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MULTIPLICATIVE RELATIONS AMONG DIFFERENCES

OF SINGULAR MODULI

VAHAGN ASLANYAN, SEBASTIAN ETEROVIĆ, AND GUY FOWLER

To Jonathan Pila

Abstract. Let n ∈ Z>0. We prove that there exist a finite set V and
finitely many algebraic curves T1, . . . , Tk with the following property:
if (x1, . . . , xn, y) is an (n + 1)-tuple of pairwise distinct singular mod-
uli such that

∏n

i=1
(xi − y)ai = 1 for some a1, . . . , an ∈ Z \ {0}, then

(x1, . . . , xn, y) ∈ V ∪ T1 ∪ . . . ∪ Tk. Further, the curves T1, . . . , Tk may
be determined explicitly for a given n.

1. Introduction

Let H denote the complex upper half plane. The modular group SL2(Z)
acts on H by fractional linear transformations. The modular j-function
j : H → C is the unique holomorphic function H → C which is invariant
under this action of SL2(Z), has a simple pole at i∞, and satisfies j(i) = 1728
and j(ρ) = 0, where ρ = exp(2πi/3).

A singular modulus is a complex number j(τ) for some τ ∈ H such that
[Q(τ) : Q] = 2. For example, 0 and 1728 are both singular moduli. Equival-
ently, a singular modulus is the j-invariant of an elliptic curve with complex
multiplication. Singular moduli are algebraic integers and generate the ring
class fields of imaginary quadratic fields. By Schneider’s theorem [32, IIc],
if τ ∈ H is such that both τ, j(τ) ∈ Q, then j(τ) is a singular modulus.

In this paper, we consider multiplicative relations among differences x−y
of singular moduli x, y. Since 0 is a singular modulus, every singular modulus
is equal to the difference of two singular moduli. Our aim is to generalise
the following theorem.

Theorem 1.1. Let n ∈ Z>0. Let y be a singular modulus. Then there exist

only finitely many n-tuples (x1, . . . , xn) of pairwise distinct singular moduli

x1, . . . , xn such that y /∈ {x1, . . . , xn} and there exist a1, . . . , an ∈ Z\{0} for

which
n∏

i=1

(xi − y)ai = 1.
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Theorem 1.1 was proved by Pila and Tsimerman [27] for y = 0 and by
the third author [13] for y not in the real interval (0, 1728). In Section 3, we
prove the remaining case where y is in the real interval (0, 1728).

This paper addresses the case where y is allowed to vary over all singular
moduli. That is, we consider (n+1)-tuples (x1, . . . , xn, y) of pairwise distinct
singular moduli x1, . . . , xn, y such that

n∏

i=1

(xi − y)ai = 1 for some a1, . . . , an ∈ Z \ {0}.(1.1)

In this setting, one must account for the following situation.

Definition 1.2 ([6, p. 1052]). A function f : H → C is called a j-map if
either there exists a singular modulus x such that f(z) = x for every z ∈ H,
or there exists g ∈ GL+

2 (Q) such that f(z) = j(gz) for every z ∈ H. Here
GL+

2 (Q) acts on H by fractional linear transformations.

Definition 1.3. Let n ∈ Z>0. Let f1, . . . , fn, f be pairwise distinct j-maps,
at least one of which is non-constant. The set

{

(f1(z), . . . , fn(z), f(z)) : z ∈ H
}

is called a multiplicative special curve in Cn+1 if there exist a1, . . . , an ∈
Z \ {0} such that, for all z ∈ H,

n∏

i=1

(fi(z)− f(z))ai = 1.

Note that a multiplicative special curve is always an algebraic curve (see
Proposition 5.3). Clearly, any multiplicative special curve contains infinitely
many (n+1)-tuples (x1, . . . , xn, y) of pairwise distinct singular moduli satis-
fying (1.1). If N ∈ Z>0 is not a perfect square, then the modular polynomial
ΦN ∈ Z[X,Y ] gives rise to a multiplicative special curve, as we explain in
Section 1.1. Thus one cannot hope to show, for an arbitrary n ∈ Z>0, that
there exist only finitely many such (n+ 1)-tuples (x1, . . . , xn, y).

Instead, we prove that the multiplicative special curves arising from the
modular polynomials are the only multiplicative special curves. In particu-
lar, for a given n, there are only finitely many multiplicative special curves
in Cn+1 and these may be determined effectively.

Theorem 1.4. Let n ∈ Z>0. Then there are only finitely many multiplicat-

ive special curves in Cn+1 and these may be determined effectively. If n ≤ 5,
then there are no multiplicative special curves in Cn+1.

We then prove that, for every n ∈ Z>0, the finitely many multiplicative
special curves in Cn+1 account for all but finitely many of the (n+1)-tuples
(x1, . . . , xn, y) of pairwise distinct singular moduli satisfying (1.1).

Theorem 1.5. Let n ∈ Z>0. Then there exist only finitely many (n + 1)-
tuples (x1, . . . , xn, y) of pairwise distinct singular moduli x1, . . . , xn, y such

that
n∏

i=1

(xi − y)ai = 1
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for some a1, . . . , an ∈ Z \ {0} and (x1, . . . , xn, y) does not belong to one of

the finitely many multiplicative special curves in Cn+1.

Since there are no multiplicative special curves in Cn+1 for n ≤ 5, one
immediately obtains the following corollary.

Corollary 1.6. Let n ∈ {1, . . . , 5}. There exist only finitely many (n+ 1)-
tuples (x1, . . . , xn, y) of pairwise distinct singular moduli x1, . . . , xn, y such

that
n∏

i=1

(xi − y)ai = 1

for some a1, . . . , an ∈ Z \ {0}.
The proof of Theorem 1.5 uses o-minimality and is ineffective. Recently,

Li [21] has proved that the difference of two singular moduli is never a unit
(in the ring of algebraic integers). Hence, there are no distinct singular
moduli x, y such that (x− y)a = 1 for some a ∈ Z \ {0}.

1.1. Modular polynomials and multiplicative special curves. For
background on modular polynomials, see [10, §11]. For N ∈ Z>0, let

C(N) =
{(

a b
0 d

)

∈ M2(Z) : ad = N, a > 0, 0 ≤ b < d, gcd(a, b, d) = 1
}

.

There exists [10, (11.15)] a polynomial ΦN ∈ Z[X,Y ] with the property that

ΦN (X, j(z)) =
∏

g∈C(N)

(X − j(gz))

for all z ∈ H. The polynomial ΦN is called the Nth modular polynomial.
For N > 1, let FN ∈ Z[X] be defined by FN (X) = ΦN (X,X). Then FN is

a non-constant polynomial (the explicit formula in [10, Proposition 13.8] in
fact implies that degFN ≥ 2N). The roots of FN are all singular moduli (see
Corollary 2.4). If N is not a perfect square, then, by [10, Theorem 11.18],
the polynomial FN has leading coefficient ±1.

Suppose then that N ∈ Z>1 is such that the leading coefficient of FN is
±1 (e.g. take N not a perfect square). Write α1, . . . , αk for the distinct
roots of FN and ai for their multiplicities. Write g1, . . . , gl for the elements
of C(N). Since

FN (j(z)) =
l∏

i=1

(j(z)− j(giz))

for all z ∈ H, one thus obtains (doubling the exponents to eliminate a
potential factor of −1) that

k∏

i=1

(j(z)− αi)
2ai =

l∏

i=1

(j(z)− j(giz))
2

for all z ∈ H, and hence, for all z ∈ H,

k∏

i=1

(j(z)− αi)
2ai

l∏

i=1

(j(z)− j(giz))
−2 = 1.(1.2)
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In particular, the set
{

(α1, . . . , αk, j(g1z), . . . , , j(glz), j(z)) : z ∈ H
}

is a multiplicative special curve in Ck+l+1.
Further examples of multiplicative special curves may be generated by

multiplying together integer powers of relations of the form (1.2) coming
from different FN . In this case, one must also consider polynomials FN with
leading coefficient not equal to ±1, because these leading coefficients may
cancel with one another. For example, −2 is the leading coefficient of both
F4 and F16. Theorem 4.1 will show that all the multiplicative special curves
arise from the polynomials FN in this way.

Example 1.7. The modular polynomial Φ2 is

Φ2(X,Y ) =−X2Y 2 +X3 + Y 3 + 1488(X2Y +XY 2)

− 162000(X2 + Y 2) + 40773375XY

+ 8748000000(X + Y )− 157464000000000.

Thus,

F2(X) =Φ2(X,X)

=−X4 + 2978X3 + 40449375X2 + 17496000000X

− 157464000000000

=− (X − 1728)(X + 3375)2(X − 8000).

Note that 1728, −3375, 8000 are singular moduli of discriminant −4, −7, −8
respectively. The discriminant of a singular modulus j(τ) is b2 − 4ac, where
a, b, c ∈ Z, not all zero, are such that aτ2 + bτ + c = 0 and gcd(a, b, c) = 1.

Observe that

C(2) =
{(

2 0
0 1

)

,

(
1 0
0 2

)

,

(
1 1
0 2

)}

.

Thus,

Φ2(X, j(z)) =
(

X − j(2z)
)(

X − j
(z

2

))(

X − j
(z + 1

2

))

.

Hence, for all z ∈ H,

− (j(z)− 1728)(j(z) + 3375)2(j(z)− 8000)

=
(

j(z)− j(2z)
)(

j(z)− j
(z

2

))(

j(z)− j
(z + 1

2

))

.
(1.3)

The set
{(

1728,−3375, 8000, j(2z), j
(z

2

)

, j
(z + 1

2

)

, j(z)
)

: z ∈ H
}

is thus a multiplicative special curve in C7.
For an example of a 7-tuple of singular moduli lying on this curve, take

z =
−1 +

√
163i

2
.

Then
j(z) = −262537412640768000 = −218 · 33 · 53 · 233 · 293,



MULTIPLICATIVE RELATIONS AMONG DIFFERENCES OF SINGULAR MODULI 5

which we denote by k, is a singular modulus of discriminant −163. In this
case, j(2z), j(z/2), j((z+1)/2) are the three singular moduli of discriminant
−652. These are respectively the roots r, s, s̄ of the irreducible polynomial

X3 − 68925893036109279891085639286946000X2

+ 102561728837719322645921325412908000000X

− 18095625621665522953693950872675200892692248000000000,

where r ∈ R and s, s̄ are complex conjugate with s ∈ H. In this case, (1.3)
yields that

−(k − 1728)(k + 3375)2(k − 8000) = (k − r)(k − s)(k − s̄).(1.4)

The prime factorisation of the two sides of (1.4) is given by

− 212 · 322 · 59 · 76 · 112 · 133 · 172 · 192 · 312 · 37 · 101 · 1032 · 1272

· 157 · 163 · 2292 · 277 · 2832 · 317.
1.2. Multiplicative properties of differences of singular moduli. The
study of the multiplicative properties of differences of singular moduli goes
back at least as far as Berwick [3], who in 1927 determined the factorisations
of x and x− 1728 for all singular moduli x such that [Q(x) : Q] ≤ 3.

