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A B S T R A C T

This paper introduces innovative approaches for robust and computationally efficient optimal design of run-
of-river hydropower plants. Compared with existing design software, it (1) integrates optimized turbine
operations into design optimization instead of following predefined operational rules, and (2) combines
this with a regular sampling of the flow duration curve to significantly reduce data inputs. Our rigorous
benchmarking demonstrates that (1) operation optimization improves design performance at low computational
cost, whilst (2) data input reduction slashes computational costs by over 92% with minimal impact on design
recommendations and key robustness analysis insights. Taken together, these innovations make integrated
design and operation optimization, complete with in-depth robustness analysis, laptop-accessible. They also
reinforce sustainability efforts by minimizing the need for high-performance computing and large associated
embodied greenhouse gas emissions.

1. Introduction

Small hydropower plants (SHPs) offer an environmentally friendly
and cost-effective alternative to conventional dam-based plants
(Tsuanyo et al., 2023). While only 36% of their global potential is
currently tapped (UNIDO, 2022), a significant global expansion is ex-
pected (Couto and Olden, 2018), including in industrial nations where
the best sites for large-scale hydropower are already taken such as
Europe (Kuriqi et al., 2020; Kishore et al., 2021). The majority of SHPs
follow the run-of-the-river (RoR) scheme (Yildiz and Vrugt, 2019),
relying on the dynamic flow of rivers for hydropower generation due
to their sub-daily storage capacity. Out of over 3,000 power plants of 1
MW capacity or more, either planned or under construction, notably in
emerging economies (Zarfl et al., 2015), RoR plants account for more
than 75% of the total (Bejarano et al., 2019). This momentum ensures
that hydropower will remain a key electricity supply source globally in
decades to come (Winemiller et al., 2016; Gernaat et al., 2017; Pokhrel
et al., 2018; Moran et al., 2018). It also aligns with the seventh Sus-
tainable Development Goal (SDG) of providing affordable, dependable,
sustainable, and modern energy for all (McCollum et al., 2017; Dorber
et al., 2020), whilst contributing to other SDG targets (Gielen et al.,
2019).

RoRs designed today will be deployed in a world characterized by
a changing climate and uncertain economic conditions. Observations
from the Global Precipitation Climatology Center (Spinoni et al., 2014)
and recent studies (Spinoni et al., 2018; Ault, 2020; Sreeparvathy
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and Srinivas, 2022; Yildiz et al., 2022; Fang et al., 2022) highlight
increasing global trends in the frequency, length, and intensity of
meteorological droughts. These trends could directly lead to increases
in streamflow drought in the future over a wide range of climate zones
in tropical and temperate regions (Cook et al., 2020; Zhang et al.,
2023). RoR schemes lack the storage capacity to regulate seasonal
discharge fluctuations, making them significantly more vulnerable to
these changes than plants sited at the outlet of large reservoirs. Climate
risks are compounded by the risks that socio-economic uncertainty
also pose to the long-term viability of hydropower projects, and both
should be considered simultaneously in project development (Shak-
tawat and Vadhera, 2021). In fact, there are documented examples of
socio-economic risks being a more critical future uncertainty for the
performance of a hydropower investment than climate change (Ray
et al., 2018; Yildiz et al., 2024). These studies stress the importance of
an integrated evaluation of the potential impacts of these uncertainties
on the financial viability of hydropower investments as early as the
planning phase.

Besides integrating uncertainty, hydropower plant design should
also explicitly incorporate optimized operations. Yet, that is often not
the case for RoR plant design where ad hoc operational rules are con-
sidered instead, primarily for computational simplicity (e.g., Anagnos-
topoulos and Papantonis, 2007; Mamo et al., 2018; Yildiz et al., 2024).
However, there is evidence that design and operation of hydropower
infrastructure could be critically dependent on each other, including in
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situations where there is a need to address hydro-climatic variability,
climate change and unintended consequences of development (Bertoni
et al., 2019). To address this and achieve future-proof planning where
investments remain financially resilient to perturbations, design and
operations should be robust, i.e., able to withstand deviations from
design conditions (Herman et al., 2015). Numerous frameworks (e.g.,
Lempert, 2002; Bryant and Lempert, 2010; Brown et al., 2012; Haas-
noot et al., 2013; Kasprzyk et al., 2013) have been developed in
recent years to integrate considerable future uncertainties and assess
their impact on design, operations and adaptation in complex (water)
infrastructure systems. Beside a common focus on robustness, they
recognize that the multi-stakeholder, multi-purpose nature of these
systems, combined with unquantifiable future uncertainty, lead to deep
uncertainty (Kwakkel et al., 2016), whereby formulating the problem
and its boundaries becomes a challenge in itself.

In water resource systems that include complex interactions be-
tween design variables and operation restrictions, both multi-objective
optimization and robustness analysis typically demand a substantial
amount of computing time and resources. These computational require-
ments become even more pronounced when conducting exploratory
studies involving both steps (e.g., Quinn et al., 2018; Bertoni et al.,
2019). They then create a need for large-scale computing solutions —
High-Performance Computing (HPC) or cloud-based computing, and
contributes significantly to the increasing need for large-scale com-
puting solutions, including supercomputers and data centers (Hussain
et al., 2019; Lannelongue et al., 2021). In turn, this quest for en-
hanced processing capacity raises environmental concerns (Hernandez
et al., 2018; Katal et al., 2023), because the electricity that needs
to be mobilized for the continuous use of computational facilities
contributes to climate change, resource depletion, and strain on local
power infrastructures (Bharany et al., 2022). Thus, scientific and large-
scale technical computing presently account for 0.3% of global carbon
emissions, and this share is likely to increase in the future (Jones,
2018; Cao et al., 2022; Katal et al., 2022), creating an additional, con-
siderable challenge to global climate change mitigation measures. As
the need for large-scale computing grows, finding innovative technical
solutions that balance these computing demands with energy economy
and environmental responsibility becomes critical. These solutions will
also remove barriers to application of these methods beyond actors in
industrialized nations – academia and corporations – that often lack the
human and physical infrastructure to use the most largest computing
facilities.

This study proposes approximations to slash the computational
requirements associated with the robust design of RoR hydropower
plants, to (1) make robust design and analysis more accessible thereby
accelerating decision-making processes significantly, and to (2) rein-
force sustainability efforts by reducing dependence on
high-performance computing and mitigating carbon emissions from
data centers. It aims to do this without compromising accuracy and
in fact, by explicitly incorporating optimized operations into design for
the first time. These two innovations, together, lead to Fast Operation-
optimized Robust Design of run-of-river HYdroPowER plants, summa-
rized by the acronym HYPER-FORD that we will use throughout this
paper.

The methodological steps employed in this paper, which also dictate
its organization, are provided in Fig. 1. In Section 2, we summarize
the robust RoR hydropower design approach introduced in Yildiz et al.
(2024) which is our starting point for this paper. This is followed by
the introduction of the case studies used to benchmark the innovations
included in this work. Section 3 then introduces HYPER-FORD and
its two key innovations; (3.1) HYPER𝑂𝑃 module for coupled design
and operation optimization and (3.2) a discretization of the flow du-
ration curve (FDC) to strategically reduce data input and enhance
computational efficiency. Following this, in Section 4, we detail the
methodology for benchmarking our innovations. Benchmarking results
in Section 5 then validate these innovations. Lastly, in Section 6, we
discuss the broader implications of our results, explore opportunities
for future research, and conclude this paper with a summary of our
main findings.

2. Robust design: HYPER-MORDM framework

From this point on, we call HYPER-MORDM the analytical frame-
work developed in Yildiz et al. (2024) that merges the Many Objective
Robust Decision Making (MORDM) approach (Kasprzyk et al., 2013)
with the versatile capabilities of the HYPER toolbox (Yildiz and Vrugt,
2019). HYPER is a state-of-the-art RoR plant design toolbox that iden-
tifies optimal design parameters for user-selected power production or
financial performance metrics. As depicted in the upper gray box in
Fig. 1, the HYPER-MORDM comprises of two main steps: design opti-
mization with multiple financial objectives (Section 2.1) and robustness
analysis (Section 2.2).

