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The nonlinear evolution of free-stream vortical disturbances entrained in the entrance8

region of a circular pipe is investigated using asymptotic and numerical methods. Attention9

is focused on the low-frequency disturbances that induce streamwise elongated structures. A10

pair of vortical modes with opposite azimuthal wavenumbers is used to model the free-stream11

disturbances. Their amplitude is assumed to be intense enough for nonlinear interactions to12

occur inside the pipe. The formation and evolution of the perturbation flow are described13

by the nonlinear unsteady boundary-region equations in the cylindrical coordinate system,14

derived and solved herein for the first time. Matched asymptotic expansions are employed15

to construct appropriate initial conditions and the initial-boundary value problem is solved16

numerically by a marching procedure in the streamwise direction. Numerical results show17

the stabilising effect of nonlinearity on the intense algebraic growth of the disturbances and18

an increase of the wall-shear stress due to the nonlinear interactions. A parametric study19

is carried out to evince the effect of the Reynolds number, the streamwise and azimuthal20

wavelengths, and the radial length scale of the inlet disturbance on the nonlinear flow21

evolution. Elongated pipe-entrance nonlinear structures (EPENS) occupying the whole pipe22

cross-section are discovered. EPENS with ℎ-fold rotational symmetry comprise ℎ high-23

speed streaks positioned near the wall, and ℎ low-speed streaks centred around the pipe core.24

These distinct structures display a striking resemblance to nonlinear travelling waves found25

numerically and observed experimentally in fully developed pipe flow. Good agreement of26

our mean-flow and root mean square data with experimental measurements is obtained.27

Key words:28

1. Introduction29

As one of the most long-standing problems in fluid dynamics, stability and transition in30

pipe flow have puzzled engineers and scientists since the prominent experimental work31

of Reynolds (1883). Due to wide industrial applications, engineers have aimed to design32

efficient and durable pipeline systems by estimating the conditions under which the pipe flow33
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is laminar or turbulent. This objective is driven by the large difference in pressure gradient34

required to drive laminar and turbulent flows in a pipe. Scientists have also been intrigued by35

the enigmatic physical mechanisms behind the instability and transition phenomena observed36

in experiments.37

Earlier investigations of pipe flow date back to the independent studies of Hagen (1839)38

and Poiseuille (1844), where the linear relationship between pressure drop and volume flow39

rate for laminar flow was obtained. This relationship is now known as the Hagen-Poiseuille40

law, which holds only sufficiently downstream where the flow is fully developed, i.e. the41

velocity distribution is independent of the streamwise coordinate and its profile is parabolic.42

Near the pipe inlet, the velocity field varies in the streamwise direction and the terminologies43

developing pipe flow and pipe entrance flow are adopted. Considerable research effort has44

been focused on the stability and transition of the fully developed region, but much less45

attention has been devoted to the flow in the entrance region of the pipe. In this paper, we46

thus aim to investigate how free-stream vortical disturbances are entrained in the entrance47

region of a circular pipe and how the induced disturbances grow and evolve nonlinearly48

inside the pipe.49

1.1. Fully developed pipe flow50

The stability and transition of fully developed laminar pipe flow cannot be explained by the51

classical linear stability theory because the parabolic profile is stable to infinitesimally small52

disturbances. The reader is referred to Rayleigh (1892), Sexl (1927), Pekeris (1948), Corcos53

& Sellars (1959) and Gill (1965) for theoretical studies, and to Davey & Drazin (1969),54

Crowder & Dalton (1971), Garg & Rouleau (1972), Salwen & Grosch (1972) and Meseguer55

& Trefethen (2003) for numerical studies. However, transition in pipe flow is usually observed56

in experiments at moderate Reynolds numbers. This discrepancy has led to the inclusion of57

nonlinear effects in the study of pipe-flow stability. Weakly nonlinear theory was first applied58

independently by Davey & Nguyen (1971) and Itoh (1977), but the results contradicted59

each other. Davey & Nguyen (1971) reported that fully developed pipe flow was unstable60

to small but finite axisymmetric centre-mode disturbances when the disturbance amplitude61

exceeded a critical value, while the flow was found to be stable by Itoh (1977). The problem62

was reexamined by Davey (1978), who suggested that neither of those results was reliable.63