The differences of singular moduli are highly divisible numbers, in the
sense that they tend to have relatively small prime factors. For example,

j
(−1 +

√
163i

2

)

− j
(−1 +

√
67i

2

)

= −215 · 37 · 53 · 72 · 13 · 139 · 331.

Example 1.7 gives another illustration of this tendency. This observation
led Gross and Zagier [15] to prove a formula for the prime ideal factorisa-
tions of differences of singular moduli, subject to some restrictions on the
discriminants of the singular moduli considered. A version of their result
for arbitrary discriminants has since been proved by Lauter and Viray [20].

Recent work on multiplicative relations among singular moduli, for ex-
ample the proof of Theorem 1.1 by Pila and Tsimerman [27] and the third
author [13], has been motivated by connections to the Zilber–Pink conjec-
ture on atypical intersections.

Effective results on multiplicative relations among singular moduli in low
dimensions have also been studied extensively [4, 7, 12, 14, 31] as special
cases of the André–Oort conjecture for Cn, which was proved ineffectively
by Pila [24]. In particular, for n ≤ 3, explicit bounds on multiplicatively
dependent n-tuples of pairwise distinct singular moduli are known [4, 31].

For differences of singular moduli, the most general effective result we
are aware of is Li’s result [21] that the difference of two singular moduli is
never an algebraic unit. Li’s result generalised Bilu, Habegger, and Kühne’s
theorem [5] that no singular modulus is a unit. Work on this topic was
prompted by a question of Masser, answered affirmatively by Habegger [16],
as to whether only finitely many singular moduli are algebraic units.

1.3. Structure of this paper. In Section 2, we give some of the basic
results we will need for this paper. Section 3 completes the proof of The-
orem 1.1. The proof of Theorem 1.4 is in Section 4. Section 5 contains the
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Re z

iρ −ρ̄

Im z

Figure 1. The fundamental domain Fj

functional transcendence results which are required for the proof of The-
orem 1.5, which is then carried out in Section 6. Finally, the connection to
the Zilber–Pink conjecture is considered in Section 7.

Acknowledgements. The authors would like to thank Gabriel Dill for
helpful comments.

2. Preliminaries

2.1. The fundamental domain. The group SL2(Z) is generated by the
matrices corresponding to the transformations T : z 7→ z + 1 and S : z →
−1/z. Let Fj be the fundamental domain for the action of SL2(Z) on H

given by

{

z ∈ H : Re z ∈
[

− 1

2
,
1

2

)

, |z| ≥ 1, and if |z| = 1, then Re z ∈
[

− 1

2
, 0
]}

.

This is a hyperbolic triangle with corners at ρ,−ρ̄, i∞. The j-function re-
stricts to a bijection j : Fj → C.

The j-function has a series expansion

j(z) = e−2πiz + 744 +
∞∑

n=1

c(n)e2nπiz,

where the coefficients c(n) ∈ Z. It follows immediately that the j-function
is real valued on Fj only along the boundary of Fj and on the imaginary
axis. Further, the image under j of the set {z ∈ Fj : |z| = 1} is the real
interval [0, 1728].
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Proposition 2.1. Let z0 ∈ Fj. If Re z0 ̸= −1/2, then the SL2(Z)-orbit of
z0 is equal to

{z0 + k : k ∈ Z} ∪
{−1

z0
+ k : k ∈ Z

}

∪
{

w ∈ H : w ∈ Orbit(z0) and Imw < Im
−1

z0

}

.

If Re z0 = −1/2, then the SL2(Z)-orbit of z0 is equal to

{z0 + k : k ∈ Z} ∪
{−1

z0
+ k : k ∈ Z

}

∪
{ −1

z0 + 1
+ k : k ∈ Z

}

∪
{

w ∈ H : w ∈ Orbit(z0) and Imw < Im
−1

z0

}

.

Proof. First, we claim that the following algorithm applied to a point z ∈ H

will output the unique point in Fj ∩Orbit(z).

(1) If z ∈ Fj , then output z. Otherwise proceed to step (2).
(2) Replace z with z + k, where k ∈ Z is such that Re(z + k) ∈

[−1/2, 1/2).
(3) If z ∈ Fj , then output z. Otherwise proceed to step (4).
(4) Replace z with −1/z. Return to step (1).

Clearly, if this algorithm terminates, then it outputs the unique point
in Fj in the same SL2(Z)-orbit as the initial input. We claim that this
algorithm always terminates. To prove this, note that S : z 7→ −1/z sends
z to

−Re z

|z|2 +
Im z

|z|2 i.

In particular, if |z| < 1, then the imaginary part of −1/z is strictly larger
than Im z. Now every application of step (4) is performed on some z with
|z| ≤ 1. And if |z| = 1, then applying (4) immediately yields a point in Fj .

Hence, it suffices to prove that, given z ∈ H with Re z ∈ [−1/2, 1/2),
there are only finitely many γ ∈ SL2(Z) with Re γz ∈ [−1/2, 1/2) and
Im γz > Im z. Write

γ =

(
a b
c d

)

.

Then

Im γz = Im
az + b

cz + d
=

1

|cz + d|2 Im z,

and so Im γz > Im z implies that

|cz + d|2 < 1.

Hence,

(cRe z + d)2 + (c Im z)2 < 1.

Hence, there are only finitely many possibilities for c, and for each such c,
only finitely many possibilities for d. So we may assume that c, d are fixed.

We now show that, for the pair (c, d), there exists a unique pair (a, b)
such that (

a b
c d

)

∈ SL2(Z)
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and

Re
((

a b
c d

)

z
)

∈
[

− 1

2
,
1

2

)

.

Suppose a, b, a′, b′ are such that
(
a b
c d

)

,

(
a′ b′

c d

)

∈ SL2(Z).

So ad − bc = 1 and a′d − b′c = 1. Hence, by Bézout’s Lemma, there exists
k ∈ Z such that

(a′, b′) = (a+ kc, b+ kd).

Thus,
(
a′ b′

c d

)

z =
(a+ kc)z + (b+ kd)

cz + d
=

az + b

cz + d
+ k.

In particular, there is a unique k ∈ Z (and hence a unique pair (a′, b′)) such
that

Re
((

a′ b′

c d

)

z
)

∈
[

− 1

2
,
1

2

)

.

Thus, the algorithm always terminates. We may now complete the proof
of the proposition. Let z0 ∈ Fj . The proposition amounts to classifying all
the w ∈ Orbit(z0) such that

Imw ≥ Im
−1

z0
.

Suppose first that Re z0 ̸= −1/2. Let w0 ∈ Orbit(z0) be such that

w0 /∈ {z0 + k : k ∈ Z} ∪
{−1

z0
+ k : k ∈ Z

}

.

We claim that Imw0 < Im(−1/z0). Applying the above algorithm to w0, we
must obtain z0 after finitely many steps. The last transformation applied is
either z 7→ −1/z or z 7→ z + k for some k ∈ Z \ {0}. Recall that z 7→ −1/z
is its own inverse.

If the last transformation applied is z 7→ −1/z, then the algorithm applied
to w0 must pass through −1/z0. By assumption on w0, this must happen
after an application of z 7→ −1/z, which must have strictly increased the
imaginary part.

If the last transformation applied is z 7→ z + k with k ̸= 0, then the
transformation prior to that must have been z 7→ −1/z. We thus must have
that

Imw0 ≤ Im
−1

z0 − k
=

1

|z0 − k|2 Im z0.

Then
|z0 − k| > |z0| ≥ 1,

since Re z0 ∈ (−1/2, 1/2) and k ̸= 0. Hence,

Imw0 <
1

|z0|2
Im z0 = Im

−1

z0
≤ Im z0.

Now let z0 ∈ Fj be such that Re z0 = −1/2. Let w0 ∈ Orbit(z0) be such
that

w0 /∈ {z0 + k : k ∈ Z} ∪
{−1

z0
+ k : k ∈ Z

}
∪
{ −1

z0 + 1
+ k : k ∈ Z

}

.



MULTIPLICATIVE RELATIONS AMONG DIFFERENCES OF SINGULAR MODULI 9

We claim that Imw0 < Im(−1/z0). To show this, we repeat the above
argument. The only place where Re z ̸= −1/2 was used was to obtain the
inequality

|z0 − k| > |z0|.
If k ̸= −1, then this inequality still holds and the above argument works.
So assume k = −1. Then, by the assumption that

w0 /∈
{ −1

z0 + 1
+ k : k ∈ Z

}

,

there must have been an application of z 7→ −1/z prior to passing through
−1/(z0 +1) and this application must have strictly increased the imaginary
part. Hence,

Imw0 <
1

|z0 + 1|2 Im z0 = Im
−1

z0
≤ Im z0.

This completes the proof. □

2.2. Singular moduli. Let τ ∈ H be such that [Q(τ) : Q] = 2. So

aτ2 + bτ + c = 0

for some (a, b, c) ∈ Z3 \ {(0, 0, 0)} with gcd(a, b, c) = 1. The discriminant of
the singular modulus j(τ) is defined to be

b2 − 4ac.

This depends only on the value of j(τ) and not on the choice of τ . For
a singular modulus x, write ∆(x) for the discriminant of x. The singular
moduli of a given discriminant ∆ form a complete set of Q-conjugates [10,
Proposition 13.2].

Lemma 2.2. Suppose that z ∈ H is such that gz = z for some g ∈ M2(Z)
such that det g > 0 and λg ̸= Id2 for every λ ∈ Q×. Then j(z) is a singular

modulus and |∆(j(z))| ≤ 4 det g.

Proof. Let N = det g. Write

g =

(
a b
c d

)

.

So ad− bc = N . Since z is a fixed point, we have that

z =
az + b

cz + d
.

Thus,
cz2 + (d− a)z − b = 0.

If b = c = d−a = 0, then N = a2 and g = aId2, which is excluded. So some
coefficient of this quadratic equation is non-zero. Hence, j(z) is a singular
modulus. Let h = gcd(c,−b, (d− a)). Then

∆(j(z)) =
(d− a

h

)2
+

4bc

h2
.

Since bc = ad−N , we have that

∆(j(z)) =
1

h2
((a+ d)2 − 4N).

In particular, |∆(j(z))| ≤ 4N . □
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Proposition 2.3. Suppose that z ∈ H is such that

j(z) = j(gz)

for some g ∈ M2(Z) such that det g > 0 and λg /∈ SL2(Z) for every λ ∈ Q×.

Then j(z) is a singular modulus and |∆(j(z))| ≤ 4 det g.

Proof. Since

j(z) = j(gz),

there exists γ ∈ SL2(Z) such that

γz = gz.