A key element in both stages of HYPER-MORDM in the use of
FDCs, defined as cumulative frequency curves depicting streamflow
(e.g., at a planned RoR plant site) as a function of percentage of time
discharge is equaled or exceeded within a specified climate state (Vogel
and Fennessey, 1994). A FDC represent the full range of hydrological
conditions available at a catchment’s outlet (Yilmaz et al., 2008; Sadegh
et al., 2016). It serves as an essential tool in the design of small
hydropower systems including RoRs (Basso and Botter, 2012; Yildiz and
Vrugt, 2019). FDCs are serving not only during optimization purposes,
but also as a basis for synthetically generating plausible futures for
robustness analysis (Yildiz et al., 2023). We now describe in detail the
two main steps of HYPER-MORDM.

2.1. Design optimization

HYPER-MORDM conducts design optimization based on financial
performance metrics that rely on lifetime expected net present benefits
and costs. The lifetime expected net present revenues from hydropower
production are given by:

R =

𝐿𝑠
∑

𝑦=1

𝑅𝑦
(

1 + 𝑟𝑦
)𝑦 (1)

where 𝐿s is the project’s lifetime, typically 50 years, and 𝐑 =

{𝑅1 … , 𝑅𝐿s
} and 𝐫 = {𝑟1,… , 𝑟𝐿s

} are vectors of length 𝐿s of the
annual plant revenues assuming an average hydropower production
throughout the year (by default in USD) and the annual interest
(discount) rate in %, respectively. Similarly, the lifetime net present
cost of a RoR hydropower plant design, which significantly depends on
site-specific factors, can be expressed as:

C = 𝐶Tp +
𝐶Rem

(

1 + 𝑟𝐻𝐿

)𝐻𝐿
+

𝐿𝑠
∑

𝑦=1

𝐶om
(

1 + 𝑟𝑦
)𝑦 (2)

where 𝐶Tp is the investment cost, 𝐶Rem is the renovation and re-
construction cost of electro-mechanic equipment at year 𝐻𝐿 halfway
through the plant’s lifetime, typically at year 25, and 𝐶om is the yearly
maintenance and operation cost. Each component of benefit and cost
equations is discussed in detail in Yildiz and Vrugt (2019).

Net present revenue and cost can be combined into the net present
value (NPV), defined as the value of projected cash flows discounted to
the present (Santolin et al., 2011):

𝑓NPV = 𝑅 − 𝐶 (3)

They can also be combined into a ratio, the benefit–cost ratio (BC):

𝑓BC =
𝑅

𝐶
(4)

Whereas NPV focuses on the expected profit, the BC focuses on the
risk of the projects (Anagnostopoulos and Papantonis, 2007; Basso and
Botter, 2012). Thus, maximizing the NPV leads to a design that offers
the highest return, whereas maximizing the BC would result in design
with lower investment costs compared with expected revenue, and
therefore diminished financial risks.

The HYPER-MORDM framework allows both single and double
objective formulation using 𝑓NPV and 𝑓BC as design objectives. The two
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Fig. 1. Flowchart outlining methodological steps for developing our computationally inexpensive robust design approach.

objective formulation enables the user to trade-off the most commonly
used traditional design objective (NPV) with another financial objective
assumed to be more focused on project risks:

𝐹 (𝑥) = max[ 𝑓NPV, 𝑓BC] (5)

where 𝑥 is the vector of decision variables including all the key design
parameters such as turbine type, turbine number, turbine’s installed
capacities, penstock diameter. In this approach, we employ simulation
optimization to compute energy generation for each day of a multi-
decadal flow record, represented by its FDC. Using daily multidecadal
flow records is standard practice in simulation optimization of water
resource systems (e.g., Quinn et al., 2018; Bertoni et al., 2019).

2.2. Robustness analysis

The HYPER-MORDM approach involves evaluating the performance
of alternatives identified during optimization across a range of plau-
sible futures. This implies defining ranges for relevant parameters,
then sampling an appropriate number of plausible climatic and socio-
economic futures. In particular, sampled hydro-climatic parameters
are used to derive FDCs (Yildiz et al., 2023). In Panel A of Fig. 2
(adapted from Yildiz et al.), the blue line represents the FDC of long-
term historical observations at a possible development site in Turkey,
while the gray lines depict plausible future FDCs across a range of drier
and more variable futures. The generated futures reflect the expected
drying and increased variability anticipated in the region due to climate
change. Each sampled FDC is disaggregated into 50 long-term time
series of daily discharge values generated using the Kirsch-Nowak
streamflow generator developed by Quinn et al. (2017), to model the
natural variability of each climate (Panel B in Fig. 2).

These flows are then used for robustness quantification. Each time
series’ duration aligns with the typical licensing duration of a RoR
hydropower project in the jurisdiction where a project is being con-
sidered. The HYPER-MORDM approach focuses on financial robustness
based on two key financial viability metrics, (1) the payback period
(PB) and (2) NPV. The PB, is a metric that shows the length of time
required to recover capital investments, is computed as;

𝑃𝐵 =
𝐶𝑇 𝑝

𝑅 − 𝐶𝑜𝑚

(6)

where 𝐶𝑇 𝑝 the investment cost defined in Eq. (2), and the denominator
is the project’s expected amount of annual net cash inflow.

Both NPV and PB metrics form the basis of robustness metrics
based on satisficing criteria (Herman et al., 2015) by comparing their
values to desirability thresholds. Satisficing criteria are particularly
well-suited for RoR hydropower projects, as they enable decision-
makers to identify solutions that meet acceptable financial performance

thresholds across multiple objectives. Unlike regret analysis or scenario-
based optimization, which focus on minimizing regret or maximizing
expected performance, satisficing metrics are easily interpretable. Even
though results depend heavily on the choice of thresholds (McPhail
et al., 2018) those can be user-defined, and it should be noted that
the choice of a non-satisficing robustness metric among several choices
also heavily influences robustness assessments (Giuliani and Castelletti,
2016). Typically, small hydropower projects are deemed viable when
the PB is below 15 years (Alonso-Tristán et al., 2011; Girma, 2016;
Ak et al., 2017). Consequently, for each of the 50 time series defined
for each plausible future, we establish robustness using PB as a binary
variable:

RM𝑘 =

{

0, PB > 15; years

1, PB ≤ 15; years
(7)

Success is attributed to each plausible future if, for at least 75% of
the time series (i.e., 38 or more out of 50), 𝑅𝑀𝑘 is confirmed to be
1. The binary variables are also aggregated across all realizations of
all plausible future to create an average robustness score, denoted as
𝑅𝑀PB.

We use a similar approach to calculate the robustness metric based
on NPV, 𝑅𝑀NPV. For each of the 50 time series we define robustness
as a binary variable:

RM𝑘 =

{

0, NPV > 0

1, NPV ≤ 0
(8)

Then, we define a future as success or failure depending on whether
NPV> 0 over 75% of the time. Alternatively, we aggregate over all 50
time series over all futures to compute 𝑅𝑀NPV. In-depth rationale of
the determination of objective functions and derivation of robustness
metrics are available in Yildiz et al. (2024).

2.3. Case studies: physical characteristics and uncertainties

This subsection introduces the case studies to which the HYPER-
MORDM approach and the innovations introduced in this paper are
applied, including how climatic and socio-economic uncertainties are
considered. Detailed information on the case studies and a compre-
hensive justification for the robustness analysis, including all uncertain
parameters and their associated sampling ranges, is provided in Yildiz
et al. (2024).

