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Background: Cancer recurrences are poorly recorded within electronic health records around the world. This hinders

research into the efficacy of cancer treatments. Currently, the retrospective identification of recurrence/progression

diagnosis dates is achieved by staff who manually review patients’ health records. This is expensive, time-

consuming, and inefficient. Machine Learning models may expedite the review of health records and facilitate the

assessment of alternative cancer therapies.

Materials and methods: This paper evaluates the use of four machine learning models (random forests, conditional

inference trees, decision trees, and logistic regression) in identifying proxy dates of epithelial ovarian cancer

recurrence/progression from chemotherapy data, in 531 patients at Leeds Teaching Hospital Trust.

Results: The random forest achieved the highest F1 score of 0.941 (95% confidence interval 0.916-0.968) when

identifying recurrence events. Both the random forest and decision tree models’ classifications closely conform to

chart-reviewed time to next treatment, serving as a surrogate for recurrence-free survival. Additionally, all models

reached an F1 score >0.940 when identifying patients whose cancer recurred/progressed.

Conclusions: Our models proficiently identify both proxy dates for recurrence/progression diagnoses and patients

whose cancer recurred/progressed. Considering the similar performance of the random forest and decision tree,

model preference should be determined by the interpretability required to assist chart review and the ease of

implementation into existing architecture.
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INTRODUCTION

The recurrence of a patient’s cancer is a clinically significant

event, enabling the measurement of various clinical end-

points, including recurrence-free survival, progression-free

survival, and time to next treatment (TTNT), which are

used to assess the efficacy of cancer therapies.
1-3

These

endpoints rely on the accurate documentation of recur-

rence/progression diagnoses in health care records. How-

ever, recurrence data is inconsistently recorded in large

databases.4 Where the recurrence date is not recorded in a

structured format, it is retrospectively inferred through

manual chart review.5

The burden of chart review has encouraged the auto-

mated identification of recurrence diagnosis dates from

structured administrative and electronic health record

(EHR) data.6 Methods used in previous studies to identify

the date of first recurrence, range from simple rules-based

methods,7-13 to machine learning (ML) models, like decision

trees,
14-16

and logistic regression.
17,18

Random forests,
19

and conditional inference trees20 have also been used to

identify patients whose cancer recurred. While the act of

identifying patients who have had a recurrence alone does

not enable survival analysis, this alternative output can be

used for measuring population prevalence and identifying

study cohorts.

In addition to the variety of automated algorithms, a

range of performance statistics and thresholds have been

proposed to indicate a successful algorithm, yet there has

been no consensus in the literature on a single measure of

success.6 Few studies use survival analysis as an evaluation

measure,15,16 even though it is a major end use/research

goal if their models were to be implemented.1-3 Finally,

none of the studies identified in previous literature reviews

identify the date of recurrence/progression beyond the

patient’s first recurrence.
6,21

Our ambition is to create an algorithm which can detect

all cancer recurrences using data routinely collected by the
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UK’s National Health Services and returned to the National

Cancer Registration and Analysis Service (NCRAS).
22

In this

paper, we take the example of epithelial ovarian cancer

(EOC) (including ovary, fallopian, and primary peritoneal

cancer) and only using structured (i.e. not free text)

chemotherapy data, aim to show (with common perfor-

mance metrics and survival analysis) that it is possible to

accurately identify multiple recurrence events using rela-

tively simple, implementable, and interpretable ML models.

Finally, we discuss the implementation and interpretability

of our models with the aim that they will be implemented

alongside a chart reviewer.

