0, 1]. If the two distributions are the same, B = 1. Based on the above, the
Bhattacharyya Distance BhD between ℓ(x) and β(x) can be expressed as Equation (5):

BhD(ℓ, β) = − ln B(ℓ, β) (5)

However, the Bhattacharyya Distance is not considered a true distance metric because
it does not adhere to the triangle inequality property. To measure the true distance, the
Hellinger Distance HD is utilized, given by Equation (6):

HD(ℓ, β) =
√

1 − B(ℓ, β), (6)

where HD(ℓ, β) ∈ [0, 1]. If the two distributions are the same, HD = 0. In this paper, a
method called PIoU is proposed to calculate the similarity between Gaussian distributions.
The specific formula for calculating PIoU is Equation (7):

PIoU = 1 − HD(ℓ, β) (7)

2.2.2. Rotation of Object Detection Box

For the diagnosis of diseases in apple leaves, where the targets can have arbitrary ori-
entations, rotated bounding boxes offer a more effective solution than horizontal bounding
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boxes [29]. To achieve a more accurate detection of apple leaf diseases, an adaptive thresh-
olding strategy was applied during the training process to select positive and negative
samples. This strategy also involves the regression, classification, and prediction of the
rotation angle for actual targets.

The conventional horizontal bounding boxes represent the targets mainly with
four parameters: the center coordinates (x, y) of the bounding box and its width (w) and
height (h). However, for apple leaf disease targets with arbitrary orientations, this repre-
sentation tends to include a significant amount of background and results in a high level
of overlap between closely located bounding boxes. Hence, for apple leaf disease targets,
we employ the long-side definition method in the rotated bounding box representation
to select the targets. This method primarily consists of five parameters (x, y, w, h, θ). The
angle between the longest side w of the rotating frame and the X-axis is θ, θ ∈ [−π

4 , 3π
4 ).

When the long side is above the X-axis, the angle is negative, and when it is below the
X-axis, the angle is positive. This representation method can represent the target of an
apple leaf disease image with any direction well. The horizontal bounding box and the
rotated bounding box are shown in Figure 3a,b, respectively.

tt







ff ff

 

(a) (b) 

Figure 3. Methods for representing object detection bounding boxes: (a) horizontal box representation;
(b) oriented box.

For each ground truth bounding box (GT Box) of the apple leaf disease, we incorporate
the k-nearest anchor boxes from each level of the feature pyramid, based on their distance
to the center of the GT Box, into the candidate sample set. The intersection over union
(IoU) was computed between all candidate samples and the GT Box. The mean (m) and
variance (n) of the IoU values in this set were calculated, and the adaptive threshold (t) was
defined as the sum of the mean and variance: t = m + n. Next, the candidate samples were
filtered based on the following criteria: for the preset anchor boxes with an IoU greater
than t, if their center points fell within the GT Box, they were assigned as positive samples;
otherwise, they were assigned as negative samples. Through this assignment strategy,
we ensured that the true apple leaf disease targets had a sufficient number of positive
samples for training, enabling the model to better detect the disease targets. As shown in
Figure 4, the use of rotating bounding boxes in target detection provides higher confidence,
effectively improving the accuracy of apple leaf disease identification and enhancing the
generalization ability of the model.
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Figure 4. Comparison of detection results using different bounding box methods: (a) detection with
horizontal bounding box; (b) detection with rotating bounding box.

2.3. Architecture of Proposed Network

Given the excellent learning capabilities demonstrated by CNNs, deep learning has
been extensively utilized in various object detection tasks [30]. Commonly used object
detection networks can be broadly divided into two categories: single- and two-stage
networks. Unlike two-stage networks, single-stage networks bypass the generation of
region proposals and directly use the backbone network to predict both the category and
location of objects. This approach has several advantages, including a faster computation
speed and lower computational cost, making it more suitable for real-world scenarios.

In the present research, inspired by the design principles of the YOLO network, we
introduce a novel and efficient single-stage convolutional network framework customized
for apple leaf disease detection. Our goal was to leverage the advantages of single-stage
networks, such as speed and efficiency, to design an effective solution for apple leaf disease
detection. The overall network model is shown in Figure 5.

ffi
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tt

Figure 5. Overall network structure.
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2.3.1. Feature Extraction Backbone

In image classification tasks, a convolutional module is typically used to extract image
features [31]. The ResNet classification network adopts a residual structure convolutional
feature extraction network. However, residual structure convolution uses a dimension-
ality reduction-then-increase approach to extract network features, which can result in a
reduction in feature information during execution.