2.3.1. Case studies description
We consider five proposed RoR hydropower plants in Turkey (Yildiz

et al., 2024). The top panel of Fig. 3 (adapted from Yildiz et al.)
illustrates the diverse hydro-climatic settings of the five case studies,
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Fig. 2. Panel A: Plot of the flow duration curves (FDC) of observed discharge (blue line), future flows (gray lines) and a random future (orange color). Panel B: Desegregation of
the selected future (orange color) to 50 time series (orange lines). The 𝑋-axis denotes the exceedance probability, while the 𝑌 -axis logarithmically scales the flow rate.

as indicated by the Köppen–Geiger climate classification based on
four high-resolution climatic maps spanning from 1980 to 2016 (Beck
et al., 2018). Besik and Kaplan RoRs have a Mediterranean-influenced
humid continental climate, while Buyukdere RoR experiences a humid
continental climate. Tepe RoR is situated in a humid subtropical cli-
mate area, and Karacay RoR falls under the Mediterranean climate.
Table 1 summarizes the site and streamflow characteristics of these
case-studies. The coefficient of variation (CV) represents the ratio of
the mean to the standard deviation of the daily streamflow time series,
and different values reflect the distinct hydrological and hydro-climatic
conditions across our catchments. This variability is further highlighted
in Table 1, which presents a range from 1 to 6 in mean flows and
demonstrates a threefold difference between the highest and lowest val-
ues of the coefficient of variation (CV) across the sites. Cross-catchment
variations in precipitation patterns and watershed attributes such as
land use, soil type, and slope contribute to distinct hydrological fea-
tures, are also evident through the normalized FDCs in the bottom panel
of Fig. 3. In-depth descriptions of the case studies, including climatic
aspects, are available in Yildiz et al. (2024). Table 1 also shows the
fraction of river discharge designated for maintaining minimum envi-
ronmental flow and supporting ecosystem services, as regulated by state
authorities. Finally, the table shows the gross hydraulic head available
at each site, and the gross potential annual average energy (GAAE) of
each site, computed by taking into consideration the available gross
head or water pressure, and average long-term discharge. Note that this
calculation ignores frictional and minor losses, the influence of flow
variability on turbine efficiency, and the fact that flows exceeding the
design discharge capacity do not produce hydropower.

Most of the precipitation at Besik, Kaplan, and Buyukdere hydro
sites occurs as snow during winter. The snowpack at these locations
serves as a natural reservoir, ensuring a steady water supply during
the drier summer months. This results in less variability in low-flow
ranges compared to the other two sites. Additionally, Besik and Kaplan
RoRs boast the highest potential energy, as indicated in Table 1.
These catchments’ capacity to store precipitation typically reflects in
a gradual slope in the middle portion of the FDC (Yilmaz et al., 2008),
with Besik exhibiting the mildest slope among the cases. Among all the
sites the Besik RoR is anticipated to be the most profitable according
to traditional assessments of RoR plants. Therefore, this site will be
used for all benchmarking steps, whereas the other four sites will be
used primarily to verify that the full HYPER-FORD hydropower design
workflow introduced in this paper works as intended.

2.3.2. Plausible futures
Seven uncertain factors are defined and these deeply uncertain

factors are assigned sampling ranges to each, as summarized in Table 2

to create plausible futures. Note that multiplier ranges in this Table rep-
resent plausible rather than probable values. They provide a mechanism
for understanding how wrong our baseline model assumptions can be
before significant vulnerabilities to deep uncertainties occur (Herman
et al., 2014). The 4 economic multipliers in this analysis are interest
(discount) rate, 𝑟, cost overruns, 𝐶or, during construction, and two
energy prices, reflecting Turkey’s energy regulations; 𝑝1−10 is fixed for
the first 10 year by the Turkish government, including subsidies and
𝑝>10 is the energy price for the remainder of the project’s lifetime. The
3 hydroclimatic multipliers are streamflow statistics: its median, coeffi-
cient of variation and first percentile. A comprehensive justification for
all these parameters and their associated sampling ranges can be found
in the supporting information for Yildiz et al. (2024).

Once the variable ranges are set, we generate a 7-dimensional Latin
Hypercube Sample of 500 plausible futures to represent the deep un-
certainties across socio-economic and hydroclimatic futures. Note that
we use the three hydroclimatic parameters to parameterize a unique
FDC for each plausible climate future (Yildiz et al., 2023).

3. HYPER-FORD

We now move to the middle gray box of Fig. 1, where we introduce
the HYPER-FORD approach and its two innovations for robust and
computationally efficient optimal design. In Section 3.1, we first intro-
duce the optimization module, HYPER𝑂𝑃 , tailored for joint design and
operation optimization. Subsequently, in Section 3.2, we present the
FDC approximation module build upon HYPER𝑂𝑃 aimed at enhancing
computational efficiency through regular sampling of the FDC.

3.1. Coupled design and operation optimization: HYPER𝑂𝑃 module

In the earlier versions of the HYPER toolbox (Yildiz and Vrugt,
2019; Yildiz et al., 2024), the distribution of available inflow between
the different turbines was regulated by operational rules that reflect
engineering practice. According to these rules, and outside of the
extreme cases where turbines shut down in instances of very small or
excessively large river discharge, water is allocated to the maximum
number of turbines at full capacity, with any remaining flow directed
to other turbines capable of operation. This approach does not explore
alternative operational modes that could result in higher power produc-
tion. For instance, two turbines operating efficiently at 75% capacity
may generate more power than one turbine at full capacity and another
at a lower capacity, as the latter may result in reduced efficiency or
even shutdowns due to technical constraints.

To address these issues, this study presents a new version of HY-
PER, called HYPER𝑂𝑃 – where ‘OP’ stands for the first two letters of
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Table 1
Hydrological and site characteristics of the RoR hydropower plant case studies.

Case Mean Coefficient of Environmental Gross Potential
Study [m3∕𝑠] Variation [-] flow [m3∕𝑠] Head [m] GAAE [GWh]

Besik 5.8 0.59 0.63 117 58.31
Buyukdere 1.88 1.09 0.156 394 63.65
Tepe 6.22 1.39 0.662 56 29.93
Karacay 1.47 1.69 0.18 134 16.92
Kaplan 1.07 1.08 0.12 190 17.47

Fig. 3. The top panel displays the geographical locations of the five case studies on the Köppen–Geiger climate classification map of Turkey (Beck et al., 2018). In the bottom
panel, Flow Duration Curves (FDC) for these case studies are shown, with normalization applied using the 99th percentile of the flow. The flow rate values on the 𝑦-axis are
presented logarithmically.

Table 2
Variables and sampling ranges used for robustness analysis. SF is for scaling factor, and a
SF of 1 indicates baseline conditions. The initial four are economic parameters, while the
three hydroclimatic parameters (highlighted in blue) pertain to streamflow statistics used in
the construction of future streamflow time series.

Uncertain Factor Current Value Lower Bound Upper Bound

Interest (discount) rate (𝑟) 0.095 0.03 0.15
Energy price, first 10 years (𝑝1−10) 5.5 5 6.5
Energy price, rest of the years (𝑝>10) 5.5 3 6.5

Cost overrun (𝐶or) SF 1 1 3
Median SF (𝑚̃) SF 1 0.3 1

Coefficient of Variation (𝐶𝑉 ) SF 1 1 2
1st percentile (𝑃1st) SF 1 0.3 1

both words in ‘‘operation optimization’’. HYPER𝑂𝑃 integrates optimized
turbine operations into the design process, optimizing the allocation
of flow to turbines during the simulation phase. This optimization
ensures that the allocation of turbine flow is aligned with their unique
characteristics, thereby enhancing overall efficiency. The operation
optimization module (OP module), nested within the optimization
algorithm, is presented in Algorithm 1 as pseudo-code. For each set
of design parameters generated by the optimization algorithm, the OP
module initially defines the operating range within which turbines
can generate energy (minimum flow and maximum flow). It then
divides this range into 𝐼 = 1000 discrete steps. For each step, the OP
module generates 𝐽 = 1000 random samples of turbine numbers and
their corresponding operation capacities to simulate energy generation.
We propose 𝐼 = 1000 and 𝐽 = 1000 as our testing indicated it
was enough to reliably provide operation optimization for designs up
to 3 turbines, the maximal number of turbines considered for small
(< 10MW) RoR hydropower plant design. Following this process, the

OP module records the optimal settings derived from these samples,
thereby constructing a table of operation modes for use in subsequent
simulation optimization. In cases where there are less than 1000 flows
considered in the operational range of the plant, such as in FDC
discretization detailed in Section 3.2, the OP module relies solely on
these flows to determine operation modes. This study represents the
first instance of coupled design and operation optimization for RoR
hydropower plants without any limitations on turbine configuration
for up to three turbines. By contrast, traditional configurations involve
identical turbine, or in three-turbine setups, one small and two large
turbines.