MATERIALS AND METHODS

Dataset description

The chemotherapy treatment histories of an initial cohort of

1996 EOC patients who received chemotherapy at Leeds

Teaching Hospitals Trust (LTHT) were assessed for inclusion

in this study. We selected EOC because it is a cancer which

sees a majority of patients go through multiple lines of

treatment and it is chemotherapy that makes up the ma-

jority of these treatments.23 The LTHT is a regional referral

centre that supports the treatment of patients within

Yorkshire and the Humber (one of the nine regions of En-

gland) and fully supports those people geographically

closest to LTHT. Our first exclusion criteria on the initial

cohort considered the level of curation of the programme

number data type. Within the LTHT EHR, a programme

number identifies the instance of progression or recurrence

of each patient’s cancer that each chemotherapy regimen

was being used to treat and designates the line of treat-

ment/therapy. The chart reviewers, led by an oncology

consultant, curate patients’ records for whom LTHT has a

complete record of care from diagnosis. These reviewers

had access to all structured and unstructured information

within the patients’ EHRs when curating these programme

numbers. They followed a standard operating procedure

and referred any disagreement in curation to an additional

oncologist for final decision. The clinical difference between

a recurrence and a progression is a contested subject. We

refer to the Cancer Outcomes and Services Dataset’s defi-

nition of cancer recurrence, defined as ‘the return of cancer

after treatment and after a period of time during which the

cancer cannot be detected’ and is only differentiated from

the progression of their cancer due to the patient having

‘previously been informed that they are free of the disease

or that the disease is not detectable’.24 Therefore, in our

research, there is little interest in discriminating between

the two outcomes. Consequently, throughout this paper,

where a model is identifying a recurrence event, it is

referring to a proxy chemotherapy treatment event

following a recurrence or progression diagnosis aligning to

the initial labelling system used by the chart reviewers.

Following the implementation of further exclusion

criteria shown in Figure 1, the initial cohort was reduced to

a study cohort of 531 patients’ chemotherapy treatment

histories. The study cohort comprised 6619 recorded

chemotherapy treatments from 2008 to 2021. These

included 127 unique drug regimens detailing the dose,

schedule and supportive medication for the categorical

anticancer drug therapies (including both maintenance and

hormone therapy, see Supplementary material Table S1,

available at https://doi.org/10.1016/j.esmorw.2024.

100038) a clinician can select from a drop-down menu

within the EHR. The timing of their treatments was

conveyed by an associated ‘days since EOC diagnosis’

attribute. Within the EHR, the date of each treatment is

recorded but this was altered to ‘days since EOC diagnosis’

to make the data suitable for research. Using the pro-

gramme numbers, it is possible to quantify the two sub-

groups within our final cohort: patients whose cancer had

not recurred/progressed (n ¼ 258, w49%), and those

whose cancer did recur/progress (n ¼ 273, w51%).

The method of recording the drug regimen within the

EHR allows for similar drug regimens to be recorded in a

variety of ways [an example being ‘CARBO 1W (C)’ and

‘CARBOPLATIN 1W (C)’ both recording the regimen for

weekly carboplatin], which impedes any ML method’s

modelling of the relation between similar/identical drugs

and recurrence events. To combat this, the 127 unique

regimens were grouped into 26 clinically relevant drug

regimen groups by an oncology consultant with 20 years of

experience. The drug regimens and assigned drug regimen

groups can be found in Supplementary Table S1, available at

https://doi.org/10.1016/j.esmorw.2024.100038.

This project was approved under the IRAS Project ID:

294683 titled ‘REAL-Cancer 01: a real world evidence alli-

ance at Leeds study to evaluate clinical characteristics,

outcomes, and healthcare costs in patients with cancer’. The

research was limited to the use of previously collected, non-

identifiable information. Opt-out patients were not included

in this study. Individual consent was not sought from the

patients. This study was carried out in accordance with the

Declaration of Helsinki.

Recurrence event detection model development

Converting the programme number of each treatment into

a binary labeldwhere a change in programme number

coinciding with a recurrence event would take a value of

onedenables our models to use supervised learning to

classify each treatment event a patient had, as either a

recurrence event or not. We can then use the associated

‘days since EOC diagnosis’ of the identified recurrence event

as a proxy for the date of recurrence diagnosis.

The R software was used to develop logistic regression,

decision tree, conditional inference tree and random forest

models to identify the treatment after a recurrence or

progression diagnosis.25 The logistic regression models used

the default binomial generalised linear model function

within R.25 The decision tree, conditional inference tree and

random forest used the rpart,26 party27 and randomForest28

packages, respectively.