Direct numerical simulations performed by Patera & Orszag (1981) failed to find any finite-64

amplitude axisymmetric equilibria and suggested that the use of weakly nonlinear theory65

away from the neutral stability curve may be invalid. Smith & Bodonyi (1982) identified66

neutral disturbances of finite amplitude by employing the nonlinear critical layer theory.67

The research interest then shifted from solving the eigenvalue problem established by68

the modal stability theory to the temporal initial value problem pertaining to the non-69

modal stability theory. Since the linear stability theory captures the long-time disturbance70

behaviour but overlooks the short-time behaviour (Kerswell 2005; Schmid 2007), at short71

times, disturbances may experience algebraic transient growth before the ultimate exponential72

decay (e.g., Böberg & Brösa 1988). One related approach is to identify the optimal disturbance73

that achieves the maximum transient energy growth. Studies on transient growth in time74

have revealed that optimal disturbances have a vanishing streamwise wavenumber and a75

unity azimuthal wavenumber (Bergström 1992; Schmid & Henningson 1994; O’Sullivan &76

Breuer 1994). Bergström (1993) and Schmid & Henningson (1994) also extended the work to77

disturbances with small but non-zero streamwise wavenumber. The spatial transient growth78

has been reported by Tumin (1996) and Reshotko & Tumin (2001). Stationary disturbances79

were found to exhibit a more significant amplification than non-stationary ones (Reshotko80

& Tumin 2001). Optimal disturbances provide the upper bound for the possible energy81

amplification, which is optimised over all possible initial conditions.82



3

Faisst & Eckhardt (2003) and Wedin & Kerswell (2004) independently discovered83

nonlinear travelling waves in pipe flow for the first time, which were later observed in84

the experiments of Hof et al. (2004) and Hof et al. (2005). Inspired by these results, the85

nonlinear dynamical system approach has become a valuable tool in the last two decades86

(Eckhardt et al. 2007; Avila et al. 2023). From the perspective of dynamical theory, all initial87

conditions of the pipe-flow system that ultimately converge to the laminar state form the basin88

of attraction of the laminar state. Transition occurs when the initial conditions are outside89

of this basin boundary. The nonlinear non-modal stability theory describes the dynamics of90

finite disturbances within and beyond the basin boundary (Kerswell et al. 2014; Kerswell91

2018). Optimisation methods have been utilised within this nonlinear theory to compute the92

so-called minimal seed (Pringle & Kerswell 2010; Pringle et al. 2012), i.e. the disturbance93

with the smallest energy for turbulence to occur. The interested reader is referred to Kerswell94

(2018) for an exhaustive review.95

1.2. Pipe-entrance flow96

The absence of linear instability in fully developed pipe flow directed interest to the flow97

in the developing entrance region. As the uniform flow enters the pipe inlet, a laminar98

boundary layer grows along the wall. One can then expect this pipe-entrance boundary layer99

to be linearly unstable. Research efforts first focused on the computation of the velocity and100

pressure distributions of this base flow (Langhaar 1942; Hornbeck 1964; Sparrow et al. 1964;101

Christiansen & Lemmon 1965).102

The first temporal stability analysis of the pipe entrance flow was performed by Tatsumi103

(1952) by using a boundary-layer model that revealed the linear instability of the flow104

subjected to axisymmetric disturbances. The same problem was investigated numerically by105

Huang & Chen (1974a) and generalised to non-axisymmetric disturbances (Huang & Chen106

1974b; Shen et al. 1976) and spatially unstable disturbances (Gupta & Garg 1981; Garg107

1981; Garg & Gupta 1981; Garg 1983). Considerable discrepancies were observed among108

the results obtained in these studies, which may be attributed to the varying accuracies in109

the calculation of the laminar base flow (da Silva & Moss 1994). da Silva & Moss (1994)110

reexamined this stability problem with improved accuracy, obtaining good agreement with111

results by Gupta & Garg (1981). The critical Reynolds number based on the pipe radius was112

approximately 10 000 in both studies.113

Although these studies focused on the stability of flow profiles at different streamwise114

locations in the pipe entrance, the receptivity problem - i.e. how entrained free-stream115

disturbances excite instability in the entrance region - was not considered. This problem is,116

however, of central importance because, as even remarked by Reynolds (1883), the pipe inlet117

disturbances have a significant effect on the stability and laminar-turbulent transition of the118

pipe-entrance flow. By controlling the disturbance level at the pipe inlet, the flow studied by119