Fig. 4 showcases the optimized operating modes of a triple Francis
turbine configuration, having one small turbine (T1, with a design
discharge of 5 m3/s) and two large turbines (T2, each with a design
discharge of 10 m3/s). The operational range (top panel) is finely
divided into 1000 increments spanning from the minimum flow rate
of 2 m3/s (equivalent to 40% of T1’s design discharge) to the max-
imum flow rate (design discharge) of 25 m3/s. In the bottom panel,
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Fig. 4. Top panel: The operational range of a triple Francis turbine setup featuring one small turbine (T1, design discharge: 5 m
3/s) and two large turbines (T2, 10 m

3/s each). The
range is discretized into 1000 increments between the minimum (2 m3/s, corresponding to 40% of T1 ’s design discharge) and maximum (25 m3/s) flow rates. Vertical black dashed
lines delineate transitions between turbine operating modes. Bottom panel: Representation of the respective operational modes of the turbine(s) with their operated flows depicted
based on the incremental steps outlined in the top panel. The color bar indicates turbine operation capacity, with white representing no operation and darker blue indicating
higher capacity.

Algorithm 1: Pseudocode for operation optimization algorithm

input : Turbine configuration parameters: type, number,
capacities

output: Table of operation modes for each configuration

1 for Each sampled turbine configuration: type, number, capacity do
2 Determine each turbine’s flow range: min flow and max

flow;
3 Divide the flow range into 𝐼 = 1000 discrete steps;
4 for 𝑖 = 1,… , 𝑇 do
5 Draw 𝐽 = 1000 random samples of turbine numbers and

their operation capacities;
6 for 𝑗 = 1,… , 𝐽 do
7 Simulate energy generation;

8 Determine and record the sample 𝑗∗ that maximizes
energy generation;

9 Create a table of operation modes for the current turbine
configuration;

the operational modes of the turbines and their respective operating
capacity are provided based on the incremental steps outlined in the
top panel. Notably, turbines are programmed to shut down when the
flow rate falls below their technical minimum flow rate. Subsequently,
only the small turbine operates until the flow rate reaches a level
efficient for the activation of the second and third turbines. All three
turbines operate at full capacity when the flow rate surpasses the design
discharge. This visualization offers comprehensive insights into the
optimized operational dynamics of the turbine system across varying
flow conditions.

3.2. Flow duration curve discretization: approximation module

A multi-year daily FDC can be approximated by a small number
of values, regularly spaced on the 𝑥-axis. Fig. 5 illustrates this, and
features 27 years of the daily flows for the Besik case study, resulting
in 9860 daily discharge values. It also shows a sampling using 𝑁 = 50
discharge values (depicted as black dots). It is evident that this regular
sampling, in lieu of several decades of daily flows significantly reduces
the computational costs associated to the performance evaluation of

each design, both during simulation optimization and during robustness
analysis. This is particularly notable since each flow value is repeatedly
used in each iteration: for calculating hydraulic losses, for water allo-
cation to the turbines, to evaluate the efficiency of the turbines, and to
determine energy generation.

In the optimization process, we sample 𝑁 evenly distributed points
from the historical time series (black dots on Fig. 5). Likewise, we apply
this discretization to each of the 50 time series used to evaluate each
plausible future during the subsequent robustness analysis. For both of
these approximation steps, at each sampled point 𝑛 (1 ≤ 𝑛 ≤ 𝑁), we
rely on the optimized operations provided by HYPER𝑂𝑃 to yield the
flow rate 𝑞𝑘(𝑛) at each turbine 𝑘 of the 𝐾-turbine hydropower plant
(𝐾 ∈ {1, 2, 3}). Then, the average annual power generation 𝐴𝐴𝐸 that a
𝐾-turbine hydropower plant (𝐾 ∈ {1, 2, 3}) can produce over a year is
given by:

𝐴𝐴𝐸 = 𝑌hr 𝜌 𝑔

𝑁
∑

𝑛=1

𝐾
∑

𝑘=1

𝜂𝑘(𝑞𝑘(𝑛)) 𝑞𝑘(𝑛) 𝐻net(𝑞𝑘(𝑛)) (9)

where 𝑌hr is the number of hours in 365 days, 𝜌 is the volumetric mass
density of water, 𝑔 is the gravitational acceleration constant,𝐻net is the
hydraulic head, and 𝜂𝑗 is turbine efficiency. Note that both 𝐻net and 𝜂𝑗

are time dependent and vary as function of turbine inflow, penstock
diameter and/or design flow, respectively. We can then approximate
the annual plant revenue as follows:

Revenue in year 𝑦, 𝑅𝑦 = 𝐴𝐴𝐸 ∗ 𝑝𝑦 (10)

where 𝑝𝑦 is the energy price during year 𝑦. This time dependence of
energy price enables to incorporate regulatory price incentives, among
other considerations. Computation of this revenue approximation en-
ables that of both financial objectives (NPV and BC) and robustness
metrics (𝑅𝑀PB and 𝑅𝑀NPV).

4. Benchmarking the modifications to HYPER-MORDM

In this section, we describe the benchmarking experiments out-
lined in the bottom gray box of Fig. 1. First, Section 4.1 details the
methodology applied to benchmark of HYPER𝑂𝑃 . Sections Section 4.2,
4.3, and 4.4 explain the benchmarking methodology for using an
approximation of the FDC, respectively in the optimization step, the
robustness analysis step and when integrating both steps in a unified
workflow. Table 3 provides a summary of the benchmarking process
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Fig. 5. Plot of the flow duration curves (FDC) of 27 years daily discharge record comprising 9860 data points (blue line) and 𝑁 = 50 sampled flow rates (black dots).

Table 3
Benchmarking experiments of each step.

Benchmarking Methodologies Case Study
Step Applied Used

4.1 HYPER𝑂𝑃 – Comparison of Pareto sets generated
by HYPER and HYPER𝑂𝑃

through two-objective optimization.
– Comparative analysis of energy generation
from the two models
for the same design alternatives.

Besik RoR

4.2 FDC approximation
during multi objective
optimization

Evaluation of Pareto sets generated
by HYPER𝑂𝑃 using FDC approximation
and long-term records, assessed with
key metrics including hypervolume,
generational distance, 𝜖−indicator, and runtime.

Besik RoR

4.3 FDC approximation
during robustness analysis

Assessing the robustness of design alternatives
from FDC approximation versus long-term records
by comparing their relative ranking and runtime.

Besik RoR

4.4 FDC approximation
across the whole analysis

In-depth comparison of alternatives
generated through coupled
design optimization and robustness analysis,
using FDC approximation and long-term records.

All of the five cases

at each step. The first three benchmarking steps only use the Besik
RoR hydropower plant, as this is a typical candidate location for such a
plant: this case study is anticipated to be the most profitable according
to traditional assessments of RoR plants. The other four sites are used as
an additional check on the quality of the full workflow of the HYPER-
FORD in Section 4.4. Both design optimization and robustness analysis
are performed using MATLAB on a computer equipped with an Intel(R)
Core(TM) i7-10700 CPU operating at 2.9 GHz, supported by 16 GB
RAM, and running the Windows 10 operating system. The analytical
outcomes of all four benchmarking processes will then be presented in
Section 5.