To classify each chemotherapy event in the patients’

health records as either a recurrence event or not, seven

ESMO Real World Data and Digital Oncology A. D. Coles et al.
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candidate features were selected as inputs for the ML

models. The first two features were the days since EOC

diagnosis, and the drug regimen group of each treatment.

The third feature was the integer gap in days between each

treatment and their respective previous treatment. This

aimed to convey that chemotherapy treatments following a

recurrence/progression typically occur after a longer inter-

val, than treatments consecutively given to treat the same

instance of cancer. This feature was also intended to help

the models distinguish a change in drug regimen due to

toxicity and a change due to the diagnosis of a recurrence

(see Supplementary material Figure S1, available at https://

doi.org/10.1016/j.esmorw.2024.100038, showing the dis-

tribution of the number of days between consecutive

treatments of different drug regimens).

The remaining four features were the drug regimen

group and the gap between treatments for both the pre-

vious and subsequent treatment of each treatment. In the

case of the first treatment, the previous gap between

treatments and the previous drug regimen group was set to

0 and Not a Number (NaN), respectively, and similarly for

the subsequent values of these variables for the last

treatment of each patient. These four features provided the

ML methods with additional context surrounding each

treatment.

The study cohort was split into a uniformly randomly

sampled 354 (66%)-patient training set and 177 (33%)-pa-

tient test set, while ensuring that every drug regimen group

was present in both.

Since this investigation classified each treatment event,

the ratio of recurrence events (w9%) to non-recurrence

events (w91%) was highly imbalanced. The area under

the receiver operating characteristic (AUROC), a common

statistic recognised in clinical and computing studies, does

not reflect the performance of classifiers on highly imbal-

anced datasets. Considering this, and the intent for our

models to be implemented alongside chart reviewers to

identify and suggest when a recurrence event is suspected,

we value both sensitivity and positive predictive value (PPV)

rather than maximising one at the expense of the other, to

reduce the false identification of recurrence events

requiring a chart reviewer’s attention. Therefore, the F1

score, the harmonic mean of sensitivity and PPV, was cho-

sen as the metric to maximise when developing candidate

ML models. In the absence of accepted performance

thresholds in the literature, we defined the following

thresholds to evaluate our models: F1 � 0.95 ¼ Excellent,

F1 � 0.9 ¼ Good, F1 � 0.85 ¼ Fair, F1 � ¼ 0.8 Moderate.

We used cross-validation to develop optimised models

for a random forest, conditional inference tree, decision

tree and logistic regression. The models were left at their

default hyperparameters for candidate variable selection

(Supplementary material Table S2, available at https://doi.

org/10.1016/j.esmorw.2024.100038). The models were

cross-validated for a total of three iterations of 10-fold

cross-validation. For each iteration of cross-validation,

each of the 127 possible candidate models made from

the possible combinations of the seven candidate features

were trained on a nine-fold subset of the original training

set and validated on the remaining fold of the original

training set. We identified and retrained the best-

performing candidate model of each type on the whole

Figure 1. Study population exclusion criteria. Diagram describing the exclusion criteria used to select the study cohort from an initial cohort of EOC patients’

chemotherapy histories.

EOC, epithelial ovarian cancer; LTHT, Leeds Teaching Hospitals Trust.
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patient training set for testing. On the test set, we