This research introduced an enhanced backbone network model built upon Efficient-
Netv2. Unlike the traditional ResNet backbone network, the inverted residual structure
FusedMBConv and S-MBConv modules form a sparse feature by first increasing and
then decreasing the dimensions, which reduces the information loss. FusedMBConv and
S-MBConv are shown in Figure 6. Specifically, the S-MBConv module first expands the in-
put features through a regular convolution containing batchnorm (BN) and SiLU activation
functions and then uses depth-wise convolution to minimize the computational load and
the number of parameters. Subsequently, it allocates channel weights through an attention
mechanism and then reduces the dimensions by inputting a regular convolution containing
the BN layer, finally outputting the features after the dropout layer. The S-MBConv module
significantly reduced the network parameters and computational expense.

tt
tt ff

tt
tt

 
(a) (b) 

tt tt





ff

ffi

⊙

Figure 6. The structure of convolution blocks: (a) FusedMBConv; (b) S-MBConv.

The selection of the attention mechanism in convolution can significantly impact the
model’s capacity to extract features. The unimproved MBConv module uses the Squeeze
and Excitation (SE) attention mechanism to enhance the extraction of key information.
However, the SE attention mechanism only considers modeling the channel relationship to
re-evaluate the significance of each channel and is unable to capture attention in the spatial
dimension. Consequently, it is more suitable for scenarios with an increased number of
channels. This study integrated the SimAM attention mechanism to boost the model’s
feature extraction capabilities. The SimAM attention mechanism can effectively capture
both channel-wise and spatial attention and is more suitable for feature extraction tasks
than the SE attention mechanism.

The SimAM attention mechanism is a three-dimensional attention mechanism that
combines spatial information and channel information. It evaluates the t-th neuron by
defining an energy function e∗t to determine the significance of each individual neuron.
The energy function is defined in Equation (8):

e∗t =
4(σ̂2 + λ)

(t − û)2 + 2σ̂2 + 2λ
, (8)
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where λ is the regular norm. t is the t-th neuron on a single channel of the input feature
map. û is the average of all neurons on a single channel. σ̂2 is the variance of all neurons
on a single channel. σ̂2 and û are defined as Equations (9) and (10):

û =
1

M − 1∑
M−1
i=1 xi, (9)

σ2
t =

1
M − 1∑

M−1
i=1 (xi − ut)

2 (10)

As the value of e∗t becomes smaller, it indicates that the difference between the neuron
and its surrounding neurons is greater, the neuron has higher linear separability, and it is
more important. Therefore, by using 1/e∗t as a weight coefficient and applying a sigmoid
activation function to limit the value range, a new output feature map can be obtained.
And the input features are enhanced by the following Equation (11):

X̂ = sigmoid(
1
e∗t
)⊙ X, (11)

By integrating the SimAM attention mechanism, the network was empowered to
selectively concentrate on and enhance the most meaningful features drawn from both the
deep and shallow layers of the backbone network. This focused attention allows the model
to more effectively learn and represent the varied characteristics of different target objects,
ultimately leading to an improved overall performance.

2.3.2. Feature Mixing Neck Network

In apple leaf disease detection, a major challenge lies in the high similarity of features
among certain diseases, which makes it difficult to effectively fuse contextual information
and improve the accuracy and efficiency of the detection model. To address this problem,
we propose improvements to the neck network. Specifically, we introduce depth-wise
separable convolution in PANet, which not only transforms the feature channel numbers of
the backbone network but also preserves the spatial properties of the features. Furthermore,
the addition of the Convolution and Attention Fusion Module (CAFM) aims to capture long-
range dependencies and correlations between domain-specific features, thereby enhancing
the fusion of global and local features. By incorporating these innovations, our approach
can better leverage the contextual information and improve the overall performance of the
apple leaf disease detection model. The enhanced fusion of multi-scale and multi-level
features leads to the more accurate and efficient identification of target diseases, even in
cases where the visual characteristics are highly similar.

The core of traditional convolution is the ability to simultaneously learn represen-
tations along both the channel and spatial aspects of the input data. The convolutional
kernels operate across the channels, allowing the extraction of inter-channel correlations
while also scanning the spatial dimensions to uncover local patterns and relationships.
Compared with traditional convolution, depth-wise convolution is made up of both depth-
wise and point-wise convolutions, as illustrated in Figure 7. The convolution kernels
of depth-wise convolution operate in a single-channel mode, where each input channel
needs to be convolved individually. This leads to an output feature map with a channel
count equal to that of the input feature map. Point-wise convolution essentially serves
as a channel-wise feature transformation, using a 1 × 1 convolution kernel to increase
the dimensionality of the feature maps. DWConv decomposes the feature extraction into
two processes. Compared with the standard volume, the DWConv of Figure 8 significantly
reduces the amount of computation and parameters and is more suitable for lightweight
detection models.
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Figure 7. Traditional Conv and depth-wise separable convolution.
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Figure 8. The structure of DWConv.