In particular, z is a fixed point for the action of the integer matrix γ−1g on
H. Apply Lemma 2.2 to γ−1g. □

Corollary 2.4. Let x ∈ C be a root of the polynomial FN for some N ∈ Z>1.

Then x is a singular modulus and |∆(x)| ≤ 4N . Further, if N ∈ Z>1, then

every singular modulus of discriminant −4N is a root of FN .

Proof. Suppose N ∈ Z>1 and x ∈ C are such that FN (x) = 0. Recall that

FN (j(z)) =
∏

g∈C(N)

(j(z)− j(gz)).

The j-function is surjective, so there exists z0 ∈ H and g ∈ C(N) such that
j(z0) = j(gz0) = x. Then, by Proposition 2.3, we have that x is a singular
modulus and |∆(x)| ≤ 4N .

For the second part, note that for N ∈ Z>1,
(
1 0
0 N

)

∈ C(N).

Since the j-function is invariant under z 7→ −1/z, we have that

j(
√
Ni) = j

( 1

N

√
Ni

)

.

So FN (j(
√
Ni)) = 0. Clearly, j(

√
Ni) is a singular modulus of discriminant

−4N . Recall that the singular moduli of discriminant −4N are all conjugate
over Q. Thus, every singular modulus of discriminant −4N is a root of FN ,
since FN has coefficients in Z. □

Corollary 2.5. Let N1, . . . , Nk ∈ Z>1 be pairwise distinct. Let b1, . . . , bk ∈
Z \ {0}. Then

k∏

i=1

FNi
(X)bi

is a non-constant rational function of X.

Proof. Each FNi
(X) is a non-constant polynomial in X. Hence, the rational

function
k∏

i=1

FNi
(X)bi

is not constantly zero. Without loss of generality, we may assume that
Nk > N1, . . . , Nk−1 and bk > 0. By Corollary 2.4, the polynomial FNi

(X)
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vanishes at a singular modulus of discriminant −4Nk if and only if i = k.
Thus the rational function

k∏

i=1

FNi
(X)bi

vanishes at every singular modulus of discriminant −4Nk; in particular, the
function is non-constant. □

Proposition 2.6. Suppose that g1, g2 ∈ M2(Z) are such that det g1, det g2 >
0 and g1 ̸= λγg2 for every λ ∈ Q× and γ ∈ SL2(Z). If z ∈ H is such

that j(g1z) = j(g2z), then j(z) is a singular modulus and |∆(j(z))| ≤
4max{det(g1), det(g2)}2.
Proof. Since j(g1z) = j(g2z), there exists γ ∈ SL2(Z) such that γg1z = g2z.
Hence, z is a fixed point for the action of g = g−1

2 γg1 ∈ GL+
2 (Q) on H.

Multiplying the entries of g by det(g2), we may assume that g ∈ M2(Z) and
det g ≤ max{det(g1), det(g2)}2. Since g1 ̸= λγ′g2 for every λ ∈ Q× and
γ′ ∈ SL2(Z), g is not a rational scalar multiple of Id2. The desired result
thus follows from Lemma 2.2. □

Since the restriction j : Fj → C of the j-function to the fundamental
domain is bijective, the map

(a, b, c) 7→ j
(−b+ |∆|1/2i

2a

)

is a bijection between the set

T∆ =
{

(a, b, c) ∈ Z3 : ∆ = b2 − 4ac, gcd(a, b, c) = 1,

and either − a < b ≤ a < c or 0 ≤ b ≤ a = c
}

and the singular moduli of discriminant ∆. Observe that, for each discrim-
inant ∆, there is a unique triple (a, b, c) ∈ T∆ with a = 1. This triple is
given by (1, k, (k2 −∆)/4), where k = 0 if ∆ is even and k = 1 if ∆ is odd.
The corresponding singular modulus has preimage

−k + |∆|1/2i
2

∈ Fj ,

which has imaginary part strictly greater than the preimage of any other
singular modulus of discriminant ∆ and of any singular modulus of discrim-
inant ∆′ with |∆′| < |∆|.
Proposition 2.7. For every ϵ > 0, there exist an ineffective constant

c1(ϵ) > 0 and an effective constant c2(ϵ) > 0, such that if x is a singu-

lar modulus of discriminant ∆, then

[Q(x) : Q] ≥ c1(ϵ)|∆|1/2−ϵ

and

[Q(x) : Q] ≤ c2(ϵ)|∆|1/2+ϵ.

Proof. The ineffective lower bound is due to Siegel [33]. The upper bound
is [23, Proposition 2.2]. □
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For α ∈ Q, write H(α) for the absolute multiplicative height of α and
h(α) for the absolute logarithmic height (see e.g. [8, §1.5]).

Proposition 2.8 ([24, Proposition 5.7]). Let x be a singular modulus of

discriminant ∆. Let τ ∈ Fj be such that j(τ) = x. Then

H(Re τ), H(Im τ) ≤ 2|∆|.
Proposition 2.9 ([17, Lemma 4.3]). For every ϵ > 0, there exists an inef-

fective constant c(ϵ) > 0 such that if x is a singular modulus of discriminant

∆, then

h(x) ≤ c(ϵ)|∆|ϵ.
2.3. Properties of j-maps. Let f be a non-constant j-map. Then [6,
Proposition 7.1] there exist r, s ∈ Q such that r > 0 and 0 ≤ s < 1 such
that f(z) = j(rz + s) for all z ∈ H. Two non-constant j-maps are equal if
and only if the corresponding pairs (r, s) are equal.

Recall that, for N ∈ Z>0, we define

C(N) =
{(

a b
0 d

)

∈ M2(Z) : ad = N, a > 0, 0 ≤ b < d, gcd(a, b, d) = 1
}

.

Proposition 2.10. Let g ∈ GL+
2 (Q). Then there exist a unique N ∈ Z>0

and a unique g′ ∈ C(N) such that j(gz) = j(g′z) for all z ∈ H.

Proof. Let g ∈ GL+
2 (Q). Then there exist r, s ∈ Q with r > 0 and 0 ≤ s < 1

such that f(z) = j(rz + s) for all z ∈ H. Further, the pair (r, s) is unique.
Let λ ∈ Q>0 be such that

λ

(
r s
0 1

)

=

(
a b
0 d

)

for some a, b, d ∈ Z with gcd(a, b, d) = 1. Since 0 ≤ s < 1, we have that
0 ≤ b < d. Let N = ad. Then

(
a b
0 d

)

∈ C(N),

and

j(gz) = j
((

a b
0 d

)

z
)

for all z ∈ H.
Suppose

(
a′ b′

0 d′

)

∈ C(M)

were also such that

j
(a

d
z +

b

d

)

= j
(a′

d′
z +

b′

d′

)

for all z ∈ H. Then, by the uniqueness of the representation of a j-map in
terms of r and s, we would have that

a

d
=

a′

d′
and

b

d
=

b′

d′
.

Hence,
a

a′
=

d

d′
,
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and either b = b′ = 0 or
b

b′
=

d

d′
.

So one matrix is just the rescaling of the other. Since the entries of each of
the two matrices are coprime integers and a, a′ > 0, the two matrices are in
fact identical and M = N . □

Proposition 2.11. Let N ∈ Z>0.

(1) For every γ ∈ SL2(Z) and g ∈ C(N), there exists h ∈ C(N) such

that j(gγz) = j(hz).
(2) For every γ ∈ SL2(Z) and g, h ∈ C(N), if g ̸= h, then j(gγz) ̸=

j(hγz).
(3) For every g, h ∈ C(N), there exists γ ∈ SL2(Z) such that j(gγz) =

j(hz).

Proof. Let γ ∈ SL2(Z) and g ∈ C(N). The entries of g are coprime integers
and det g = N . Since γ ∈ SL2(Z), the entries of gγ are coprime integers and
det gγ = N . Write gγ as

(
a b
c d

)

for a, b, c, d ∈ Z with gcd(a, b, c, d) = 1 and N = ad − bc. Let µ = gcd(a, c)
and m,n ∈ Z be such that µ = ma+ nc. Then

(
m n

−c/µ a/µ

)

︸ ︷︷ ︸

∈SL2(Z)

(
a b
c d

)

=

(
µ mb+ nd
0 −bc/µ+ ad/µ

)

,

which is upper triangular with coprime integer entries and has determinant
N .

Let p = mb+ nd and q = N/µ. Then

j(gγz) = j
((

a b
c d

)

z
)

= j
((

µ p
0 q

)

z
)

= j
((

µ p+ kq
0 q

)

z
)

for all z ∈ H, where k ∈ Z is the unique integer such that 0 ≤ p + kq < q.
This proves (1), since

(
µ p+ kq
0 q

)

∈ C(N).

Given Proposition 2.10, (2) follows immediately by making the change of
variables w = γ−1z.

Now we prove (3). Let

Γ0(N) =
{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 mod N
}

.

Let

σN =

(
N 0
0 1

)

.

Observe that σN ∈ C(N). By [10, Lemma 11.11], the map

g 7→ σ−1
N SL2(Z)g ∩ SL2(Z)
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gives a bijection between the elements g ∈ C(N) and the right cosets of
Γ0(N) in SL2(Z). In particular, for every g ∈ C(N), the set σ−1

N SL2(Z)g ∩
SL2(Z) is non-empty.

Let g, h ∈ C(N). Let γ1 ∈ σ−1
N SL2(Z)h ∩ SL2(Z) and γ2 ∈ σ−1

N SL2(Z)g ∩
SL2(Z). Let γ1,1, γ2,1 ∈ SL2(Z) be such that

γ1 = σ−1
N γ1,1h

and

γ2 = σ−1
N γ2,1g.

Then

j(gγ−1
2 γ1z) = j(gg−1γ−1

2,1σNσ−1
N γ1,1hz)

= j(γ−1
2,1γ1,1hz)

= j(hz)

for all z ∈ H. So we may take γ = γ−1
2 γ1 in (3). □

3. Completing the proof of Theorem 1.1

Definition 3.1. Let n ∈ Z>0 and x1, . . . , xn ∈ C× be pairwise distinct. The
set {x1, . . . , xn} is multiplicatively dependent if there exist a1, . . . , an ∈ Z,
not all zero, such that

n∏

i=1

xaii = 1.

The set {x1, . . . , xn} is minimally multiplicatively dependent if {x1, . . . , xn}
is multiplicatively dependent and no non-empty proper subset of {x1, . . . , xn}
is multiplicatively dependent.

Theorem 3.2. Let y ∈ C be such that y /∈ (0, 1728). Let n ∈ Z>0.

Then there exist only finitely many n-tuples (x1, . . . , xn) of singular moduli

x1, . . . , xn such that x1, . . . , xn, y are pairwise distinct and {x1−y, . . . , xn−y}
is minimally multiplicatively dependent.