4.1. Benchmarking of HYPER𝑂𝑃

The benchmarking of HYPER𝑂𝑃 – joint optimization of design and
operations – aims at comparing it with the original HYPER toolbox.
In order to obtain the Pareto optimal set of alternatives, both HYPER
and HYPER𝑂𝑃 are integrated into a simulation–optimization setup with
the Amalgam MOEA introduced by Vrugt and Robinson (2007) – the
performance of this MOEA was benchmarked in Yildiz et al. (2024). All
MOEA searches throughout this paper are conducted using a population

size of 𝐼 = 100 individuals and running Amalgam for 𝐽 = 1000 genera-
tion, with an explicit two objective formulation (Eq. (5)). We chose the
two-objective formulation of Eq. (5) to benchmark the new innovation,
in order to provide a thorough analysis of HYPER𝑂𝑃 increases solution
quality of diverse solutions along the Pareto front.

In this benchmarking process, we assess HYPER𝑂𝑃 in two distinct
ways. Initially, for the problem, we carry out a HYPER optimization
and a HYPER𝑂𝑃 optimization to generate two distinct Pareto sets
of alternatives. By comparing these Pareto sets, we aim to discern
differences in the objective values of the alternatives, evaluating the
HYPER𝑂𝑃 ’s ability to produce designs with improved objective values
and novel solutions. Subsequently, we take the set of design alternatives
proposed by the original HYPER toolbox, and use them in HYPER𝑂𝑃

in simulation mode to quantify how optimized operations increase the
energy generation of each alternative. This step allows us to verify that
HYPER𝑂𝑃 functions as intended.

4.2. Benchmarking of FDC approximation during multi objective optimiza-
tion

To benchmark multi objective optimization through the FDC ap-
proximation, we explore alternative designs (Pareto sets) generated

Environmental Modelling and Software 183 (2025) 106220 

7 



V. Yildiz et al.

using the HYPER𝑂𝑃 , still focusing on the Besik RoR hydropower plant.
Initially, we generate a reference Pareto set with the long-term dis-
charge record. Subsequently, we generate Pareto sets based on regular
samplings of this discharge record, with sample sizes𝑁 = 10, 25, 50, 100,

200, and 500. During optimization, the performance of solutions is
evaluated using Eqs. (9) and (10), with consideration given to the
approximated revenue.

Our analysis assesses the performance of FDC approximations by
using classic key performance measures (Reed et al., 2013; Salazar
et al., 2016): hypervolume, generational distance, additive 𝜖−indicator,
and run time. Hypervolume quantifies the volume of the objective
space that is dominated by the provided set of solutions with respect
to a reference point, ensuring this measure combines proximity and
diversity (Hadka and Reed, 2012). Hypervolume computation requires
defining an easily interpretable 0–1 scale, with 0 defined by an ap-
propriate origin point. In our analysis, we begin by normalizing the
objective functions and by placing the origin point as being 10%
worse than the worst value of each objective in the reference Pareto
set (Ishibuchi et al., 2018), computed with the long-term discharge
record. We consider the hypervolume of the reference Pareto set as 1.
These choices enable a rigorous quantification of how far results using
the FDC approximation are from those using the actual flow record. Hy-
pervolume is complemented by generational distance (Van Veldhuizen,
1999), which calculates the average Euclidean distance between the
solutions of the approximation set and the nearest member of the
reference set. This metric primarily assesses convergence, yet it does
not offer information regarding the diversity of the solution set (Blank
and Deb, 2020). The additive 𝜖−indicator (Zitzler et al., 2003) evaluates
the maximum distance needed to move an approximation set solution
in order to dominate its nearest neighbor in the reference set. This
metric is particularly sensitive to the presence of gaps and the overall
diversity within the approximation set rather than convergence (Reed
et al., 2013).

We also examine the optimization runtime for the long term record
and each sample size, aiming to understand the relationship between
sample size and run time, key to finding a good compromise between
computational gains and solution quality.

Additionally, we further our analysis using an alternative metric,
defined as the count of efficient solutions within the Pareto set. Alterna-
tives generated from each FDC approximation are reevaluated with the
long-term record to reveal their ‘‘true’’ objective values. Some solutions
in the resulting set may be dominated – in the Pareto sense – by others.
Our new metric evaluates the ability of approximations to generate
solutions that would still be Pareto efficient with the full historical data
at our disposal. These metrics, taken together, are intended to provide
a comprehensive assessment of solution quality and trade-offs in our
analysis, between improving run time and improving solution quality.

4.3. Benchmarking of FDC approximation during robustness analysis

Continuing from the previous section, we employ the Besik RoR to
evaluate the effectiveness of the introduced sampling methodology in
approximating robustness. For this, we compare robustness evaluations
for solutions given by HYPER𝑂𝑃 and obtained with the full historical
record. We proceed to evaluate the robustness of these same alterna-
tives using the same sample of plausible futures. For each sampled
future, we replace the 50 synthetically generated multi-decadal daily
time series with sampling of these time-series with varying sample
sizes 𝑁 = 10, 25, 50, 100, 200, and; 500. Similar to what happens in the
optimization step, the methodology described in Section 3.2 is used to
approximate hydropower production in benefits for each sampled FDC.

Compared with long-term future flow FDCs, we investigate the
extent to which the relative ranking of alternatives based on their
robustness is affected by FDC sampling . Said otherwise, we are ex-
amining whether an alternative that initially ranks high (or low) in
robustness based on long-term future flows maintains that ranking

when robustness is computed based on a small number of sampled point
for each plausible future FDC. We specifically focus on alternatives
having the highest objective values, such as the best NPV and best BC,
as well as the most robust alternative. Additionally, we evaluate the
runtime for each sample size to gain insights into how computational
efficiency correlates with sample size and the quality of robustness
results. Ultimately, our goal is to determine the sample size that offers
a sufficiently accurate approximation of long-term futures in terms of
robustness. This analysis is performed separately for the two defined
robustness metrics.

4.4. Benchmarking of FDC approximation across the whole analysis

After benchmarking the impact of FDC approximations on optimiza-
tion and robustness separately, we now aim at assessing the combined
impact across the full workflow, both on run time and solution perfor-
mance. We focus on how similar or different the design recommenda-
tions are, depending on whether we use the full historical record or
a regularly spaced sample of it. For this, we use all five case studies
presented in Section 2.3 to ensure that the approximation maintains
performance across a range of site and climate characteristics. Ini-
tially, we generate design alternatives using the HYPER𝑂𝑃 module with
long-term discharge records, with the same optimization setup as in
Section 4.2. Subsequently, we assess their robustness across our sample
of 500 plausible futures. Next, we generate design alternatives using the
same experimental setup, but with the sample size of discharge records
set to a value of 𝑁 . We choose that value based on benchmarking
results for the use of FDC approximations in both optimization and
robustness analysis steps. Following this, we quantify the robustness
of alternatives across the sampled futures.

By comparing design alternatives and their robustness from long-
term futures flows with those derived from selected sampled points,
we aim to evaluate whether the overall approximated methodology
produces similar robust designs. Our analysis of the design param-
eters specifically focus on key alternatives such as the most robust
alternative, and alternatives with the highest NPV or BC value.

5. Results

In this section, we present results for the benchmarking exercises
in the same order as they are presented in Section 4. We initially
investigate the performance analysis and validation of optimization
module, HYPER𝑂𝑃 (Section 5.1). Our focus then shifts to HYPER𝑂𝑃

with the FDC approximation analysis within the context of multiob-
jective optimization (Section 5.2), robustness (Section 5.3), and both
steps combined (Section 5.4). Note that the computational experiments
were conducted under the same conditions during both optimization
and robustness analysis, with the only difference being the size of the
input data (e.g., in Figs. 9 and 10 and Tables 6 and 7).