To strengthen the model’s ability to extract features, most deep learning-based meth-
ods usually adopt the U-Net architecture to capture both global and local features. The
CAFM comprises both a global network and a local network. The structure of CAFM is
shown in Figure 9. In the local network, we first use a 1 × 1 convolution to adjust the
channel dimensions, which improves cross-channel interaction and encourages information
integration. Following this channel-wise feature transformation, we perform a channel
shuffling operation to further mix and blend the channel information. The input tensor
is partitioned into groups along the channel dimension by the channel shuffle and then
applies depth-wise separable convolution within each group. This induces a shuffling of
the channel order, effectively integrating the channel-wise features. The output tensors
from each group are merged along the channel dimension to produce a new output tensor,
rich in cross-channel interactions and fused information. Finally, we leverage a 3 × 3 × 3
convolution to extract spatially aware features from this enhanced feature representation.
The 3D convolution kernel allows us to capture the intricate spatial relationships and
patterns within the data, complementing the preceding channel-wise operations. The local
network can be expressed as Equation (12):

FLocal = W3×3×3(shu f f le(W1×1(FInput))), (12)

where FLocal is the output network, W3×3×3 represents a 3 × 3 × 3 convolution,
W1×1 represents a 1 × 1 convolution, shu f f le represents the operation of channel shuffle,
and FInput denotes the input feature from the last module.
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Figure 9. The structure of CAFM.

In the global network, the CAFM first generates a query, key, and value via a 1 × 1
convolution and 3 × 3 DWConv operation. These three tensors all have the same shape of
H × W × C. The global network can be described by the following equations:

FGlobal = W1×1 Attention(q, k, v) + FInput, (13)

Attention(q, k, v) = so f t max(qkT/
√

d)v, (14)

where FGlobal is the output feature via the global network, and
√

d represents the square root
of the q. To summarize, the output feature of the CAFM can be expressed as Equation (15):

F = FGlobal + FLocal (15)

2.4. Parameter Settings and Evaluation Metrics

To assess the accuracy and effectiveness of the improved model, we utilized the Py-
Torch deep learning framework for model design and training. The trained model’s weights
were then employed to predict apple leaf images. The experiments were conducted using a
GeForce RTX 4060 graphics card on a Windows 11 operating system. The manufacturer of
the equipment is NVIDIA, and the supplier’s address is Taiwan, China. The details of our
experiments are presented in Table 2.

Table 2. Experimental environments.

Experimental Environments Details

Program language Python3.8
Deep learning frameworks PyTorch1.12.1

Operating system Windows 11
CPU I7-13700KF
GPU NVIDIA GeForce RTX 4060

CUDA Toolkit V11.7
Cudnn 8.4.1

The experiments were trained on our enhanced apple leaf dataset. Considering the
GPU memory size and the cost of time, we set the batch size of the model to 4 and the
initial learning rate to 0.01. According to the SGD optimizer, we adjusted the learning rate
to set the weight decay to 0.0005. The training parameters of our model were designed
based on YOLOv8, as illustrated in Table 3.
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Table 3. Training parameters.

Parameter Name Parameter Value

Batch size 4
Momentum 0.9

Learning rate 0.01
Weight decay 0.0005

Epoch 300
Optimizer SGD

To demonstrate the apple leaf disease detection performance of our improved model,
we employed the widely used Microsoft COCO evaluation metrics. These metrics offer an
in-depth evaluation of the model’s effectiveness in object detection tasks. Our model was
trained using the training set and tested on the validation set. The main metrics used for
evaluation are mAP@0.5, mAP@0.5 : 0.95, Precision (P), Recall (R), and F1 score. Accuracy
was used to measure the correctness of the predicted number in the detection, and Root
Mean Square Error (RMSE) was used to evaluate the reliability and stability of the detection.
The equations are presented below:

P =
TP

TP + FP
, (16)

R =
TP

TP + FN
, (17)

mAP =

i=1
∑
n

AiP

n
, (18)

F1 =
2Precision × Recall

Precision + Recall
× 100% (19)