We do not need to assume that y is a singular modulus in Theorem 3.2,
because the same proof works for all y outside the real interval (0, 1728).

Proof. Let f(z) = j(z) − y. Then the only zero of f in Fj is at the unique
τ ∈ Fj such that j(τ) = y. Since y /∈ (0, 1728), this point τ does not lie on
the arc of the circle |z| = 1 strictly between i and ρ. So

Im
−1

τ
< Im τ,

and, by Proposition 2.1, f(τ + s) ̸= 0 for all s ∈ (0, 1). Thus, f satisfies
the “divisor condition” of [13, Definition 1.3], and hence [13, Theorem 1.6]
implies the desired result. □

Theorem 3.3. Let y be a singular modulus. Let n ∈ Z>0. There exist

only finitely many n-tuples (x1, . . . , xn) such that x1, . . . , xn, y are pairwise

distinct singular moduli and {x1−y, . . . , xn−y} is minimally multiplicatively

dependent.
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Proof. By Theorem 3.2, we may assume that y ∈ (0, 1728). Let ∆ = ∆(y).
Note that |∆| > 4, since 0, 1728 are the only singular moduli with discrim-
inant in the set {−3,−4}. In particular, y has the Q-conjugate

y′ = j
(−k + |∆|1/2i

2

)

,

where k = 0 if ∆ is even and k = 1 if ∆ is odd. Since

|∆|1/2
2

> 1,

we have that y′ /∈ (0, 1728). Thus, Theorem 3.2 holds for y′, and so The-
orem 3.2 for y follows since y, y′ are conjugate over Q. □

Theorem 1.1 seems stronger than Theorem 3.3, since the former does not
require the multiplicative dependence to be minimal, only that all the expo-
nents are non-zero. In fact, we may deduce Theorem 1.1 from Theorem 3.3
by the following formal argument.

Proposition 3.4. Let S ⊂ C×. Let n ∈ Z>0. Suppose, for every k ∈
{1, . . . , n} there are only finitely many k-tuples (s1, . . . , sk) ∈ Sk such that

s1, . . . , sk are pairwise distinct and {s1, . . . , sk} is minimally multiplicatively

dependent. Then there are only finitely many n-tuples (s1, . . . , sn) ∈ Sn such

that s1, . . . , sn are pairwise distinct and

n∏

i=1

saii = 1

for some a1, . . . , an ∈ Z \ {0}.
Proof. Let (s1, . . . , sn) ∈ Sn be such that s1, . . . , sn are pairwise distinct and

n∏

i=1

saii = 1

for some a1, . . . , an ∈ Z \ {0}. The set {s1, . . . , sn} is thus multiplicatively
dependent. For each i ∈ {1, . . . , n}, there exists [13, Lemma 5.9] a minimally
multiplicatively dependent subset Si ⊂ S such that si ∈ Si. In particular,
s1, . . . , sn all belong to the set consisting of, for each k ∈ {1, . . . , n}, all
the coordinates of tuples (s′1, . . . , s

′
k) ∈ Sk such that s′1, . . . , s

′
k are pairwise

distinct and the set {s′1, . . . , s′k} is minimally multiplicatively dependent.
By assumption, this set is finite and hence there are only finitely many
possibilities for (s1, . . . , sn). □

Proof of Theorem 1.1. Apply Proposition 3.4 to Theorem 3.3 with

S = {x− y : x is a singular modulus and x ̸= y}.
□

4. Multiplicative special curves

In this section, we prove Theorem 1.4. To do this, we first prove the
following result.
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Theorem 4.1. Let n ∈ Z>0. Suppose that T ⊂ Cn+1 is a multiplicative

special curve. Then there exist k ∈ {1, . . . , n}, b1, . . . , bk ∈ Z \ {0}, and

pairwise distinct N1, . . . , Nk ∈ Z>1 such that, after reordering the first n
coordinates,

T = {(α1, . . . , αm, j(g1z), . . . , j(glz), j(z)) : z ∈ H},
where

(1) α1, . . . , αm are pairwise distinct and such that

{α1, . . . , αm} = {α ∈ C : α is either a zero or a pole of

k∏

i=1

FNi
(X)bi};

(2) g1, . . . , gl ∈ GL+
2 (Q) are pairwise distinct and such that

{g1, . . . , gl} =
k⋃

i=1

C(Ni).

This follows immediately from the following result, which we will prove
in Section 4.2. Throughout this paper, by a change of variables we mean
replacing a variable z by gz for some g ∈ GL+

2 (Q).

Theorem 4.2. Let n ∈ Z>0. Let f1, . . . , fn, f be pairwise distinct j-maps,

at least one of which is non-constant. Suppose that a1, . . . , an ∈ Z \ {0} and

c ∈ C× are such that
n∏

i=1

(fi(z)− f(z))ai = c(4.1)

for all z ∈ H. Then, after a change of variables, f(z) = j(z) and there exist

k ∈ {1, . . . , n}, N1, . . . , Nk ∈ Z>1 pairwise distinct, and b1, . . . , bk ∈ Z \ {0}
such that

{fi : fi is non-constant} = {j(gz) : g ∈ C(Ni), i = 1, . . . , k},
and, for all z ∈ H,

∏

i∈{1,...,n} s.t.
fi non-constant

(fi(z)− f(z))ai =

k∏

i=1

( ∏

g∈C(Ni)

(j(gz)− j(z))
)bi

and
∏

i∈{1,...,n} s.t.
fi constant

(fi(z)− f(z))ai = c

k∏

i=1

FNi
(j(z))−bi .

4.1. Functional independence modulo constants. Before proving The-
orem 4.2, we first prove some propositions using ideas from [13, §2]. These
will allow us to show that if

{(f1(z), . . . , fn(z), f(z)) : z ∈ H}(4.2)

is a multiplicative special curve, then we must be in the situation that some
fi is non-constant, f is non-constant, and some fi is constant.
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Definition 4.3. Functions f1, . . . , fn : H → C are called multiplicatively
independent modulo constants if, whenever a1, . . . , an ∈ Z are not all zero,
the function F : H → C defined by

F (z) =
n∏

i=1

fi(z)
ai

is non-constant.

Proposition 4.4. Let n ∈ Z>0. Let f be a non-constant j-map. Let

α1, . . . , αn ∈ C be pairwise distinct. Then the functions hi(z) = f(z) − αi

are multiplicatively independent modulo constants.

Proof. By changing variables, we may assume that f(z) = j(z). The result
is then immediate since j is a transcendental function. □

Thus, a multiplicative special curve as in (4.2) must have at least one of
f1, . . . , fn non-constant.

Proposition 4.5. Let n ∈ Z>0. Let f1, . . . , fn be pairwise distinct non-

constant j-maps. Let α be a singular modulus. Then the functions hi(z) =
fi(z)− α are multiplicatively independent modulo constants.

Proof. Suppose, for contradiction, that c ∈ C× and a1, . . . , an ∈ Z \ {0} are
such that

n∏

i=1

(fi(z)− α)ai = c(4.3)

for all z ∈ H. If [Q(z) : Q] = 2, then fi(z) is a singular modulus and so
fi(z) ∈ Q. Hence, c ∈ Q. Let K = Q(α, c).

We may write fi(z) = j(riz + si) for some ri, si ∈ Q with ri > 0, si ∈
[0, 1), and the pairs (ri, si) all distinct. Re-indexing and making a change
of variables, we may assume that f1(z) = j(z) and ri ≥ 1 for i ≥ 2.

For k ∈ Z>0, let zk =
√
−k. Then j(zk) is a singular modulus of dis-

criminant −4k and every preimage under j of every singular modulus of
discriminant −4k has imaginary part ≤

√
k with equality precisely at the

preimages of j(zk) itself which have the form zk + l for l ∈ Z.
For i > 1, we thus have that fi(zk) is a singular modulus with discrimin-

ant not equal to −4k. Also, the fi(zk) are all pairwise distinct, by Proposi-
tion 2.1, and, if k is large enough, not equal to α. One thus has that

(j(zk)− α)a1
n∏

i=2

(xi − α)ai = c

for some singular moduli x2, . . . , xn of discriminants not equal to 4k.
For all k large enough, Proposition 2.7 implies that the tuple

(j(zk), x2, . . . , xn)

has some Galois conjugate over K of the form

(β, x′2, . . . , x
′
n),
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where β ̸= j(zk). Note that

(β − α)a1
n∏

i=2

(x′i − α)ai = c.

Thus,

(j(zk)− α)a1
n∏

i=2

(xi − α)ai = (β − α)a1
n∏

i=2

(x′i − α)ai .

The only singular moduli of discriminant −4k in this relation are j(zk) and
β, and they are distinct. Hence, at least the terms (j(zk)− α) and (β − α)
in the above relation do not cancel.

Grouping the terms where xi = x′k, which we then cancel if ai = ak, we
obtain, for some m ∈ {2, . . . , 2n}, an m-tuple

(j(zk), β, y1, . . . , ym−2)

of singular moduli such that j(zk), β, y1, . . . , ym−2, α are pairwise distinct
and

(j(zk)− α)e1(β − α)e2
m−2∏

i=1

(yi − α)ei+2 = 1

for some e1, . . . , em ∈ Z \ {0}. Further, the tuples that arise in this way for
different k are all distinct, since the j(zk) are all distinct.

By the pigeonhole principle, there is thus some m ∈ {2, . . . , 2n} for which
there exist infinitely many m-tuples (w1, . . . , wm) of singular moduli such
that w1, . . . , wm, α are pairwise distinct and

m∏

i=1

(wi − α)bi = 1

for some b1, . . . , bm ∈ Z \ {0}. This contradicts Theorem 1.1 and so we are
done. □

Hence a multiplicative special curve as in (4.2) must have f non-constant.

Proposition 4.6. Let n ∈ Z>0. Let f1, . . . , fn, f be pairwise distinct, non-

constant j-maps. Then the functions h1, . . . , hn : H → C defined by hi(z) =
fi(z)− f(z) are multiplicatively independent modulo constants.

Proof. We will find some z ∈ H where precisely one of the functions hi
vanishes. By a change of variables, we may assume that f(z) = j(z) and
fi(z) = j(riz+ si) for some ri, si ∈ Q such that ri > 0 and 0 ≤ si < 1. Note
that (ri, si) ̸= (1, 0) since fi ̸= f . We may and do assume that the pairs
(ri, si) are strictly increasing when ordered lexicographically.

Suppose first that r1 ≥ 1. Let

z0 = − s1
2r1

+

√

4r1 − s21
2r1

i,

so that
−1

r1z0 + s1
= z0.
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Observe that |r1z0+s1| =
√
r1 ≥ 1. If r1 > 1, then r1z0+s1 ∈ Fj . If r1 = 1,

then s1 > 0 and z0 is on the left hand side of the lower boundary of Fj and
r1z0 + s1 is the reflection of z0 in the imaginary axis.