measured F1 score, overall accuracy, sensitivity, specificity,

PPV, negative predictive value (NPV) and AUROC. Addi-

tionally, we calculated the percentage of identified recur-

rence events within �60 days of a labelled event in

positively identified recurrent patients, allowing the models

comparison against papers that use a similar metric. 95%

confidence intervals (CIs) were calculated with the empirical

bootstrapping method over 1000 iterations of the test set

to show how the models cope on a varying proportioned

dataset.29,30

Model application to time to next treatment

With the ‘days since EOC diagnosis’ of identified recurrence

events, we can estimate TTNT survival for each instance of a

patient’s cancer. We calculate TTNT as the number of days

between the first chemotherapy treatment of an instance of

cancer and the first chemotherapy treatment of the next

instance that has been identified by the models as a

recurrence event. We produced TTNT KaplaneMeier sur-

vival curves based on the recurrence events identified by

chart review and compared them to the TTNT Kaplane

Meier survival curves based on recurrence events identi-

fied by the models using the survival package in R.31 This

provides an easily comprehensible comparison for a clini-

cian to assess whether using the model-identified recur-

rence events to calculate the TTNT KaplaneMeier survival is

comparable to the TTNT survival inferred from chart review.

The probabilities of a change in the line of treatment

(recurrence event) at each timestep were also subjected to

a log-rank test to test the null hypothesis that there was no

difference between the TTNT produced using chart review-

identified recurrence events and the TTNT based on a given

model’s identified events.32

Model application to identify patients whose cancer

recurred/progressed

Several previous studies’ models were optimised to identify

patients as having had a recurrence, with fewer studies

making the further step in estimating a date for recurrence,

the step most essential for survival analysis. In contrast, our

approach is optimised to identify the dates of recurrence

events, but in doing so, we can infer that a patient’s cancer

has recurred/progressed. We inferred the identification of

patients whose cancer recurred and quantified the models’

performance on this secondary goal using F1 score, overall

accuracy, sensitivity, specificity, PPV and NPV, allowing us to

compare our model’s ability to identify patients whose

cancer has recurred/progressed with other studies. 95% CIs

were again calculated with the empirical bootstrapping

method over 1000 iterations of the test set to show how

the models cope on a varying proportioned dataset.29,30 A

flowchart showing how the model first classifies the treat-

ment events of a patient, enabling the use of their associ-

ated date or ‘days since EOC diagnosis’ for TTNT survival

analysis, before any identified recurrence events are used to

classify the patient as recurrent, can be seen in Figure 2.

RESULTS

The same candidate features maximised the F1 score for all

models in all three iterations of 10-fold cross-validation: the

drug regimen group used on that treatment event, the

integer gap in days between the current and previous

treatment, and the previous treatment’s drug regimen

group. Table 1 shows the models’ F1 score, accuracy,

sensitivity, specificity, PPV, NPV, AUROC and percentage of

identified recurrence events within �60 days of a labelled

event in positively identified recurrent patients when

detecting recurrence events in the 177-patient test set.

Table 2 shows the F1 score, accuracy, sensitivity, specificity,

PPV and NPV when using the models’ identified recurrence

events to infer the identity of patients whose cancer

recurred/progressed in the test set.

The random forest model achieved the highest F1 score,

both for identifying recurrence events and for identifying

patients whose cancer recurred/progressed, satisfying our

‘Good’ and ‘Excellent’ thresholds, respectively. The logistic

regression model achieved the lowest F1 score for detecting

recurrence events, while the conditional inference tree

measured the lowest for identifying patients whose cancer

recurred/progressed (Table 1).

Figure 3 shows TTNT KaplaneMeier survival curves for

the first, second and third changes in line of treatment

(recurrence events), based on chart review and our best-

performing ML models (created with the R package

ggsurvfit
33
). The log-rank tests in Table 3 show that TTNTs

based on model-identified dates of recurrence events

were statistically significantly indistinguishable from the

TTNTs based on dates identified by chart review; the only

exception was the TTNT for a third recurrence event based

on the best-performing logistic regression model. Both

Figure 3 and Table 3 show that the conditional inference

tree most closely matches with the manual chart review

for the first recurrence event’s TTNT, while the random

forest most closely matches with the TTNT survival for

further recurrences, closely followed by the decision tree.