5.1. HYPER𝑂𝑃 validation and performance

The performance analysis of the HYPER𝑂𝑃 is depicted in Fig. 6,
with a comparison with the HYPER toolbox across the NPV (x-axis)
and BC (y-axis) objective space. The design alternatives generated by
optimization with HYPER (white dots) and HYPER𝑂𝑃 (red dots) are
compared in the panel A. Thanks to inbuilt operation optimization,
HYPER𝑂𝑃 clearly yields a diverse Pareto optimal set with higher objec-
tive values, offering a selection of design alternatives that effectively
balance multiple objectives. There is a gap in the Pareto front of
design alternatives generated through the HYPER toolbox, while no
such gap exists in the Pareto front of design alternatives generated
through HYPER𝑂𝑃 . This happens because HYPER solely depends on
fixed operating conditions (rule curves), introducing technical thresh-
olds that lead to discontinuities in the relationship between flows
through the turbine and power output, leading in turn to discontinuities
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Fig. 6. Panel A: Pareto sets derived by HYPER (white dots) and HYPER𝑂𝑃 (red dots) on the two-dimensional Benefit–Cost Ratio (BC) and Net Present Value (NPV, in million
dollars) objective space. Blue triangles indicate HYPER solutions within the context of HYPER𝑂𝑃 . Panel B: Performance comparison of HYPER and HYPER𝑂𝑃 for the same Pareto
solution set. The color bar illustrates the relative annual average energy (AAE) difference between the two, with light colors indicating higher relative differences (HYPER𝑂𝑃

outperforming HYPER). Arrows on the plot labels indicate the direction of preference.

in the Pareto front. These discontinuities disappear with the built-
in optimization that characterizes HYPER𝑂𝑃 . This robust performance
underscores its efficient optimization capability.

Upon reevaluating HYPER alternatives (white dots in panel A)
using HYPER𝑂𝑃 in simulation mode, we observe an increase in the
objective values for all alternatives, as denoted by the blue triangles.
Note that some of the blue triangles are dominated after reevaluation.
We also observe a close correlation between optimal solutions yielded
by HYPER𝑂𝑃 , and HYPER solutions reevaluated with HYPER𝑂𝑃 . This
suggests that the improvement in objective values brought about by
HYPER𝑂𝑃 is mostly due to the operation optimization, and the increase
in energy generation this leads to. Panel B, which presents a comparison
of energy generation performance between the two models for the same
Pareto solution set (white dots in panel A), quantifies this increase.
There is an approximate 2% increase in energy generation for all
the alternatives. Together with the findings from the left panel, these
results indicate that HYPER𝑂𝑃 outperforms HYPER, primarily because
it optimizes the operation that better captures streamflow variability
instead of relying on operational rules for energy generation. This being
said, the magnitude of the improvement is small, underscoring why
operation optimization has been a low priority in design procedures
in the past.

5.2. FDC sampling impact on multi-objective optimization

In this section, we compare the results obtained from analyzing the
design alternatives generated through FDC approximation with those
derived from long-term records for the Besik case study.

Table 4 provides a comparison of various performance metrics for
optimization results using long-term records, vs. optimization results
using 𝑁 sample points, for different values of 𝑁 . Notably, the compu-
tational time required for generating alternatives is over 3.6 h when
using long-term records, whereas it is under 11 min for a sample sizes
of 𝑁 = 100 points, a factor of 20. The runtime’s scaling with sample
size is not linear, primarily due to the algorithm used for operation
optimization (see Algorithm 1). Indeed, for long-term records, the OP
module handles optimization tasks for a maximum of 1000 incremental
flow rates, which somewhat limits gains from sampling. When sampling

the FDC, the OP module only uses sampled points of the FDC that are
within the flow range, which means that it handles only a subset of
the 𝑁 sampled points, resulting in non-linear scaling. Still in Table 4,
the hypervolume performance for sample sizes of 𝑁 >= 50 points
is in close proximity to the Reference Pareto Front (RPF), indicating
that the solution set exhibits both convergence and diversity. Note that
the RPF was generated from 5 trials with different random seeds. The
generational distance for sample sizes of 𝑁 >= 100 points closely
approach the values from the RPF. This indicates that the solutions
have converged effectively, demonstrating the overall quality of the
obtained solution set. Likewise, the 𝜖−Indicator for sample sizes of
𝑁 > 50 points closely aligns with the RPF values, signifying the overall
diversity within the approximation set is robust. As the sample size
decreases below 𝑁 = 100, the proportion of efficient solutions also
decreases. In comparison, when 𝑁 >= 50 points are considered, a
substantial 80% of the solutions fall within the Pareto set.

Fig. 7 provides a comparison between design alternatives obtained
from 𝑁 = 10 sampled points (blue dots, left panel) and 𝑁 = 100

sampled points (red dots, right panel) with design alternatives derived
from the RPF. The alternatives generated from sampled points (blue
dots and red dots) are subsequently reevaluated using the long-term
record to unveil their ‘‘true’’ objective values. Alternatives marked with
triangles represent Pareto frontiers on both panels, indicating that these
solutions dominate all other points within the set. It is evident that with
a smaller sample size (𝑁 = 10), a large amount of solutions deviate
from the RPF. However, for 𝑁 = 100, it is clear that the re-evaluated
Pareto front is very close to the RPF, and what is more, it comprises
most design alternatives. This coincides with the metrics from Table 4,
and illustrates the accuracy and reliability of optimization outcomes
when regularly sampling 𝑁 = 100 FDC points.

5.3. FDC sampling impact on robustness analysis

In this section, we provide a detailed examination of the robustness
of the design alternatives forming the RPF used in the previous section,
and the impact of FDC approximation on robustness results. In Fig. 8,
the parallel plot showcases various design alternatives. The top panel
represents robustness metric 𝑅𝑀PB, while the bottom panel showcases
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Table 4
Performance metrics for multi-objective optimization of long term discharge data and of different sample
sizes (𝑁 = 10, 25, 50, 100, 200, and 500).

Number Optimization Hypervolume Generational Additive Percentage of
of Points Run Time Distance 𝜖−Indicator Efficient Solutions

(minutes) [0-100]

10 1.37 0.94 8.84 10−4 0.0064 53
25 3.05 0.97 5.07 10−4 0.0053 72
50 5.24 0.98 3.34 10−4 0.0104 77
100 10.28 0.98 9.41 10−5 0.0032 85
200 31.72 0.98 9.95 10−5 0.0.031 83
500 82.53 0.99 9.86 10−5 0.0021 90
Long Term 216.96 1 0 0 100

Fig. 7. Performance comparison of the reference Pareto front (RPF) obtained with optimization using the long-term FDC, with solutions obtained with optimization using the
sampled FDC, and whose performance is re-evaluated using the long-term record. For 𝑁 = 10 (left panel) and 𝑁 = 100 sampled points (right panel), solutions that are non-dominated
in the re-evaluated set are figured with white triangles. Arrows on the plot labels indicate the direction of preference.

𝑅𝑀NPV, and both plots are organized in the exact same way. Each
line represents one alternative and presents (i) the values of the 𝑓BC
and 𝑓NPV design objectives, as well as (ii) the two financial robustness
measures based on the dataset size (long term and sampled size). The
robustness measures along the vertical axis at the ‘‘Long Term’’ section
serve as reference values since they are derived from long-term records,
and compared with the robustness of the same design evaluated using
different FDC approximations. The color of each line in both panels cor-
responds to its BC value, with yellow indicating a high BC and magenta
indicating a low BC. This Figure also emphasizes the alternative with
the highest NPV value (red line), the alternative with the highest BC
value (green line), and the most robust alternative as identified with
approximation-free robustness evaluation (black line). Clearly, there is
a noticeable positive correlation between both robustness metrics and
𝑓BC, and a negative correlation with 𝑓NPV. This is because alternatives
with higher 𝑓BC values tend to be smaller in design, resulting in lower
costs, making them better suited for a drought-prone world (Yildiz
et al., 2024).

This setup enables exploring the impact of FDC approximations and
sample size 𝑁 . Even though the robustness metric values are slightly
higher for the sampled points in both panels, the overall pattern of the
reference robustness metric values closely resembles that of the sam-
pled points. This indicates that the ranking of robust solutions remains
largely consistent. For example, in both panels, the best NPV alternative
exhibits the lowest robustness metric with long term record, a trend
that holds true for the sampled points as well. The MR alternative,
identified based on long-term flows, consistently emerges as one of
the most robust solutions for 𝑅𝑀NPV across all sample sizes, and for

𝑅𝑀PB when the sample size 𝑁 >= 25. Likewise, the best BC alternative
demonstrates a similar robustness metric to the MR alternative in
both panels, a consistency observed across different sampling sizes.
However, notable deviations occur in the results for 𝑅𝑀PB when the
sample size is small, 𝑁 <= 50. This is where lines begin to intersect,
and the differences between solutions get smaller, indicating a loss
of reliability of the robustness metric. Similarly, there is a substantial
divergence in the results for 𝑅𝑀NPV when the sample size 𝑁 < 50.