Since j(−1/z) = j(z), we have that f1(z0) = f(z0). If ri > r1, then, by
Proposition 2.1, Im riz0+si > Im r1z0+s1 and hence j(riz0+si) ̸= j(r1z0+
s1). If ri = r1 for i ≥ 2, then s1 < si < 1 and j(riz0 + si) ̸= j(r1z0 + s1) by
Proposition 2.1 again. Thus, fi(z0) = f(z0) if and only if i = 1 and we are
done.

Now suppose that r1 < 1. Let k ∈ Z be such that 0 ≤ kr1 − s1 < r1. Let

z1 = −k

2
− s1

2r1
+

√

4r1 − (kr1 − s1)2

2r1
i,

so that
−1

z1 + k
= r1z1 + s1.

Hence, f1(z1) = f(z1). Observe also that |z1 + k| = 1/
√
r1 and z1 + k ∈

Fj \∂Fj and so r1z1+s1 ∈ SFj \∂(SFj), where S denotes the transformation
z 7→ −1/z. Thus, by Proposition 2.1, the points in the SL2(Z)-orbit of z1
with imaginary part ≥ Im r1z1 + s1 are the elements of

{z1 +m : m ∈ Z} ∪ {r1z1 + s1 + l : l ∈ Z}.
In particular, riz1+si is not in the SL2(Z)-orbit of z1 if i ≥ 2, since (ri, si) ̸=
(1, 0). Hence, fi(z1) = f(z1) if and only if i = 1. The proof is thus complete.

□

Therefore a multiplicative special curve as in (4.2) must have some fi
constant.

4.2. The shape of multiplicative special curves.

Proof of Theorem 4.2. Let n ∈ Z>0. Let f1, . . . , fn, f be pairwise distinct j-
maps, at least one of which is non-constant. Suppose that a1, . . . , an ∈ Z\{0}
and c ∈ C× are such that

n∏

i=1

(fi(z)− f(z))ai = c(4.4)

for all z ∈ H.
By Proposition 4.5, the j-map f must be non-constant. Thus, by Pro-

position 4.4, at least one of the j-maps f1, . . . , fn must be non-constant.
By Proposition 4.6, at least one of the j-maps f1, . . . , fn is constant. After
relabelling, we thus have that

∏

i∈I1

(fi − f)ai
∏

i∈I2

(fi − f)ai = c

for all z ∈ H, where the j-map f is non-constant and I1, I2 are non-empty
index sets such that I1 ∪ I2 = {1, . . . , n} and the j-map fi is constant if
i ∈ I1 and non-constant if i ∈ I2.

By a change of variables, we may write f(z) = j(z). For i ∈ I1, let
αi be the singular modulus such that fi = αi. Note that the αi must be
pairwise distinct, since the fi are. For i ∈ I2, there is, by Proposition 2.10, a
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unique Ni ∈ Z>0 and gi ∈ C(Ni) such that fi(z) = j(giz) and Ni > 1 since
fi(z) ̸= j(z). Rearrange to obtain that

c′
∏

i∈I1

(j(z)− αi)
ai =

∏

i∈I2

(j(z)− j(giz))
−ai(4.5)

for all z ∈ H, where

c′ =
(−1)a1+...+an

c
.

We will show that the right hand side of (4.5) must be a product of powers
of functions

∏

g∈C(Ni)

(j(z)− j(gz)).

Rewrite the right hand side of (4.5) by grouping factors with the same
Ni to obtain that

c′
∏

i∈I1

(j(z)− αi)
ai =

∏

i∈I3

∏

g∈Si

(j(z)− j(gz))ai(g)(4.6)

for all z ∈ H, where I3 is a new index set and, for each i ∈ I3, Si ⊂ C(Mi) is
non-empty and the Mi ∈ Z>1 are pairwise distinct and the ai(g) ∈ Z \ {0}.
We will show that, for each i ∈ I3, we have that Si = C(Mi) and the ai(g)
are equal for every g ∈ C(Mi).

Suppose then that there is i0 ∈ I3 with the property that there exists
g0 ∈ Si0 and h0 ∈ C(Mi0) such that either h0 /∈ Si0 or h0 ∈ Si0 but
ai0(h0) ̸= ai0(g0). By Proposition 2.11, there exists γ ∈ SL2(Z) such that
j(g0γz) = j(h0z).

Since the function j(z) is invariant under the map z 7→ γz, we obtain
from (4.6) that

∏

i∈I3

∏

g∈Si

(j(z)− j(gz))ai(g) =
∏

i∈I3

∏

g∈Si

(j(z)− j(gγz))ai(g)(4.7)

for all z ∈ H. Now, by Proposition 2.11, the factor j(z) − j(h0z) appears
on the right hand side of (4.7) with exponent ai0(g0), and either does not
appear on the left hand side (if h0 /∈ Si0) or appears on the left hand side
with exponent equal to ai0(h0), which is not equal to ai0(g0), otherwise.

The equation (4.7) thus implies that there exists l ∈ Z>0 and non-constant
j-maps f1, . . . , fl, f with f(z) = j(z) and f1(z) = j(h0z) such that the func-
tions vi for i = 1, . . . , l defined by vi(z) = fi(z) − f(z) are multiplicatively
dependent modulo constants. This though contradicts Proposition 4.6.

Therefore, in (4.6), we must have, for each i ∈ I3, that Si = C(Mi) and
that the ai(g) are equal for every g ∈ C(Mi). The right hand side of (4.6)
may thus be rewritten to obtain that

c′
∏

i∈I1

(j(z)− αi)
ai =

∏

i∈I3

∏

g∈C(Mi)

(j(z)− j(gz))bi(4.8)

for all z ∈ H, for some bi ∈ Z \ {0}, and pairwise distinct Mi ∈ Z>1. The
right hand side is thus equal to the function

∏

i∈I3

FMi
(j(z))bi ,
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the zeros and poles of which are thus equal to the αi on the left hand side
of (4.8). □

4.3. Determining the multiplicative special curves. We now complete
the proof of Theorem 1.4. Let n ∈ Z>0. We will show that there are
only finitely many multiplicative special curves in Cn+1 and these may be
determined effectively.

Proof of Theorem 1.4. Suppose that

T = {(f1(z), . . . , fn(z), f(z)) : z ∈ H}
is a multiplicative special curve in Cn+1. Then, by Theorem 4.1, we may
reorder the first n coordinates of T in such a way that

T = {(α1, . . . , αm, j(g1z), . . . , j(glz), j(z)) : z ∈ H},
where

(1) α1, . . . , αm are pairwise distinct and such that

{α1, . . . , αm} = {α ∈ C : α is either a zero or a pole of
k∏

i=1

FNi
(X)bi};

(2) g1, . . . , gl ∈ GL+
2 (Q) are pairwise distinct and such that

{g1, . . . , gl} =
k⋃

i=1

C(Ni);

for some k ∈ Z>0, b1, . . . , bk ∈ Z \ {0}, and pairwise distinct N1, . . . , Nk ∈
Z>1. In particular,

m+ l = n.

Also,

l =
k∑

i=1

#C(Ni).

Since ([19, p. 53])

#C(Ni) = Ni

∏

p|Ni

(

1 +
1

p

)

,

we have that #C(Ni) ≥ Ni + 1.
Corollary 2.5 implies that

k∏

i=1

FNi
(X)bi

is non-constant. Hence, m ≥ 1. Thus we must have that

k∑

i=1

#C(Ni) ≤ n− 1.

So max{N1, . . . , Nk} ≤ n − 2. Since N1, . . . , Nk are pairwise distinct and
≥ 2, we must have that

k+1∑

i=2

(i+ 1) ≤ n− 1.
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Thus
1

2
k(k + 5) ≤ n− 1,

and hence

k ≤ 1

2
(
√
8n+ 17− 5).

In particular, there are only finitely many possibilities for k,N1, . . . , Nk and
these may be computed.

Let k,N1, . . . , Nk be such a possible choice for a multiplicative special
curve in Cn+1. Compute

l =
k∑

i=1

#C(Ni).

The corresponding polynomials FNi
may also be computed [10, §13B]. Let

β1, . . . , βr be pairwise distinct and such that

{β1, . . . , βr} = {β ∈ C : FNi
(β) = 0 for some i = 1, . . . , k}.

Write ei,u for the multiplicity of βu as a root of FNi
. Let di be the leading

coefficient of FNi
. Note that di ∈ Z \ {0}. Let p1, . . . , pt be a complete list

of the prime factors of d1, . . . , dk. Let fi,v be the exponent of pv occurring
in the prime factorisation of di.

The choice k,N1, . . . , Nk then gives rise to a multiplicative special curve
in Cn+1 if and only if there exist b1, . . . , bk ∈ Z \ {0} such that

k∑

i=1

bifi,v = 0

for every v ∈ {1, . . . , t} and

k∑

i=1

biei,u = 0

for exactly n − l choices of u ∈ {1, . . . , r}. This condition may be checked
effectively. Consequently, there are only finitely many multiplicative special
curves in Cn+1 and these may be determined effectively.

Now suppose that n ≤ 5. Then

k ≤ 1

2
(
√
57− 5) <

3

2
.

So k = 1 is the only possibility. And

N1 ≤ 3.

So the only possible multiplicative special curves in Cn+1 arise with k = 1
and N1 ∈ {2, 3}. If N1 = 2, then l = 3 and so one needs m ≤ 2, which is
impossible since F2 has three distinct roots (see Example 1.7). If N1 = 3,
then l = 4 and so one needs m ≤ 1, but the polynomial

F3(X) = −X(X − 8000)2(X + 32768)2(X − 54000)

has four distinct roots. Thus, there are no multiplicative special curves in
Cn+1 for n ∈ {1, . . . , 5}. □
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5. Weakly special subvarieties and Ax–Schanuel

5.1. Weakly special subvarieties. For the proof of Theorem 1.5, we will
need the notion of (weakly) special subvarieties. Varieties and subvarieties
are always irreducible over C.

Definition 5.1. Let m,n ∈ Z>0.

(1) A weakly special subvariety of Cm is an irreducible component of a
subvariety of Cm defined by equations of the form ΦN (xi, xk) = 0
and xl = c for N ∈ Z>0 and c ∈ C.

(2) A special point of Cm is a point (x1, . . . , xm) ∈ Cm such that x1, . . . , xm
are singular moduli.

(3) A special subvariety of Cm is a weakly special subvariety of Cm

which contains a special point of Cm. Equivalently, a weakly special
subvariety for which any constant coordinates are singular moduli.

(4) A weakly special subvariety of (C×)n is a coset of a subtorus (i.e. a
coset of an irreducible algebraic subgroup of (C×)n).

(5) A special point of (C×)n is a point (ζ1, . . . , ζn) ∈ (C×)n such that
ζ1, . . . , ζn are roots of unity.