Reynolds (1883) was maintained laminar up to Reynolds numbers ranging from 2000 to 13120

000. This number was further increased to 100 000 in the experiments of Pfenniger (1961).121

Given the importance of the inlet perturbations, it is thus surprising that only a limited122

number of studies exist on this problem. In the experiments of Sarpkaya (1975), disturbances123

were introduced on the surface of the pipe entrance, and the occurrence of instability was124

confirmed. The reported critical Reynolds number was much lower than that estimated by125

theoretical studies, which may be ascribed to the finite-amplitude disturbances induced in126

the entrance flow. The dynamics of localised turbulence, i.e. puffs and slugs, was studied127

in the experimental work of Wygnanski & Champagne (1973), where the disturbances were128

introduced at the pipe inlet using a honeycomb, an orifice plate and a circular disk. Wygnanski129

et al. (1975) further investigated the propagation of turbulent puffs initiated by an impulsive130

disturbance at the entrance region. The experimental study of Zanoun et al. (2009) focused131



4

Mean velocity

profile

Boundary-layer

thickness

Nonlinear elongated structures

resembling travelling waves
Perturbation

velocity profile

Bessel-function

decomposed oncoming

disturbances

Fully nonlinear evolutionAlgebraic growth
Matched-asymptotic

initial velocity field

G

A

\

Figure 1: Schematic of the entrance region of a pipe (not to scale).

on the effect of the inlet flow conditions on the flow transition in pipe and channel flows.132

Different transition Reynolds numbers were measured at different streamwise positions.133

Direct numerical simulations were conducted by Wu et al. (2015) and Wu et al. (2020)134

to investigate the flow transition to fully developed turbulence triggered by localised inlet135

disturbances. In Wu et al. (2015), the fully developed parabolic laminar velocity profile was136

chosen as the inlet base flow in most cases, and the plug flow was utilised in one case. The137

most intense inlet disturbances required to trigger transition pertained to the latter case.138

Under the small-amplitude assumption, Ricco & Alvarenga (2022) performed the first139

theoretical study of the entrainment of free-stream vortical disturbances in the pipe entrance.140

Their interest was in how these disturbances are affected by the pipe confinement, and on141

how they grow and develop downstream. The perturbation flow at the pipe inlet was obtained142

by a matched asymptotic composite solution between a Bessel function vortical flow in the143

pipe core and a boundary-layer flow near the pipe wall. A streamwise-elongated streaky flow144

formed within the base-flow boundary layer and evolved towards the pipe centreline farther145

downstream. A good agreement between the computed velocity profiles and the available146

experimental data was found when the measured free-stream disturbances were weak.147

1.3. Objectives148

We investigate the entrainment of flow disturbances into the entrance of a circular pipe, and149

the downstream growth and evolution of the induced nonlinear vortical disturbances along the150

entrance region. The oncoming disturbances are physically realistic, i.e. they can be generated151

at the pipe inlet in a laboratory. The nonlinear boundary-region equations are derived in the152

cylindrical geometry for the first time, and solved numerically by marching downstream. Our153

study is the nonlinear extension of Ricco & Alvarenga (2022), and the first theoretical study154

of the entrainment and downstream evolution of finite-amplitude disturbances in the entrance155

region of a circular pipe.156

In §2, the scaling and assumptions are presented, together with the mathematical formu-157

lation and numerical procedures. Numerical results are discussed in §3. A summary and158

conclusions are given in §4.159

2. Mathematical formulation and numerical procedures160

We consider a circular pipe of radius 𝑅∗ described by a cylindrical coordinate system161

{G∗, A∗, \}, where G∗ and A∗ are the streamwise and radial directions, and \ is the azimuthal162

angle. The pipe inlet is located at G∗ = 0, while the pipe axis and the pipe wall are at A∗ = 0163

Focus on Fluids articles must not exceed this page length
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and A∗ = 𝑅∗, respectively. The superscript * refers to dimensional quantities hereafter. A164

schematic of the flow is shown in figure 1.165

A pressure-driven incompressible flow is assumed to enter the pipe with a uniform velocity166