The computational time for robustness analysis across various sam-
ple sizes is summarized in Fig. 9. Significantly, the runtime exceeds
26 h when utilizing long-term records, while it remains under 2 h for
sample sizes of 𝑁 ≤ 100 points, representing a reduction factor of 15.
For more detailed information on run time, please refer to Table 6 in
the appendix. These results, when taken together, suggest that sampling
futures with 𝑁 >= 50 for robustness analysis provides a reliable
and efficient approximation. Therefore, to align with the optimization
analysis results, we selected 𝑁 = 100 to conduct the robustness analysis
with other case studies as discussed in the next section.

5.4. Whole-workflow impact of FDC sampling

In this section, we present the outcomes of our analysis across all
study sites listed in Section 2.3. Our primary focus lies in comparing
the coupled optimization and robustness analysis as well as runtime for
three selected alternatives: the solution with the best NPV, the solution
with the best BC, as well as the solution with the highest 𝑅𝑀𝑃𝐵 value,
identified as the Most Robust (MR).

Environmental Modelling and Software 183 (2025) 106220 

10 



V. Yildiz et al.

Fig. 8. The parallel plot of two objective functions: 𝑓BC (-), 𝑓NPV (M$), along with their respective robustness measures, for different sample sizes (𝑁 = 10, 25, 50, 100, 200, and 500).
In the top panel, the robustness measure is represented by 𝑅𝑀PB, while in the bottom panel, it is denoted as 𝑅𝑀NPV. Color coding on the lines is utilized to classify the results
based on the value of 𝑓BC.

Table 5 presents the design characteristics, financial and energy
performance metrics, and robustness metrics for these selected alter-
natives of each case. The data is displayed for two scenarios: long-term
records (white background) and based on a sample size of 𝑁 = 100

(gray background). It is evident that while the financial and robustness
metrics of Best NPV and Best BC obtained through long-term discharge
record and 𝑁 = 100 sampled points are slightly different from each
other, their design characteristics including turbine type, number and
their respective capacities remain remarkably consistent across all the
cases, regardless of FDC sampling. While sampling only 𝑁 = 100

discharge values may lead to some loss of discharge information that
affects these financial metrics, the impact on their design optimization
is relatively minimal. This underscores the robustness of the approach
across different scenarios, highlighting its reliability in diverse cases.

Notably, in each case-study the MR alternatives derived using FDC
sampling exhibit similar design characteristics as those derived using
long-term data — including turbine configuration and their respective
capacities. An exception is observed in the Tepe case, where the most
robust alternative features a different turbine setup. However, another
robust alternative, with very similar robustness metric score, closely
mirrors the design parameters observed in the long term record. This

is particularly significant since these alternatives are selected through
robustness analysis. The fact that sampling the future scenarios consid-
erably decreases computational costs and resources while still yielding
similar MR alternatives shows the consistency and dependability of
the proposed approach in assessing the robustness of RoR designs.
It is also interesting to note that the Tepe RoR case’s optimal NPV
alternatives on both scenarios include a triple turbine configuration
consisting of two small and one large turbine. Traditionally, three-
turbine systems for RoR hydropower plants employ one small and two
large (identical turbines). The novel turbine operation optimization
module included in HYPER𝑂𝑃 model has led to the identification of
this new alternative with higher performance metrics. This demon-
strates the capability of HYPER𝑂𝑃 to explore optimal solutions beyond
conventional engineering norms.

The runtime for optimization, involving 20–30 years of daily dis-
charge data with 100,000 function evaluations is substantially reduced
by over 91% for 𝑁 = 100 sampled points and by over 97% for 𝑁 = 50

sampled points in each case study as shown in top panel of Fig. 10.
Likewise, the runtime for robustness analysis (as shown in the bottom
panel of Fig. 10) across 500 plausible scenarios shows a significant
decrease of over 92% for𝑁 = 100 sampled points and over 93% for𝑁 =
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Fig. 9. Robustness analysis run times for long term discharge data and of different sample sizes (𝑁 = 10, 25, 50, 100, 200, and 500). The 𝑦-axis is on a logarithmic scale.

Table 5
Design characteristics, performance metrics and robustness of the most robust (MR) alternative and the alternative with highest NPV
and BC of given five case studies.

Case Methodology Turbine Design 𝐼𝐶 𝐴𝐴𝐸 𝑓NPV 𝑓BC 𝑅𝑀PB 𝑅𝑀NPV

Study Alternatives Configuration Discharge [m3∕𝑠] [MW] [GWh] [M$] [-] [%] [%]

Besik Long Term, MR Dual Francis 2.00–3.27 5.99 34.13 10.17 2.13 58.11 34.21
Besik Long Term, BC Dual Francis 2.03–3.28 6.03 34.22 10.19 2.13 57.80 34.21
Besik Long Term, NPV Dual Francis 2.70–3.98 7.60 37.34 10.78 2.06 51.53 32.45
Besik 𝑁 = 100, MR Dual Francis 2.10–3.40 6.26 34.83 10.36 2.13 60.74 35.53
Besik 𝑁 = 100, BC Dual Francis 2.03–3.28 6.03 34.22 10.19 2.13 60.08 35.53
Besik 𝑁 = 100, NPV Dual Francis 2.70–3.97 7.60 37.33 10.78 2.06 55.70 33.11

Buyukdere Long Term, MR Dual Pelton 0.72–1.50 7.41 29.68 8.41 2.02 65.8 39.4
Buyukdere Long Term, BC Dual Pelton 0.54–0.96 4.85 23.68 6.97 2.10 60.6 37.8
Buyukdere Long Term, NPV Dual Pelton 0.91–1.96 9.84 34.15 8.94 1.88 63.0 37.0
Buyukdere 𝑁 = 100, MR Dual Pelton 0.75–1.63 7.99 30.81 8.60 1.99 68.2 39.8
Buyukdere 𝑁 = 100, BC Dual Pelton 0.54–0.98 4.94 23.95 7.05 2.10 63.6 38.4
Buyukdere 𝑁 = 100, NPV Dual Pelton 0.93–2.06 10.24 34.78 8.97 1.85 66 38

Tepe Long Term, MR Dual Francis 1.84–4.63 3.54 14.05 2.94 1.59 54.0 28.0
Tepe Long Term, BC Dual Francis 1.46–3.46 2.68 12.10 2.61 1.62 51.0 27.4
Tepe Long Term, NPV Triple Francis 1.47–1.47–4.50 4.06 15.28 3.15 1.58 53.2 27.0
Tepe 𝑁 = 100, MR Triple Francis 1.20–2.71–2.71 3.62 14.43 3.08 1.61 56 28.0
Tepe 𝑁 = 100, MR* Dual Francis 1.79–4.66 3.52 14.02 2.93 1.59 55.2 28.0
Tepe 𝑁 = 100, BC Dual Francis 1.47–3.42 2.67 12.07 2.60 1.62 51.6 27.2
Tepe 𝑁 = 100, NPV Triple Francis 1.41–1.41–4.61 4.06 15.34 2.90 1.50 53.8 27.4

Karacay Long Term, MR Dual Pelton 0.60–1.60 2.52 7.67 1.35 1.46 44.4 25.4
Karacay Long Term, BC Dual Pelton 0.52–1.35 2.10 6.83 1.24 1.47 42.0 25.4
Karacay Long Term, NPV Dual Pelton 0.67–1.77 2.82 8.19 1.39 1.43 43.4 24.6
Karacay 𝑁 = 100, MR Dual Pelton 0.64–1.71 2.71 8.01 1.38 1.44 47.0 27
Karacay 𝑁 = 100, BC Dual Pelton 0.53–1.34 2.10 6.84 1.24 1.47 45.6 26.6
Karacay 𝑁 = 100, NPV Dual Pelton 0.68–1.79 2.87 8.28 1.39 1.42 46.6 26.2