(6) A special subvariety of (C×)n is a weakly special subvariety of (C×)n

which contains a special point of (C×)n.
(7) A (weakly) special subvariety of Cm × (C×)n is a product M × T ,

whereM ⊂ Cm is a (weakly) special subvariety of Cm and T ⊂ (C×)n

is a (weakly) special subvariety of (C×)n.

Note that a weakly special subvariety T ⊂ (C×)n is defined by equations
of the form

ta11 · · · tann = c

for some c ∈ C× and a1, . . . , an ∈ Z not all zero. Also, T is a special
subvariety if and only if T may be defined by equations of this kind with the
additional property that every such c is a root of unity. See, for example,
[34, Remark 1.0.1].

It follows from the above description that special subvarieties of Cm and
(C×)n are defined over Q. Special subvarieties of Cm have the following
useful properties.

Proposition 5.2 ([6, Proposition 2.1]). Let m ∈ Z>0. Let M ⊂ Cm be a

positive-dimensional special subvariety. Then M contains a Zariski-dense

union of special subvarieties of Cm of dimension 1.

Proposition 5.3 ([6, Proposition 2.3]). Let m ∈ Z>0. Let M ⊂ Cm. Then

M is a special subvariety of dimension 1 if and only if there exist j-maps

f1, . . . , fn, at least one of which is non-constant, such that

M = {(f1(z), . . . , fn(z)) : z ∈ H}.
In particular, a multiplicative special curve in Cn+1 is a special subvariety

of Cn+1 of dimension 1 which is contained in a coset of a torus.

5.2. Ax–Schanuel. Now we state the functional transcendence result of
Pila and Tsimerman [27] which we will use in the proof of Theorem 1.5.
This result is a consequence of Ax’s theorem [2] for the exponential function
and Pila and Tsimerman’s [26] Ax–Schanuel theorem for the j-function.
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Let m,n ∈ Z>0. Let
X = Cm × (C×)n

and
U = Hm × Cn

Define e : C → (C×) by e(t) = exp(2πit). Define π : U → X by

π(z1, . . . , zm, t1, . . . , tn) = (j(z1), . . . , j(zm), e(t1), . . . , e(tn)).

We make the following definitions.

Definition 5.4. An algebraic subvariety of U is a complex-analytically ir-
reducible component of U ∩W for some algebraic subvariety W ⊂ Cm×Cn.

Definition 5.5. A (weakly) special subvariety of U is a complex-analytically
irreducible component of π−1(W ) for W a (weakly) special subvariety of X
(as defined in Definition 5.1).

The result of Pila and Tsimerman we need is the following statement.

Theorem 5.6 (Weak Complex Ax [27, Theorem 3.3]). Let U ′ ⊂ U be a

weakly special subvariety. Let X ′ = π(U ′). Let V ⊂ X ′ and W ⊂ U ′ be

algebraic subvarieties and A ⊂ W∩π−1(V ) a complex-analytically irreducible

component. Then

dimA = dimV + dimW − dimX ′,

unless A is contained in a proper weakly special subvariety of U ′.

6. The proof of Theorem 1.5

We will prove Theorem 1.5 by applying the so-called Pila–Zannier strategy
of o-minimal point counting. This strategy was proposed by Zannier and
was first used by Pila and Zannier [29] to give a new proof of the Manin–
Mumford conjecture. The approach used here is similar to that employed in
[13, 27]. For background on o-minimality and on the Pila–Zannier method,
see Pila’s book [25].

6.1. The counting theorem for semirational points. We will use an
extension, due to Habegger and Pila [18, Corollary 7.2], of the Pila–Wilkie
o-minimal counting theorem [28]. We will always work in the o-minimal
structure Ran,exp; see [25, p. 77] for details of this structure. Definable
will mean definable with parameters in Ran,exp. Complex numbers, when
considered as elements of definable sets, will be identified with their real
and imaginary parts. Throughout this section, constants c = c(. . .) will be
positive and have only the indicated dependencies.

To state Habegger and Pila’s result, we need to define the k-height of a
real number. Let k ∈ Z>0. For y ∈ R, define the k-height of y by

Hk(y) = min{max{|a0|, . . . , |ak|} : a0, . . . , ak are coprime integers, not all

zero, such that aky
k + . . .+ a0 = 0},

with the convention that min ∅ = ∞. Note that y ∈ R thus has Hk(y) < ∞
if and only if [Q(y) : Q] ≤ k. For y = (y1, . . . , yn) ∈ Rn, define

Hk(y) = max{Hk(y1), . . . , Hk(yn)}.
The k-height is related to the multiplicative height in the following way.
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Proposition 6.1. Let d ∈ Z>0. There exists a constant c(d) > 0 with the

property that if α ∈ Q is such that [Q(α) : Q] = d, then

Hd(α) ≤ c(d)H(α)d.

Proof. Let

c(d) =

(
d

⌊d/2⌋

)

.

Suppose that

f(t) = adt
d + . . .+ a0

is a minimal polynomial over Z of some α ∈ Q. Then

Hd(α) ≤ max{|a0|, . . . , |ad|}
≤ c(d)M(f)

= c(d)H(α)d,

where the second inequality is [8, Lemma 1.6.7] and the final equality is [8,
Proposition 1.6.6]. Here M(f) denotes the Mahler measure of f . □

Habegger and Pila’s point counting result is the following.

Theorem 6.2 ([18, Corollary 7.2]). Let F ⊂ Rl × Rm × Rn be a definable

family parametrised by Rl. Let ϵ > 0 and k ∈ Z>0. Let π1 : R
m × Rn → Rm

and π2 : R
m×Rn → Rn be the projection maps. Then there exists a constant

c = c(F, k, ϵ) > 0 with the following property.

Let x ∈ Rl. Write Fx ⊂ Rm × Rn for the fibre of F over x. If T ≥ 1 and

Σ ⊂ {(y, z) ∈ Fx : Hk(y) ≤ T}
is such that #π2(Σ) > cT ϵ, then there exists a continuous, definable function

β : [0, 1] → Fx such that:

(1) The composition π1 ◦β : [0, 1] → Rm is semialgebraic and its restric-

tion to (0, 1) is real analytic.

(2) The composition π2 ◦ β : [0, 1] → Rn is non-constant.

(3) π2(β(0)) ∈ π2(Σ).
(4) The restriction of β to (0, 1) is real analytic.

The constant c = c(F, k, ϵ) here is not effective. For (4), we use the fact
that Ran,exp admits analytic cell decomposition [11, Theorem 8.8].

We will also require the following bound on the size of the exponents in
a multiplicative dependency.

Proposition 6.3. Let n ∈ Z>0. There exist constants c1(n), c2(n) > 0
with the following property. Let L be a number field and d = [L : Q]. If

α1, . . . , αn ∈ L× are pairwise distinct and such that

n∏

i=1

αai
i = 1

for some a1, . . . , an ∈ Z \ {0}, then there exist b1, . . . , bn ∈ Z \ {0} such that

n∏

i=1

αbi
i = 1
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and, for every i ∈ {1, . . . , n},
|bi| ≤ c1(n)(dmax{1, h(α1), . . . , h(αn)})c2(n).

This will follow from the following bound, which covers the case where
the multiplicative dependency is minimal.

Lemma 6.4. Let n ∈ Z>0. There exists an explicit constant c(n) > 0
with the following property. Let L be a number field and d = [L : Q]. If

α1, . . . , αn ∈ L× are pairwise distinct and the set {α1, . . . , αn} is minimally

multiplicatively dependent, then there exist b1, . . . , bn ∈ Z \ {0} such that

n∏

i=1

αbi
i = 1

and

|bi| ≤ c(n)dn+1(1 + log d)
n∏

k=1
k ̸=i

h(αk).

Proof. If n = 1, then α1 is a root of unity of degree ≤ d. Hence, α1 is a
primitive Nth root of unity for some N with ϕ(N) ≤ d, where ϕ denotes
Euler’s totient function. The desired result then follows from the elementary
bound

ϕ(N) ≥
√

N

2
.

For n ≥ 2, this is a result of Yu [22, Corollary 3.2]. The version stated
in [22] has dn log d in place of the dn+1(1 + log d) here; the slight weakening
here allows one to state a uniform result for all d, n ≥ 1 which still suffices
for our purposes. □

Proposition 6.3 follows from Lemma 6.4 via the following elementary
lemma.

Lemma 6.5. Let n ∈ Z>1. Let v, w ∈ Zn. Suppose that, for some k ∈
{1, . . . , n− 1}, we have that

v = (v1, . . . , vk, 0, . . . , 0),

where v1, . . . , vk ̸= 0, and that

w = (w1, . . . , wn)

with wk+1 ̸= 0. Let

λ = 1 +max{|v1|, . . . , |vk|, |w1|, . . . , |wn|}.
Let

u = v + λw,

and write

u = (u1, . . . , un).

Then u1, . . . , uk+1 ̸= 0 and

|ui| ≤ 2λ2 for i = 1, . . . , n.

Proof. For i = 1, . . . , k, if wi ̸= 0, then |wi| ≥ 1 and so λ|wi| > |vi|. The
result follows immediately since m2 +m ≤ 2m2 for all m ∈ Z. □
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Proof of Proposition 6.3. Let L be a number field and d = [L : Q]. Suppose
that α1, . . . , αn ∈ L× are pairwise distinct and such that

n∏

i=1

αai
i = 1

for some a1, . . . , an ∈ Z \ {0}. The set

S = {α1, . . . , αn}

is thus multiplicatively dependent, but not necessarily minimally multiplic-
atively dependent. For each i = 1, . . . , n though, there exists Si ⊂ S such
that αi ∈ Si and Si is minimally multiplicatively dependent, see e.g. [13,
Lemma 5.9]. We will apply Lemma 6.4 to each set Si.

By Lemma 6.4, there exist constants c1(n), c2(n) > 0 such that, for each
i = 1, . . . , n, there exist bi,k ∈ Z \ {0} for k ∈ Si with

∏

k∈Si

α
bi,k
k = 1

and

|bi,k| ≤ c1(n)(dmax{1, h(α1), . . . , h(αn)})c2(n).
Now let vi ∈ Zn be the vector with kth coordinate vi,k equal to bi,k if k ∈ Si

and 0 otherwise. Hence, for i = 1, . . . , n, we have that vi,i ̸= 0 and

n∏

k=1

α
vi,k
k = 1.

Let

µ = 1 +max{|vi,k| : i, k ∈ {1, . . . , n}}.
Apply Lemma 6.5 inductively to v1, . . . , vn to obtain a vector

w = (w1, . . . , wn) ∈ Zn

which is a Z-linear combination of v1, . . . , vn and such that w1, . . . , wn ̸= 0
and

|wi| ≤ c3(n)µ
c4(n) for i = 1, . . . , n

for some constants c3(n), c4(n) > 0. In particular, there are constants
c5(n), c6(n) > 0 such that

|wi| ≤ c5(n)(dmax{1, h(α1), . . . , h(αn)})c6(n) for i = 1, . . . , n.