𝑈∗
∞ at G∗ = 0. Superimposed on the oncoming flow are small-amplitude gust-type vortical167

fluctuations that can be modelled by a Fourier–Bessel series with Fourier expansions in G∗, \168

and time 𝑡∗, and a Bessel expansion in A∗. A pair of vortical modes with the same frequency 𝑓 ∗169

(and hence the same streamwise wavenumber 𝑘∗𝑥), but opposite azimuthal wavenumbers±𝑚0,170

is considered (𝑚0 ⩾ 0 is taken without losing generality). The circumferential wavelength171

of the free-stream gust at the pipe radius, 𝜆∗ = 2𝜋𝑅∗/𝑚0, is chosen as the reference length.172

The velocities and time are normalised by 𝑈∗
∞ and 𝜆∗/𝑈∗

∞, respectively, while the pressure173

𝑝∗ is normalised by 𝜌∗𝑈∗2
∞ , where 𝜌∗ is the density of the fluid.174

Following Ricco & Alvarenga (2022), a single pair of free-stream gusts is passively175

advected by 𝑈∗
∞ and expressed as176

𝒖 − {1, 0, 0} = 𝜖
{
𝒖̂∞

+,𝒎0
𝑒𝑖𝑚0 𝜃 + 𝒖̂∞

−,𝒎0
𝑒−𝑖𝑚0 𝜃

}
𝑒𝑖𝑘𝑥 (𝑥−𝑡 ) + c.c., (2.1)177

where178

𝒖̂∞

±,𝒎0
(A; 𝑙) =

{
𝑢̂∞𝑚0

𝐽𝑚0
(A0),

𝑣̂∞𝑚0
𝐽𝑚0

(A0)
A0

,
∓𝑖𝑤̂∞

𝑚0
𝐽′𝑚0

(A0)
𝜉𝑚0 ,𝑙

}
= O(1). (2.2)179

Here, 𝒖 = {𝑢, 𝑣, 𝑤} corresponds to the velocity components in the G, A and \ directions, 𝜖 ≪ 1180

is a measure of the amplitude of the disturbances, the quantities {𝑢̂∞𝑚0
, 𝑣̂∞𝑚0

, 𝑤̂∞
𝑚0
} = O(1) are181

complex, 𝐽𝑚0
is the Bessel function of the first kind of order 𝑚0, A0 = A𝜉𝑚0 ,𝑙/2𝑅 with 𝜉𝑚0 ,𝑙182

being the 𝑙th zero of the Bessel function 𝐽𝑚0
, and c.c. denotes the complex conjugate. The183

notations 𝑚0 and A0 correspond to 𝑚 and A in Ricco & Alvarenga (2022). A similar expansion184

of the free-stream vortical disturbances has been used in Ricco et al. (2011) and Marensi185

et al. (2017) for flat-plate boundary layers, Marensi & Ricco (2017) for concave boundary186

layers, and Ricco & Alvarenga (2021) for a channel flow. The expansion (2.1)–(2.2) is a187

model of free-stream vortical disturbances that could be realised in a laboratory by a grid of188

vibrating ribbons, a polar equivalent of the careful receptivity studies of Dietz (1999) and189

Borodulin et al. (2021).190

Our focus is on oncoming disturbances with a long streamwise wavelength (i.e. low191

frequency), i.e. 𝑘𝑥 ≪ 1, which have been experimentally demonstrated to be the most likely192

to penetrate into a boundary layer and form streamwise-elongated structures (Matsubara &193

Alfredsson 2001). Under the low-frequency assumption, the continuity equation of the gust194

disturbances becomes195

𝜉𝑚0 ,𝑙 𝑣̂
∞
𝑚0

+ 𝑚0𝑤̂
∞
𝑚0

= 0, (2.3)196

where 𝜕𝑢/𝜕G = O(𝑘𝑥) ≪ 1 has been neglected.197

As the oncoming flow enters the pipe, a boundary layer develops on the pipe wall. As198

the flow evolves downstream, the boundary-layer thickness becomes comparable with the199