Acc = (1 − 1
n

n

∑
1

|ti − ci|
ti

)× 100%, (20)

RMSE =

√

√

√

√

√

n

∑
1
(ti − ci)

2

n
(21)

Precision represents the likelihood that the predicted target is accurate. TP represents
that the apple leaf disease is detected correctly. FP means that the detection result is
wrong. Recall represents the probability of a diseased apple leaf being truthfully predicted.
FN denotes that the diseased leaf is incorrectly predicted to be healthy. mAP denotes the
Precision accuracy of the detection process. mAP@0.5 represents the average Precision at
an intersection over the IoU criterion of 0.5. mAP@0.5 : 0.95 refers to the average mAP
value with IoU from 0.5 to 0.95 with a step size of 0.05.

3. Results

3.1. Detection Results from Alternative Methods

Figure 10 shows three images containing diseased apple leaves, a healthy apple leaf,
and disease annotation in the test dataset. For apple leaf disease detection, the complexity
of the environment and the irregularity of disease are the main problems that affect the
detection results. In an environment where the light is insufficient and the field of view
is easily blocked, the characteristics of the disease are often easily blocked, which results
in information loss, resulting in the false detection and missing detection of the disease.
Moreover, if the shape of the disease is irregular, it is difficult for the traditional horizontal
box to accurately fit the location of the disease, which leads to a reduction in confidence.
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(a) Testing images (b) Faster-RCNN (c) YOLOv5 (d) YOLO8 (e) Ours 

ffFigure 10. Comparison of testing results using different models: (a) original testing images with
annotations; (b) detection result of Faster-RCNN; (c) detection result of YOLOv5; (d) detection result
of YOLOv8; (e) detection results of our proposed model.

To tackle these issues, we utilized our newly designed model for detection, with the
results displayed in Figure 10. The quantitative detection result of our model is summarized
in Table 4. We found that our model exhibits exceptional performance, particularly in terms
of the mAP@0.5 (93.3%) and Precision (88.7%). This demonstrates its high performance
in locating and predicting apple leaf diseases. The model we proposed also presents a
notable Recall of 89.6%, which represents its effectiveness in identifying the most diseased
apple leaves. The F1 score, as the harmonic mean of Precision and Recall, achieves a
relatively high value of 89.1%. This further validates our model’s strength in balancing
accuracy and coverage.

Table 4. Detection results obtained from different deep learning models.

Detection
Models

mAP0.5 mAP0.5:0.95 Precision Recall F1 Params/M

Faster-RCNN 76.7% 39.5% 67.7% 76.6% 71.9% -
Efficient Det-D1 79.6% 41.8% 73.8% 68.7% 71.1% 6.6

YOLOv5 85.1% 48.6% 75.3% 82.9% 78.9% 11.7
DETR 82.6% 46.6% 76.4% 73.9% 75.1% 42

YOLOv8 85.6% 50.2% 77.1% 81.3% 79.2% 11.2
Ours 93.3% 53.1% 88.7% 89.6% 89.1% 9.8

To further evaluate the detection performance of the model, we randomly selected
3000 images as a dataset containing 2659 apple leaf disease targets. In this sample, we
measured the number of targets detected in the test sample, including potential missed and
error detection. The RMSE metric measures the difference between the detection count and
the actual label count for each image. After the experiment, we obtained the results shown
in Figure 11. The proposed model has the closest count to the original label, and the RMSE
value is the smallest (0.368). It has good robustness and generalization ability.
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Figure 11. Comparison of RMSE counting results for different models.

3.2. Ablation Experiment

Based on YOLOv8, we substituted the original backbone network with the enhanced
EfficientNetV2 network. The reverse residual structure FusedMBConv and S-MBConv
modules formed a sparse feature by first increasing and then decreasing, reducing infor-
mation loss. The addition of the SimAM attention mechanism can capture the channel
attention and spatial attention effectively, expand the receptive field effectively, and im-
prove the feature extraction capability of the backbone network. At the same time, the
depth-separable product is introduced into PANet, which not only transforms the number
of feature channels in the backbone network but also preserves the spatial information of
the feature. In addition, the addition of the CAFM is designed to capture remote depen-
dencies and correlations between domain-specific features, thereby enhancing the fusion
of global and local features. The improvement from the horizontal frame to the rotating
frame provides a new idea for the detection of diseases and pests. Compared with the
horizontal frame, the rotating frame can better fit the complex shape of apple leaf diseases,
greatly improve the confidence of detection results, and further enhance the robustness of
the model. We conducted ablation experiments to explore the reasonableness and effect of
the proposed improvement, and the results are shown in Table 5.