Since w is a Z-linear combination of v1, . . . , vn, one has that

n∏

i=1

αwi

i = 1,

as required. □
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6.2. Completing the proof of Theorem 1.5. Now we come to the proof
of Theorem 1.5. Fix n ∈ Z>0. In the proof, c1, c2, . . . will denote positive
constants which depend only on n. Any other dependencies among constants
will be explicitly indicated.

By Theorem 1.4, there are only finitely many multiplicative special curves
in Cn+1. Since every multiplicative special curve is defined over Q, we may
fix some number field K over which all the multiplicative special curves in
Cn+1 are defined.

Define the complexity ∆ of an (n + 1)-tuple (x1, . . . , xn, y) of singular
moduli x1, . . . , xn, y by

∆ = max{|∆(x1)|, . . . , |∆(xn)|, |∆(y)|}.
Recall that e : C → C× is given by e(z) = exp(2πiz). Let Fe = {z ∈ C :
0 ≤ Re z < 1}, so that e restricted to Fe is a bijection. The restrictions
j : Fj → C and e : Fe → C× are definable. Let

Y =
{

(z1, . . . , zn, z, w1, . . . , wn, w, u1, . . . , un, r1, . . . , rn, s) ∈ F
2(n+1)
j × Fn

e × Rn+1 :

n∑

i=1

riui = s, w = z, and wi = zi and e(ui) = j(zi)− j(z) for i = 1, . . . , n
}

and

Z =
{

(z1, . . . , zn, z, r1, . . . , rn, s) ∈ F
n+1
j × Rn+1 : ∃(u1, . . . , un) ∈ Fn

e such that

(z1, . . . , zn, z, z1, . . . , zn, z, u1, . . . , un, r1, . . . , rn, s) ∈ Y
}

.

The sets Y, Z are both definable.
Suppose that (x1, . . . , xn, y) is an (n+1)-tuple of pairwise distinct singular

moduli x1, . . . , xn, y such that
n∏

i=1

(xi − y)ai = 1

for some ai ∈ Z \ {0}. Let ∆ be the complexity of this tuple. Let

d = [Q(x1, . . . , xn, y) : Q].

By Proposition 6.3, we may assume that

|ai| ≤ c1(dmax{1, h(x1), . . . , h(xn), h(y)})c2

for i ∈ {1, . . . , n}. Then apply Proposition 2.7 (with ϵ = 1/4 say) to give an
upper bound on d and Proposition 2.9 to bound the logarithmic heights of
the singular moduli. One thereby obtains that, for i ∈ {1, . . . , n},

|ai| ≤ c3∆
c4 .

Let

(τ1, . . . , τn, τ, ν1, . . . , νn) ∈ F
n+1
j × Fn

e

be the preimage of

(x1, . . . , xn, y, x1 − y, . . . , xn − y)

with respect to the map (j, e) : Fn+1
j × Fn

e → Cn+1 × (C×)n. Note that
τ1, . . . , τn, τ are all quadratic, since they are the preimages for j of singular
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moduli. By Proposition 2.8, the real and imaginary parts of τ1, . . . , τn, τ all
have multiplicative height ≤ 2∆. Observe also that

n∑

i=1

aiνi ∈ Z,

since
n∏

i=1

e(νi)
ai = 1.

Let b =
∑n

i=1 aiνi. Then

|b| ≤
n∑

i=1

|ai|,

since ν1, . . . , νn all have real part in the interval [0, 1). In particular,

|b| ≤ c5∆
c6 .

The tuple (x1, . . . , xn, y) thus gives rise to the point

(τ1, . . . , τn, a1, . . . , an, b) ∈ Z,

which is quadratic in the τi, τ coordinates and integral in the ai, b coordin-
ates. Further, the 2-height of this point is ≤ c7∆

c8 by Proposition 6.1.
Every Galois conjugate (x′1, . . . , x

′
n, y

′) of (x1, . . . , xn, y) over K satisfies
the multiplicative relation

n∏

i=1

(x′i − y′)ai = 1,

where a1, . . . , an are the same integers as before. The conjugate (x′1, . . . , x
′
n, y

′)
thus gives rise, in the same way as (x1, . . . , xn, y) did, to a point

(τ ′1, . . . , τ
′
n, τ

′, a1, . . . , an, b
′) ∈ Z,

where the τ ′i , τ
′ are quadratic and of multiplicative height ≤ 2∆, the ai are

the same integers as before, and b′ is an integer such that |b′| ≤ c5∆
c6 .

Note that b′ is not necessarily the same as b. In particular, the point
(τ ′1, . . . , τ

′
n, τ

′, a1, . . . , an, b
′) also has 2-height ≤ c7∆

c8 . Further, the corres-
ponding points of Z arising from distinct K-conjugates of (x1, . . . , xn, y) are
always distinct in the Fn+1

j coordinates. By Proposition 2.7 with ϵ = 1/4,

there are at least c9∆
1/4 distinct K-conjugates of (x1, . . . , xn, y), each of

which gives rise to a distinct point of Z in the above way.
View Y as a definable family of sets fibred over the (r1, . . . , rn) coordin-

ates. Each of the points

(τ ′1, . . . , τ
′
n, τ

′, a1, . . . , an, b
′) ∈ Z

described above is the projection of a point

(τ ′1, . . . , τ
′
n, τ

′, τ ′1, . . . , τ
′
n, τ

′, ν ′1, . . . , ν
′
n, a1, . . . , an, b

′) ∈ Y.

Note that the Y -points arising in this way from distinct conjugates over K
of (x1, . . . , xn, y) are distinct in their (τ ′1, . . . , τ

′
n, τ

′) coordinates.
These points (τ ′1, . . . , τ

′
n, τ

′, τ ′1, . . . , τ
′
n, τ

′, ν ′1, . . . , ν
′
n, b

′) all lie on the fibre
Y(a1,...,an) of Y over (a1, . . . , an). Let

π1 : Y(a1,...,an) → F
n+1
j × R and π2 : Y(a1,...,an) → F

n+1
j × Fn

e × R
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be the projection maps

(z1, . . . , zn, z, w1, . . . , wn, w, u1, . . . , un, s) 7→ (z1, . . . , zn, z, s)

and

(z1, . . . , zn, z, w1, . . . , wn, w, u1, . . . , un, s) 7→ (w1, . . . , wn, w, u1, . . . , un)

respectively. Observe that π2 is injective. Let Σ ⊂ Y(a1,...,an) be the set
consisting of all the points arising in the way described above from the K-
conjugates of (x1, . . . , xn, y). Then π1(Σ) contains only algebraic points of

degree at most 2 and which have 2-height ≤ c7∆
c8 . Also, #π2(Σ) > c9∆

1/4.
Now let CHP > 0 be the constant given by Theorem 6.2 applied to Y

with k = 2 and ϵ = (8c8)
−1. Note that c8 depends only on n, which is fixed,

and CHP depends only on Y, k, ϵ, which are all fixed. In particular, CHP is
independent of (x1, . . . , xn, y) and a1, . . . , an. Let T = c7∆

c8 . Then π1(Σ)
contains only algebraic points of degree ≤ 2 and 2-height ≤ T and

#π2(Σ) > c9∆
1/4.

In particular, if ∆ > (c7CHP /c9)
8, then

#π2(Σ) > CHPT
ϵ

(here we assume without loss of generality that c7, c8 ≥ 1, so cϵ7 ≤ c7).
Suppose then that ∆ > (c7CHP /c9)

8. Then Theorem 6.2 implies that
there exists a continuous, definable function β : [0, 1] → Y(a1,...,an) with the
following properties:

(1) The composition π1 ◦ β : [0, 1] → Fn+1
j × R is semialgebraic and its

restriction to (0, 1) is real analytic.
(2) The composition π2 ◦ β : [0, 1] → F

n+1
j × Fn

e is non-constant.

(3) π2(β(0)) ∈ π2(Σ).
(4) The restriction of β to (0, 1) is real analytic.

Note that (2) implies that π1 ◦ β composed with projection to the F
n+1
j

coordinates is non-constant. Since π2 is injective, we have that β(0) ∈ Σ,
i.e. β(0) is a point of Y(a1,...,an) arising from a K-conjugate of (x1, . . . , xn, y).

Let Z(a1,...,an) be the fibre of Z over (a1, . . . , an). Then (π1 ◦ β)([0, 1]) ⊂
Z(a1,...,an). Let

U = {(z1, . . . , zn, z, t) ∈ Hn+1 × C :

n∏

i=1

(j(zi)− j(z))ai = e(t)}.

Note that Z(a1,...,an) ⊂ U . Hence, by [1, Proposition 1], there exists an open

neighbourhood W ⊂ Hn+1 × C of π1(β(0)) such that

W ∩ (π1 ◦ β)([0, 1]) ⊂ V ⊂ U,

where V is a finite union of irreducible Nash subsets (see [1, §2.2]) of W , all
of which contain π1(β(0)).

We now use the characterisation of Nash subsets in [1, Remark 4]. Since
(π1 ◦β)([0, 1]) has non-constant projection to F

n+1
j , by real analytic continu-

ation there must exist some complex-analytically irreducible component of
V with non-constant projection to F

n+1
j . Every complex-analytically irredu-

cible component of V contains π1(β(0)). Therefore, there exists a complex



MULTIPLICATIVE RELATIONS AMONG DIFFERENCES OF SINGULAR MODULI 31

algebraic subvariety A ⊂ Cn+2 and a complex-analytically irreducible com-
ponent B ⊂ (Hn+1 × C) ∩ A such that B has non-constant projection to
Hn+1 and π1(β(0)) ∈ B ⊂ U .

By the Ax–Schanuel result of Theorem 5.6, there thus exist weakly special
subvarieties W1 ⊂ Hn+1 and W2 ⊂ C such that

B ⊂ W1 ×W2 ⊂ U.

Since the projection U → Hn+1 has discrete fibres, the weakly special sub-
variety W2 must just be a point. Hence, W2 is equal to the projection of
π1(β(0)), which is {b′} for some b′ ∈ Z.

The weakly special subvariety W1 must be positive-dimensional, since B
has non-constant projection to Hn+1. Also, W1 contains the preimage of
some K-conjugate of (x1, . . . , xn, y), and so any constant coordinates of W1

must be quadratic. Finally, note that

W1 ⊂ {(z1, . . . , zn, z) :
n∏

i=1

(j(zi)− j(z))ai = 1}.