azimuthal wavelength 𝜆∗ at G = O(𝑅𝑒𝜆), where 𝑅𝑒𝜆 = 𝑈∗
∞𝜆

∗/𝜈∗ ≫ 1, and 𝜈∗ is the kinematic200

viscosity of the fluid. A distinguished scaling is 𝑘𝑥 = O
(
𝑅𝑒−1

𝜆

)
, and the two slow variables201

scaled by 𝑘𝑥 are 𝑡 = 𝑘𝑥𝑡 = O(1) and Ḡ = 𝑘𝑥G = O(1). In this region, viscous–diffusion202

effects in the radial and azimuthal directions are comparable. The flow can be described by203

the nonlinear boundary-region equations (Ricco et al. 2011), written and solved herein in204

cylindrical coordinates for the first time. The linear counterpart of these equations, obtained205

for the turbulent Reynolds number A𝑡 = 𝜖𝑅𝑒𝜆 ≪ 1, was derived and solved in Ricco &206

Alvarenga (2022) for studying the growth of small-amplitude disturbances. The current207

research relaxes the linear assumption because A𝑡 = O(1). Nonlinear interactions are thus208

taken into account.209
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2.1. Governing equations210

The boundary-region equations are derived from the incompressible Navier-Stokes equations211

∇ · 𝒖 = 0, (2.4)212

𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝒖 = −∇𝑝 + 1

𝑅𝑒𝜆
∇2𝑢. (2.5)213

The velocity 𝒖 and the pressure 𝑝 are decomposed into the laminar base flow and the214

perturbation flow, namely216

{𝒖, 𝑝} = {𝑼, 𝑃} + {𝒖̃, 𝑝}

= {𝑈 (Ḡ, A), 𝑘𝑥𝑉 (Ḡ, A), 0, 𝑃(Ḡ)} + A𝑡

{
𝑢̄, 𝑘𝑥 𝑣̄, 𝑘𝑥𝑤̄,

𝑘𝑥

𝑅𝑒𝜆
𝑝 + Γ(Ḡ)

}
,

(2.6)217

where the perturbation flow is expressed as a Fourier series in \ and 𝑡:218

{𝑢̄, 𝑣̄, 𝑤̄, 𝑝, Γ} =
∞∑︁

𝑚,𝑛=−∞
{𝑢̂𝑚,𝑛, 𝑣̂𝑚,𝑛, 𝑤̂𝑚,𝑛, 𝑝𝑚,𝑛, Γ̂𝑚,𝑛}𝑒𝑖𝑚𝜃+𝑖𝑛𝑡 . (2.7)219

The pressure correction Γ(Ḡ) ensures that the mass flow rate is conserved at each streamwise220

location and time instant as the modes 𝑢̂0,𝑛 are generated by the nonlinear interactions.221

Therefore, Γ̂𝑚,𝑛 ≠ 0 only if 𝑚 = 0. As the physical quantities are real, the Hermitian property222

applies, i.e.223

(𝑞𝑚,𝑛)c.c. = 𝑞−𝑚,−𝑛, (2.8)224

where 𝑞𝑚,𝑛 represents any Fourier coefficient {𝑢̂𝑚,𝑛, 𝑣̂𝑚,𝑛, 𝑤̂𝑚,𝑛, 𝑝𝑚,𝑛, Γ̂𝑚,𝑛} in (2.7).225

Substituting (2.6) and (2.7) into the full Navier-Stokes equations (2.4)–(2.5), and taking226

the limits 𝑘−1
𝑥 , 𝑅𝑒𝜆 → ∞ with F = 𝑘𝑥𝑅𝑒𝜆 = O(1) leads to the boundary-layer equations227

governing the laminar base flow {𝑈,𝑉, 𝑃} and to the unsteady nonlinear boundary-region228

equations governing the perturbation flow {𝑢̂𝑚,𝑛, 𝑣̂𝑚,𝑛, 𝑤̂𝑚,𝑛, 𝑝𝑚,𝑛, Γ̂𝑚,𝑛}.229

The laminar boundary-layer equations read (Hornbeck 1964)230

𝜕𝑈

𝜕Ḡ
+ 𝑉

A
+ 𝜕𝑉

𝜕A
= 0, (2.9)231

𝑈
𝜕𝑈

𝜕Ḡ
+𝑉 𝜕𝑈

𝜕A
= −d𝑃

dḠ
+ 1

F

(
1

A

𝜕𝑈

𝜕A
+ 𝜕2𝑈

𝜕A2

)
. (2.10)232

Equation (2.9) and (2.10) are solved together with the conservation of mass flow rate at each233

streamwise location,234

∫ 𝑅

0

𝑈AdA =
𝑅2

2
, (2.11)235

and are subject to the no-slip and no-penetration conditions at the wall and the symmetry236

conditions at the pipe axis:237

A = 𝑅 : 𝑈 = 𝑉 = 0, (2.12)238

A = 0 :
𝜕𝑈

𝜕A
= 0, 𝑉 = 0. (2.13)239

The initial condition is obtained by a matched asymptotic combination of the Blasius flow240