The period in which the random forest and decision tree

TTNT KaplaneMeier survival curves deviate from the 95%

CI of the manual chart review for the first recurrence

event (Figure 3A) is very soon after the start of chemo-

therapy treatment. All models’ median TTNT survival for

the first recurrence event were comparable to the chart

reviewers’ estimate of 13.6 months. Only the random

forest and decision tree-estimated median TTNT Kaplane

Meier survival were similar to that inferred by chart re-

view beyond the first line of treatment (after the first

recurrence event).

DISCUSSION

We evaluated the ability of four ML models to identify

chemotherapy treatment dates following an EOC recur-

rence/progression diagnosis and by extension patients

whose cancer had recurred/progressed. Here we compare

our results against relevant literature.

ESMO Real World Data and Digital Oncology A. D. Coles et al.
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Identifying recurrence events

Unfortunately, we are limited when comparing our model’s

performance with other studies. Firstly, all previous studies

we are aware of focussed on identifying dates of the first

recurrence. Secondly, these studies reported differing

metrics while evaluating their models. Finally, there is

currently no defined threshold for what constitutes a well-

performing recurrence detection algorithm.6 Two notable

studies, Rasmussen et al.9 and Chubak et al.,14 focussed on

identifying the date of first breast cancer recurrence and

reported comparable statistics and favourable results in

comparison to the wider field.6 Rasmussen et al. verified a

rules-based algorithm,9 while Chubak et al. proposed

several decision tree models.14 Both Rasmussen et al. and

Chubak et al. reported a percentage of first recurrences

detected within 60 days of a known gold-standard date of

recurrence diagnosis in positively identified recurrent pa-

tients with 76% and 82% achieved, respectively.
9,14

These

metrics are not as suitable for our data where the true date

of recurrence is not known. Instead, the closest comparable

metric we can measure is the percentage of model-

identified recurrence event dates within 60 days of the

date identified by chart review in positively identified

recurrent patients. Using that metric, the lowest score

achieved by any of our models was that achieved by the

decision tree, with 90.5% (95% CI 86.7% to 93.7%) of

model-identified dates happening within 60 days of the

chart review-identified dates of recurrence in positively

identified recurrent patients. However, these scores should

only be interpreted alongside other metrics such as the

sensitivity, as a model may identify some recurrent patients

and their recurrence dates perfectly, while missing other

patients’ recurrences entirely. For our models, intending for

them to be used alongside a chart reviewer, we opted for F1

score as our primary metric, balancing the number of false

positives needing to be reviewed while ensuring we

Figure 2. Flow chart showing the order of classifying a patient’s treatment events using a machine learning model and the later inference of the patient’s

recurrence status. The model first classifies the treatment events of a patient enabling the use of their associated date or ‘days since EOC diagnosis’ for TTNT survival

analysis. Then the existence of a model-identified recurrence event within a patient’s record is used to classify the patient as a recurrent patient.

EOC, epithelial ovarian cancer; TTNT, time to next treatment.

A. D. Coles et al. ESMO Real World Data and Digital Oncology
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captured a high proportion of the recurrences. However, as

recognised by Jung et al., the main application of recurrence

detection algorithm is enabling survival analysis.15 There-

fore, we propose that the conformance of the models TTNT

survival to that of chart review informed TTNT survival

should be considered when choosing a successful model.

With than in mind, the random forest and decision tree

TTNT survival both conform to TTNT survival informed by

chart review. The decision tree’s superior TTNT survival to

the conditional inference tree is unexpected considering the

latter model’s higher F1 statistic. This is an example where

visualising the intended end use of the models may be more

informative than reviewing classic performance statistics

such as F1, sensitivity and PPV.

The TTNTsurvival curves show a drop in performance of the

models when detecting serial (second, third, fourth and fifth

line) recurrences. Reasons for this might include a diminishing

association between the more unique drug regimens used in

later lines of therapy and recurrence/progression outcomes.

Another possible reason is the lower proportion of later-line

recurrences in the dataset, causing the models to overfit to

detecting first recurrences and overlook patterns specific to

later recurrences. Future models developed to detect specific

recurrences may combat this issue.