By setting all free variables of W1 except one equal to the corresponding
coordinates of the preimage of the K-conjugate of (x1, . . . , xn, y) which W1

contains, we may and do assume that dimW1 = 1. Now take the image
of W1 under j. One thus obtains j-maps f1, . . . , fn, f , which are not all
constant, and satisfy

n∏

i=1

(fi(z)− f(z))ai = 1 for all z ∈ H.(6.1)

Since j(W1) contains some K-conjugate (x′1, . . . , x
′
n, y

′) of (x1, . . . , xn, y),
the j-maps f1, . . . , fn, f must be pairwise distinct. In particular, j(W1) is a
multiplicative special curve in Cn+1 which contains (x′1, . . . , x

′
n, y

′).
Thus, j(W1) is one of the finitely many multiplicative special curves in

Cn+1 given by Theorem 1.4. In particular, j(W1) is defined over K. Thus,
(x1, . . . , xn, y) ∈ j(W1), since j(W1) contains aK-conjugate of (x1, . . . , xn, y).

We have therefore shown that, for (x1, . . . , xn, y) an (n+1)-tuple of pair-
wise distinct singular moduli x1, . . . , xn, y of complexity ∆ such that

n∏

i=1

(xi − y)ai = 1

for some a1, . . . , an ∈ Z \ {0}, if ∆ > (c7CHP /c9)
8, then (x1, . . . , xn, y)

belongs to one of the finitely many multiplicative special curves in Cn+1.
Hence, the complexity of every such (n + 1)-tuple which does not lie on a
multiplicative special curve in Cn+1 is ≤ (c7CHP /c9)

8. In particular, there
are only finitely many such (n + 1)-tuples. This completes the proof of
Theorem 1.5. Corollary 1.6 follows immediately.

7. The Zilber–Pink connection

Let m,n ∈ Z>0. Let

Xm,n = Cm × (C×)n.

Recall the definition of a special subvariety of Xm,n from Definition 5.1.
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Definition 7.1. Let V ⊂ Xm,n be a subvariety. A subvariety W ⊂ V is
called an atypical component of V in Xm,n if there exists a special subvariety
T ⊂ Xm,n such that W is an irreducible component of V ∩ T and

dimW > dimV + dimT − dimXm,n.

An atypical component W of V in Xm,n is a maximal atypical component of
V in Xm,n if there does not exist any atypical component W ′ of V in Xm,n

such that W ⊊ W ′.

The Zilber–Pink conjecture was formulated independently in different
contexts by Zilber [35], Pink [30], and Bombieri, Masser, and Zannier [9].
The conjecture is wide open; see [25, Part IV] for more details. In our
context, the Zilber–Pink conjecture is the following statement.

Conjecture 7.2 (Zilber–Pink conjecture). Let V ⊂ Xm,n be a subvariety.

Then there are only finitely many maximal atypical components of V in

Xm,n.

In the remainder of this section, we show that, in light of Theorem 1.4,
Theorem 1.5 would follow from Conjecture 7.2. For n ∈ Z>0, we define
Vn ⊂ Xn+1,n by

Vn = {(w1, . . . , wn, w, t1, . . . , tn) ∈ Xn+1,n : ti = wi − w for i = 1, . . . , n}.
Note that dimXn+1,n = 2n+ 1 and dimVn = n+ 1.

Proposition 7.3. Let n ∈ Z>0. Suppose that x1, . . . , xn, y are singular

moduli such that xi ̸= y for i ∈ {1, . . . , n} and

n∏

i=1

(xi − y)ai = 1

for some a1, . . . , an ∈ Z which are not all zero. Then

{(x1, . . . , xn, y, x1 − y, . . . , xn − y)}
is an atypical component of Vn in Xn+1,n.

Proof. Let
σ = (x1, . . . , xn, y, x1 − y, . . . , xn − y).

Observe that σ ∈ Vn. Since x1, . . . , xn, y are singular moduli, the set

{(x1, . . . , xn, y)}
is a special subvariety of Cn+1 of dimension 0. Write M for this special
subvariety. Since xi ̸= y and

n∏

i=1

(xi − y)ai = 1,

the point
(x1 − y, . . . , xn − y)

is contained in a special subvariety T ⊂ (C×)n of dimension at most n− 1.
Hence, M ×T is a special subvariety of Xn+1,n of dimension ≤ n− 1. Thus,

dimVn + dim(M × T )− dimXn+1,n ≤ (n+ 1) + (n− 1)− (2n+ 1) < 0.

Thus, {σ} ⊂ Vn ∩ (M × T ) is an atypical component of Vn in Xn+1,n. □
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Proposition 7.4. Let n ∈ Z>0. Suppose that x1, . . . , xn, y are pairwise

distinct singular moduli such that the set {x1 − y, . . . , xn − y} is minimally

multiplicatively dependent. Then either (x1, . . . , xn, y) lies on a multiplicat-

ive special curve in Cn+1 or

{(x1, . . . , xn, y, x1 − y, . . . , xn − y)}
is a maximal atypical component of Vn in Xn+1,n.

Proof. Suppose that x1, . . . , xn, y are pairwise distinct singular moduli such
that the set {x1 − y, . . . , xn − y} is minimally multiplicatively dependent.
Let

σ = (x1, . . . , xn, y, x1 − y, . . . , xn − y).

Then, by Proposition 7.3, {σ} is an atypical component of Vn in Xn+1,n.
Suppose then that {σ} is not a maximal atypical component of Vn in

Xn+1,n. Then there exist special subvarieties M ⊂ Cn+1 and T ⊂ (C×)n

and an irreducible component W ⊂ Vn ∩ (M × T ) such that dimW > 0,
σ ∈ W , and

dimW > dimVn + dim(M × T )− dimXn+1,n.

In order to intersect Vn atypically, both M,T must be proper subvarieties.
If T was defined by two independent multiplicative conditions, then two

independent multiplicative relations would hold on the set

{x1 − y, . . . , xn − y},
and thus some proper subset would be multiplicatively dependent, a contra-
diction. So T must be defined by one independent multiplicative condition.

Hence, for M × T to intersect Vn atypically, one must have that

(α1 − β, . . . , αn − β) ∈ T

for every (α1, . . . , αn, β) ∈ M . Thus, by Proposition 5.3, if M0 ⊂ M is a
special subvariety of Cn+1 such that dimM0 = 1 and no two coordinates of
M0 are identically equal, then M0 is a multiplicative special curve in Cn+1.

Suppose that dimM > 1. Since (x1, . . . , xn, y) ∈ M and x1, . . . , xn, y
are pairwise distinct, the locus in M where some two coordinates are equal
is a Zariski-closed proper subset of M . Thus, by Proposition 5.2, M must
contain infinitely many multiplicative special curves in Cn+1. However, there
are only finitely many multiplicative special curves in Cn+1 by Theorem 1.4.
So we must have that dimM = 1, and so M itself is a multiplicative special
curve in Cn+1. Since (x1, . . . , xn, y) ∈ M , the proof is complete. □

Proposition 7.5. Assume Conjecture 7.2. Then Theorem 1.4 implies The-

orem 1.5.

Proof. Fix n ∈ Z>0. We will show that there exists a constant C > 0 with
the following property. Suppose that (x1, . . . , xn, y) is an (n + 1)-tuple of
pairwise distinct singular moduli x1, . . . , xn, y such that

n∏

i=1

(xi − y)ai = 1
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for some a1, . . . , an ∈ Z \ {0}. Then either |∆(y)| ≤ C or (x1, . . . , xn, y) lies
on a multiplicative special curve in Cn+1. By Theorem 1.1, this suffices to
prove Theorem 1.5.

Suppose then that (x1, . . . , xn, y) is an (n + 1)-tuple of pairwise distinct
singular moduli x1, . . . , xn, y such that

n∏

i=1

(xi − y)ai = 1

for some a1, . . . , an ∈ Z \ {0}. For every k ∈ {1, . . . , n}, there exists, by [13,
Lemma 5.9], a set Ik ⊂ {1, . . . , n} such that k ∈ Ik and the set

{xi − y : i ∈ Ik}
is minimally multiplicatively dependent. If, writing Ik = {i1, . . . , imk

}, we
have that

{(xi1 , . . . , ximk
, y, xi1 − y, . . . , ximk

− y)}
is a maximal atypical component of Vk inXk+1,k for some k, then, by Conjec-
ture 7.2 applied to Vk, there are only finitely many possibilities for y and we
are done. Hence, by Proposition 7.4, we may assume that (xi1 , . . . , ximk

, y)

lies on a multiplicative special curve Mk in Cmk+1 for every k.
Suppose that Ik ∩ Ik′ ̸= ∅ for some k ̸= k′. Let i ∈ Ik ∩ Ik′ . If the

corresponding coordinates (i.e. the coordinate where xi appears) of both
Mk and Mk′ are fixed coordinates, then clearly these fixed coordinates must
both be equal to xi.

Suppose that precisely one of the corresponding coordinates of Mk and
Mk′ is a fixed coordinate. Without loss of generality, assume that Mk has
the constant coordinate. Then xi must be equal to the constant coordinate
of Mk. Since Mk is a multiplicative special curve in Cmk+1, this means
that xi is a singular modulus of bounded discriminant. Also, there exists
a g ∈ C(N) for some bounded N such that the corresponding coordinate
of Mk′ is given by j(gz) and the final coordinate of Mk′ is given by j(z).
Hence, there is z ∈ H such that

j(z) = y and j(gz) = x.

In particular, the discriminant of y must be bounded. Hence, we may assume
that the corresponding coordinates of Mk and Mk′ are either both constant
coordinates or both non-constant coordinates.

Suppose the corresponding coordinates of both Mk and Mk′ are non-
constant. So there are g ∈ C(N) and g′ ∈ C(M) for some bounded M,N
such that there exist w, z ∈ H such that

y = j(z) = j(w)

and
xi = j(gz) = j(g′w).

Since j(z) = j(w), there exists γ ∈ SL2(Z) such that w = γz. Hence,

j(gz) = j(g′γz).

In particular, either g = g′ or, by Proposition 2.6, y is a singular modulus
of bounded discriminant. In the latter case we are done, so we may assume
that g = g′.
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Thus, provided |∆(y)| is larger than some suitable constant C, there ex-
ist j-maps f1, . . . , fn, not all constant, such that f1, . . . , fn, j are pairwise
distinct,

(x1, . . . , xn, y) ∈ {(f1(z), . . . , fn(z), j(z)) : z ∈ H}
and, for every k ∈ {1, . . . , n} and i ∈ Ik, there exist ak,i ∈ Z \ {0} such that

∏

i∈Ik

(fi(z)− j(z))ak,i = 1

for all z ∈ H. Since k ∈ Ik always, we may use Lemma 6.5 to find b1, . . . , bn ∈
Z \ {0} such that

n∏

i=1

(fi(z)− j(z))bi = 1

for all z ∈ H. Thus, the set

{(f1(z), . . . , fn(z), j(z)) : z ∈ H}
is a multiplicative special curve in Cn+1 which contains (x1, . . . , xn, y). □
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