Table 5. Detection results obtained from quantitative ablation experiments with YOLOv8 serving as
the base network.

Efficientnetv2 SimAM DWConv CAFM Rotating Frame AP0.5 mAP0.5:0.95

- - - - - 85.6% 50.2%√
- - - - 87.4% 51.6%

-
√

- - - 85.9% 50.6%
- -

√
- - 86.1% 50.7%

- - -
√

- 86.6% 51.2%
- - - -

√
88.2% 51.9%√ √

- - - 86.7% 51.8%√
-

√
- - 86.5% 51.7%√

- -
√

- 89.6% 52.4%√
- - -

√
90.7% 52.2%√ √ √ √ √
90.3% 53.1%

4. Discussion

In apple cultivation scenarios, effective progress has been made in pest and disease
identification using deep learning methods. However, most experiments have primarily
focused on single or dominant leaves, employing horizontal detection boxes. This has
resulted in low detection accuracy for early-stage pests and fine, irregularly shaped lesions,
as well as limited generalization ability for specific crops. To address issues such as false
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positives for early-stage diseases with varying shapes, this study proposes the application
of rotated detection boxes, effectively enhancing disease recognition accuracy. To tackle the
high similarity of disease features between leaves, we have improved the neck network
to strengthen the feature fusion capabilities. Compared to traditional models, the deep
detection model proposed in this study demonstrates significant improvements in feature
extraction and fusion capabilities, better coping with background interference and the
similarities between different diseases.

This paper combines the Plant Village dataset and the on-site photographed dataset
and uses data augmentation methods such as Mosaic to augment the dataset and improve
the imbalance problem. In the backbone network construction, the EfficientNetV2 structure
is adopted. The inverted residual structure FusedMBConv and S-MBConv modules form
a sparse feature through an up–down approach, reducing information loss. The addition
of the SimAM attention mechanism can effectively capture channel attention and spatial
attention, effectively expand the receptive field, and enhance the backbone network’s
feature extraction ability. In the neck network, depth-separable convolution is introduced,
which not only transforms the feature channels of the backbone network but also retains
the spatial information of the features. CAFM improves the feature fusion capability of the
neck network by combining the global network and the local network.

The experimental results show that the F1 score of this model is 89.1%, which is
17.2%, 18%, 10.2%, 14%, and 9.9% higher than Faster-RCNN, Efficient Det-D1, YOLOv5,
DETR, and YOLOv8, respectively, indicating the outstanding performance of our detection
model. The improved model also performs well in real orchard disease scenarios. While
effective, further improvements in generalization to complex disease features and diverse
environments are needed. Future research may explore more diverse datasets and advanced
learning techniques like ensemble learning to enhance accuracy and robustness.

5. Conclusions

This research tackles the challenges of small feature sizes, low recognition accuracy,
and irregular shapes of apple leaf diseases, as well as the texture similarity between dif-
ferent diseases. We propose a detection method for apple leaf diseases based on rotated
bounding boxes. The introduction of rotated boxes effectively helps the model capture
irregular pathological features and accurately locate disease positions. Additionally, we
introduce a method for calculating target similarity called Probabilistic IoU (ProbIoU),
which better computes the intersection over union (IoU) of the rotated bounding boxes,
ensuring detection accuracy. We then use the YOLO model as the framework, incorporating
the EfficientNetv2 backbone network. The inverted residual structures, the FusedMBConv
and S-MBConv modules, create sparse features through a gradual increase and decrease
method, reducing information loss. The addition of the SimAM attention mechanism effec-
tively captures channel attention and spatial attention, maintaining the feature extraction
capability of the backbone network while keeping the model lightweight. Finally, at the
neck network stage, introducing DWConv optimizes the model’s parameter count, ensur-
ing a lightweight structure and laying the groundwork for future deployment on mobile
devices. The CAFM improves the model’s capacity to capture long-term dependencies
and correlations between domain-specific features, thereby improving the fusion of global
and local features. This enables the model to more precisely and efficiently identify target
diseases, even in cases where visual features are highly similar.

An accuracy of 88.7% was achieved by the model, along with a corresponding value
of 93.3%, with a model size of 9.8 MB. In upcoming research, we plan to further enhance
the model’s lightweight design to facilitate easy deployment on edge devices. Additionally,
we will enrich the dataset by incorporating more data samples collected under natural
conditions, further optimizing the model to reduce interference from complex backgrounds.
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