Identifying patients whose cancer recurred/progressed

Our primary goal was to identify proxy dates of recurrence/

progression events for review, but a derived benefit is that

the models can identify patients who have had a recur-

rence/progression of their cancer. Both Rasmussen et al.9

and Chubak et al.14 first identified patients whose cancer

recurred before proposing a proxy recurrence event date.

The rules-based algorithm proposed by Rasmussen et al.
9

recorded a sensitivity of 0.973 for identifying patients

who had a recurrence of their breast cancer, whereas the

high-sensitivity decision tree from Chubak et al.14 recorded

a sensitivity of 0.96. If our results are interpreted to identify

patients whose EOC had recurred/progressed, the random

forest achieved a sensitivity of 0.988, higher than both

studies, and our decision tree achieved a sensitivity of

0.965, putting it between the two studies. Both Rasmussen

et al. and Chubak et al. used multiple modalities of treat-

ment to identify patients whose cancer recurred.9,14 Our

results show that high sensitivities can be achieved using

only structured chemotherapy data.

Limitations

Limitations to our models include the method of drug

regimen grouping, which may not be perfectly transferable

across hospitals. A more recognised method of grouping the

drug regimens, like that used in the UK’s Systemic Anti-

Cancer Therapy dataset curated by NCRAS would be

ideal.34 However, we are not aware of a published static

mapping table. Also, we did not investigate the sensitivity of

the F1 score to different starting hyperparameters as this

was not the focus of the investigation.
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Table 2. Performance of each of the final models when used to identify patients whose cancer recurred/progressed in the177-patient test set

Method F1

(95% CI)

Accuracy

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

PPV

(95% CI)

NPV

(95% CI)

Random forest 0.966 (0.947-0.988) 0.966 (0.950-0.986) 0.988 (0.976-0.998) 0.946 (0.909-0.979) 0.944 (0.905-0.980) 0.989 (0.977-0.997)

Conditional inference

tree

0.941 (0.911-0.980) 0.944 (0.914-0.969) 0.941 (0.901-0.979) 0.946 (0.909-0.979) 0.941 (0.900-0.977) 0.946 (0.908-0.979)

Decision tree 0.943 (0.914-0.970) 0.944 (0.914-0.969) 0.965 (0.929-0.991) 0.924 (0.882-0.964) 0.921 (0.878-0.961) 0.966 (0.932-0.991)

Logistic regression 0.952 (0.924-0.979) 0.955 (0.928-0.978) 0.929 (0.880-0.972) 0.978 (0.957-0.994) 0.975 (0.951-0.994) 0.938 (0.894-0.973)

A change in the line of chemotherapy treatment due to the diagnosis of a recurrence or progression (recurrence event) was used as a proxy for a recurrence or progression

diagnosis.

CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.

Figure 3. KaplaneMeier TTNT survival for the first three cancer recurrences. Survival was calculated from the model-identified dates of changes in line of treatment

and compared against the TTNT survival calculated from manual chart review informed dates of changes in line of treatment, for the first- (A), second- (B), and third-

line (C) of treatment on the test set of 177 EOC patients. A change in the line of chemotherapy treatment due to the diagnosis of a recurrence or progression was used

as a proxy for a recurrence or progression diagnosis.

EOC, epithelial ovarian cancer; TTNT, time to next treatment.
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Additionally, as we have used real-world treatment data

for our models, they are inherently vulnerable to changes in

treatment practices over time. In practice, models would

have to be periodically retrained to manage any changes in

treatment methods.

Furthermore, ovarian cancer patients have been

measured to have a 60%-80% recurrence rate.23 However,

in our study cohort (n ¼ 531), only 51% of the patients

were identified by chart reviewers as having had a recur-

rence. We propose two reasons as to why this might be the

case. The first is that in our dataset we can only detect

recurrences that received further treatment. The second is

that we did not require a specific length of follow-up for

inclusion in our cohort, meaning that patients whose cancer

had not yet recurred may have a recurrence later. We did

not filter for a specific length of follow-up as our models’

intended use case is to detect recurrence events at any

point during a patient’s chemotherapy treatment. We also

expect that if we required a length of follow-up, we would

exclude patients with aggressive cancers that recur early in

a patient’s treatment. While adjusting the imbalance of

patients who had a recurrence with those who did not to

the expected percentage does not drastically change the

imbalance respective to the number of recurrence events to

non-recurrence events in our small dataset, in larger data-

sets this may have to be accounted for.