7

near the pipe wall and an inviscid flow around the pipe core (Ricco & Alvarenga 2022),242

𝑈 (G, A) =d𝐹

d𝜂
− 𝛽𝑖1/2

2
√

2𝜋𝑅𝑒
1/2
𝜆

∫ +∞+𝑖𝛾

−∞+𝑖𝛾

𝑒𝑖𝜁 𝑥

𝜁1/2𝐼1(𝜁𝑅)

[
𝐼1(𝜁A)
𝜁A

+ 𝐼 ′1(𝜁A)
]

d𝜁+

𝛽𝑖1/2

2
√

2𝜋𝑅𝑒
1/2
𝜆

∫ +∞+𝑖𝛾

−∞+𝑖𝛾

𝑒𝑖𝜁 𝑥

𝜁1/2

[
𝐼 ′
1
(𝜁𝑅)

𝐼1(𝜁𝑅)
+ 1

𝜁𝑅

]
d𝜁, G ≪ 1

(2.14)243

where 𝜂 = (𝑅 − A) (𝑅𝑒𝜆/2G)1/2, 𝐹 satisfies the Blasius equation 𝐹′′′ + 𝐹𝐹′′
= 0, the prime244

denotes differentiation, 𝛽 = lim𝜂→∞(𝜂 − 𝐹) = 1.217..., 𝐼1 is the modified Bessel function of245

the first kind, and 𝛾 ∈ R < 0. Equations (2.9)–(2.11), supplemented by conditions (2.12)–246

(2.14), are solved by an improved version of the numerical scheme of Hornbeck (1964). A247

detailed description of the numerical procedure is provided in the supplementary material248

S1 of Ricco & Alvarenga (2022). The numerical results are discussed in §4.1 of Ricco &249

Alvarenga (2022).250

The perturbation-flow unsteady nonlinear boundary-region equations are as follows.251

The continuity equation is252

𝜕𝑢̂𝑚,𝑛

𝜕Ḡ
+ 𝑣̂𝑚,𝑛

A
+ 𝜕𝑣̂𝑚,𝑛

𝜕A
+ 𝑖𝑚

A
𝑤̂𝑚,𝑛 = 0. (2.15)253

The G-momentum equation is255

(
𝑖𝑛 + 𝜕𝑈

𝜕Ḡ
+ 𝑚2

F A2

)
𝑢̂𝑚,𝑛 +𝑈

𝜕𝑢̂𝑚,𝑛

𝜕Ḡ
+

(
𝑉 − 1

F A

)
𝜕𝑢̂𝑚,𝑛

𝜕A
+ 𝑣̂𝑚,𝑛

𝜕𝑈

𝜕A
−

1

F
𝜕2𝑢̂𝑚,𝑛

𝜕A2
+ dΓ̂0,𝑛

dḠ
= A𝑡X̂𝑚,𝑛.

(2.16)256

The A-momentum equation is258

(
𝑖𝑛 + 𝜕𝑉

𝜕A
+ 𝑚2 + 1

F A2

)
𝑣̂𝑚,𝑛 +𝑈

𝜕𝑣̂𝑚,𝑛

𝜕Ḡ
+ 𝑢̂𝑚,𝑛

𝜕𝑉

𝜕Ḡ
+

(
𝑉 − 1

F A

)
𝜕𝑣̂𝑚,𝑛

𝜕A
+

1

F
𝜕𝑝𝑚,𝑛

𝜕A
− 1

F
𝜕2𝑣̂𝑚,𝑛

𝜕A2
+ 2𝑖𝑚

F A2
𝑤̂𝑚,𝑛 = A𝑡Ŷ𝑚,𝑛.