Kaplan Long Term, MR Dual Pelton 0.62–1.23 3.33 11.53 2.62 1.68 42.6 28.8
Kaplan Long Term, BC Dual Pelton 0.47–0.85 2.33 9.91 2.34 1.72 37.4 25.4
Kaplan Long Term, NPV Dual Pelton 0.66–1.34 3.61 11.93 2.66 1.65 42.6 29
Kaplan 𝑁 = 100, MR Dual Pelton 0.64–1.22 3.33 11.53 2.63 1.68 49.6 29.4
Kaplan 𝑁 = 100, BC Dual Pelton 0.46–0.86 2.37 9.98 2.36 1.73 41.2 25.8
Kaplan 𝑁 = 100, NPV Dual Pelton 0.66–1.33 3.60 11.91 2.66 1.66 49.0 29.6

50 sampled points in each case study. The runtime for optimization and
assessing robustness, varies between 26 and 35 h for a single case. Note
this represents the final version of our study, following several runs
with a comparable computational effort for each site. However, when
using 𝑁 = 100 sampled points, the runtime is significantly reduced to
less than 2.5 h in all the cases. In other words, the computational cost is
reduced by more than 92% in each case. For more detailed information
on runtime, please refer to Table 7 in the appendix.

6. Summary and conclusion

In this study, we introduced the HYPER-FORD, which encompasses
two key innovations in the design of RoR hydropower plants. First, the
HYPER𝑂𝑃 module builds operational tables that integrate optimized
operations to design. Second, our approximation of the FDC with a
regular sampling of the FDC builds upon HYPER𝑂𝑃 to enhance com-
putational efficiency through strategic reduction of data inputs. Our
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Fig. 10. Optimization and robustness analysis run times for long term discharge records, 𝑁 = 100 and 𝑁 = 50 sampling points. Note that the 𝑦-axis is on a logarithmic scale. The
𝑦-axis is on a logarithmic scale in both panels.

findings show HYPER𝑂𝑃 is able to increase electricity generation by
about 2% compared with traditional operational rules. Our results also
demonstrate the capability of the HYPER𝑂𝑃 to find design solutions
not traditionally considered in engineering design of RoR hydropower
plants, showing how optimized operations can expand design options.

The performance of using the FDC approximation instead of long-
term daily data during optimization (of coupled design and operations)
increases at very low sample sizes but stabilizes at around 100 sampled
points. Beyond that, the proposed method yields a similar performance
and diversity of design solutions as when using the long-term daily
FDC as input. What is more, over 80% of these solutions remain
Pareto optimal when re-evaluated using the long term record. This
demonstrates the performance of the approach, which also slashes com-
putational costs by 95%. Additionally, the robustness analysis indicates
that modeling plausible futures using FDC approximations with 50
sampled points or more provides a reliable approximation across the
entire range of design alternatives for both robustness metrics, in the
sense that robustness values are close and crucially, the relative ranking
of the design alternatives is well-preserved by the sampling approxima-
tion. In the coupled design optimization and robustness analysis using
100-point FDC approximations in both steps, findings demonstrate that
despite the potential loss of discharge information affecting financial
and robustness metrics, the impact on the generation and evaluation of
key robust design alternatives is almost non-existent. Indeed, the design
characteristics, such as turbine configuration (type and number), and
the total installed capacity, remain consistent across the best NPV, best
BC and MR alternatives for all the presented cases. In addition, while
the runtime for optimization and assessing robustness, based on using
long-term records, varies between 26 and 35 h for a single case, this
duration significantly decreases when using FDC sampling. Specifically,
the runtime is reduced to less than 2.5 h for N=100 sampled points in
all cases. This represents a remarkable reduction in computational cost
by more than 92% across each case.

Overall, our method strategically reduces data inputs on FDCs while
preserving the gains made thanks to operations optimization. HYPER-
FORD facilitates rapid analysis, optimization, and assessment of poten-
tial designs. In other words, it makes robust design and analysis more
accessible. This empowers engineers and decision-makers to make in-
formed choices, leading to the design and operation of RoR hydropower
plants that are technically optimal and robust to uncertain futures. Ad-
ditionally, HYPER-FORD makes the computation more sustainable by
minimizing the need for high-performance computing, and by reducing
carbon emissions from data centers.

Yet, while the cost-effective approach introduced here is versatile
and applicable to various hydro sites, the numerical results presented
in the preceding sections are limited to just five proposed cases within
the same country. Although Turkey offers favorable topography for
hydropower development, and experiences diverse climates, the effec-
tiveness of this methodology should be demonstrated on other RoR
hydropower plants located in regions with different topographical and
hydrological characteristics to establish its general applicability. It is
fitting then that HYPER-FORD makes the application of optimization
and robustness analysis to a large number of cases computationally
affordable. Hydropower projects are typically designed using tradi-
tional assessments that rely on historical flows by ignoring the impacts
of future uncertainties (Bertoni et al., 2019). Under these conditions,
optimization of these plants is based on cost–benefit analysis, generally
maximizing NPV (Yildiz and Vrugt, 2019), aiming to identify the
optimal solution rather than robust alternatives capable of performing
well under a range of uncertain conditions. Additionally, the design and
operation of these plants are often treated separately, overlooking the
integration of turbine system design (e.g., Taner et al., 2017; Ray et al.,
2018; Bertoni et al., 2019; Hurford et al., 2020; Bertoni et al., 2021).
which is governed by site hydrology and financial constraints. Future
studies, thus, should apply this methodology to hundreds of existing
and potential RoR sites across wide regions, to more accurately assess
the potential of small hydropower in an uncertain world.
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This study, along with Yildiz et al. (2024), underscores the impor-
tance of considering turbine efficiency in hydropower plant design. By
2030, around one-fifth of the installed hydropower turbines, totaling
approximately 154 GW globally (IEA, 2021), will exceed 55 years in
age. Many of these turbines requiring replacement to maintain high
plant performance (Brown et al., 2024), and this will lead to opportu-
nities to retrofit hydropower plants to improve their flexibility and to
adapt to changing and variable hydrological conditions. The necessity
for a well-defined methodology to effectively evaluate and select the
most appropriate turbine replacement or upgrade options is evident
across both RoR and reservoir-based hydropower plants. To address
these needs, the innovations of HYPER-FORD proposed here could
be utilized for RoR retrofit effectively and expanded to encompass
turbine system optimization for the design and retrofit of reservoir-
based hydropower plants. The multipurpose nature of many reservoirs
and their ability to buffer hydrological variability and drought – at the
expense of varying hydraulic heads – present significant challenges that
this latter extension of the HYPER-FORD approach will need to address.
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Appendix

See Table 6 and Table 7

Table 6
Run times for robustness analysis
conducted with long-term discharge
data and varying sample sizes (𝑁 =

10, 25, 50, 100, 200, and 500).

Number Run time
of Points (hours)

10 0.81
25 1.45
50 1.61
100 1.69
200 1.81
500 2.10
Long Term 26.32

Table 7
Run times for optimization and robustness analysis using long-term discharge
records, comparing scenarios with 𝑁 = 100 and 𝑁 = 50 sampling points.

Case Study Long Term 𝑁 = 100 𝑁 = 50

Besik, optimization [minutes] 216.9 10.2 5.2
Buyukdere, optimization [minutes] 360.5 27.2 9.2
Tepe, optimization [minutes] 384.1 29.4 9.8

Karacay, optimization [minutes] 186.2 15.5 5.5
Kaplan, optimization [minutes] 191.3 9.5 5.5

Besik, robustness analysis [hours] 26.32 1.69 1.43
Buyukdere, robustness analysis [hours] 28.29 1.82 1.78
Tepe, robustness analysis [hours] 24.65 1.94 1.83

Karacay, robustness analysis [hours] 24.52 1.83 1.71
Kaplan, robustness analysis [hours] 25.45 1.81 1.72
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