We used the dates of changes to the line of chemotherapy

treatment as proxy dates for recurrences/progressions, but

recurrences are usually diagnosed with a computed tomog-

raphy scan or other investigation. Our future work will aim to

identify recurrence/progression diagnosis dates more accu-

rately by allowing the models to choose candidate variables

from a broader range of modalities, including radiology re-

sults and biochemical markers, with the secondary aim of

advising their inclusion into national datasets, if they enable

more accurate recurrence detection and survival analysis.

Considerations for implementation

We envision that an implemented model aiding recurrence

curation would present recurrence event dates to a chart

reviewer for their final decision on curation. When evalu-

ating which method should be implemented to aid chart

review, we should consider the performance, ease of

implementation and interpretability of the models.

The random forest achieved the highest F1 score when

identifying both recurrence events and patients whose

cancer recurred/progressed, while also producing the TTNT

survival curve that most closely matched those produced by

chart review. However, if the level of interpretation

required exceeds feature importance, the random forest

becomes difficult to interpret for an end user. The decision

tree closely followed the performance of the random forest,

when identifying patients, and produced respectable TTNT

survival curves only marginally less true to the chart review

curves than that of the random forest. The final decision

tree model is easier to interpret, as it only consists of eight

splitting rules that can be presented to a chart reviewer.

Simple tree-based models can also be quickly translated

into any query-based language, facilitating implementation

into whichever system staff use to review patients’ EHRs.

Therefore, the random forest and decision tree may be

suitable for different environments. For implementation

into existing EHR architecture to aid chart review, the de-

cision tree may be preferable, whereas for further research

into recurrence/progression where interpretation is not of

great importance, the random forest will provide more ac-

curate results.

Conclusion

In conclusion, both the random forest and decision tree can

closely match the performance of a chart reviewer when

identifying proxy dates for a recurrence/progression diag-

nosis while only using patients’ chemotherapy treatment

histories. By extension, we can estimate TTNT survival for

EOC patients.We recommend the random forest model, but

only if the need for model interpretation is low and the

user’s system is capable of implementing it. However, the

interpretability and ease of implementation of a decision

tree make it an ideal choice to aid chart reviewers in

correctly documenting the dates of recurrence/progression,

facilitating research into cancer treatments. The methods

we describe in this paper are intrinsically linked to the

chemotherapy regimens used to treat EOC. However, we

refrain from stating that similar methods are restricted to

identifying multiple recurrences/progressions in ovarian

cancers. Future work will investigate the use of additional

treatment modalities to improve the detection of cancer

recurrence.

Table 3. Log-rank tests, comparing the survival probability, measured from the ML model and chart review-identified dates of change in the line of

chemotherapy treatment, due to a recurrence/progression of a patient’s epithelial ovarian cancer

Model First recurrence/

progression log-

rank test

Second

recurrence/

progression

log-rank test

Third recurrence/

progression log-

rank test

Fourth

recurrence/

progression

log-rank test

Fifth

recurrence/

progression

log-rank test

c
2

P c
2

P c
2

P c
2

P c
2

P

Random forest 0.3 0.6 0 0.9 0 0.9 0.2 0.7 2.3 0.1

Conditional inference tree <0.1 >0.9 1.6 0.2 1.7 0.2 0.2 0.7 0.3 0.6

Decision tree 0.4 0.6 0.1 0.8 0.4 0.5 0.3 0.6 0.4 0.5

Logistic regression 0.1 0.7 1.4 0.2 5.7 <0.1 0.4 0.5 0.5 0.5

The c
2
statistic for two curves to be considered significantly different is c

2
> 3.84.
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