(2.17)259

The \-momentum equation is261

(
𝑖𝑛 + 𝑉

A
+ 𝑚2 + 1

F A2

)
𝑤̂𝑚,𝑛 +𝑈

𝜕𝑤̂𝑚,𝑛

𝜕Ḡ
+

(
𝑉 − 1

F A

)
𝜕𝑤̂𝑚,𝑛

𝜕A
+ 𝑖𝑚

F A
𝑝𝑚,𝑛−

1

F
𝜕2𝑤̂𝑚,𝑛

𝜕A2
− 2𝑖𝑚

F A2
𝑣̂𝑚,𝑛 = A𝑡Ẑ𝑚,𝑛.

(2.18)262

The right-hand sides of the momentum equations (2.16)–(2.18) denote the nonlinear terms263

X̂𝑚,𝑛 = −
(
𝜕̂̄𝑢𝑢̄
𝜕Ḡ

+ 𝜕̂̄𝑢𝑣̄
𝜕A

+
̂̄𝑢𝑣̄ + 𝑖𝑚 ̂̄𝑢𝑤̄

A

)

𝑚,𝑛

,

Ŷ𝑚,𝑛 = −
(
𝜕̂̄𝑢𝑣̄
𝜕Ḡ

+ 𝜕 ̂̄𝑣𝑣̄
𝜕A

+
̂̄𝑣𝑣̄ + 𝑖𝑚 ̂̄𝑣𝑤̄ − ̂̄𝑤𝑤̄

A

)

𝑚,𝑛

,

Ẑ𝑚,𝑛 = −
(
𝜕 ̂̄𝑢𝑤̄
𝜕Ḡ

+ 𝜕 ̂̄𝑣𝑤̄
𝜕A

+ 𝑖𝑚̂̄𝑤𝑤̄
A

+ 2̂̄𝑣𝑤̄
A

)

𝑚,𝑛

,




(2.19)264
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where ˆ indicates Fourier transformed quantities. In the limit A𝑡 ≪ 1, the linearised boundary-265

region equations of Ricco & Alvarenga (2022) are recovered. The pressure correction Γ̂0,𝑛266

becomes a further unknown variable for 𝑚 = 0, and one more condition is thus required267

to solve the system. Analogous to (2.11) for the base-flow problem, this condition is the268

conservation of mass flow rate at each instant in time and at each streamwise location. As269

discussed in Appendix A, this condition is expressed as270

∫ 𝑅

0

𝑢̂0,𝑛AdA = 0. (2.20)271

Since the partial differential system (2.15)–(2.20) is parabolic in the streamwise direction272

and elliptic in the radial and azimuthal directions, appropriate initial and boundary conditions273

are needed. These conditions are presented in §2.2. Further treatment of (2.15)–(2.20) is274

carried out in §2.3 for different values of 𝑚. The numerical procedures are discussed in §2.4.275

2.2. Initial and boundary conditions276

While the streamwise velocity of the induced disturbances acquires an order-one amplitude277

at Ḡ = O(1), the velocity fluctuations near the pipe inlet are of small amplitude 𝑂 (𝜖) and278

nonlinear effects can therefore be neglected there. Hence the initial conditions derived by279

Ricco & Alvarenga (2022) can be used. Comparison of the velocity expansions (2.6) here280

and (2.6) in Ricco & Alvarenga (2022) leads to the relations281

{
𝑢̂𝑚0 ,−1, 𝑣̂𝑚0 ,−1

}
=

1

𝑅𝑒𝜆

{
𝑖𝑚0

𝑘𝑥
𝑢̄𝑥 + 𝑢̄

(0)
𝑥 ,

𝑖𝑚0

𝑘𝑥
𝑢̄𝑟 + 𝑢̄

(0)
𝑟

}
, (2.21)282

where 𝑢̄𝑥 , 𝑢̄𝑟 , 𝑢̄
(0)
𝑥 and 𝑢̄

(0)
𝑟 are given by the analytical expressions (3.25)–(3.27) and283

(3.32) in Ricco & Alvarenga (2022). The azimuthal velocity 𝑤̂𝑚0 ,−1 can be found through284

the continuity equation (2.15), with 𝑢̂𝑚0 ,−1 and 𝑣̂𝑚0 ,−1 given by (2.21). For the opposite285

wavenumber 𝑚 = −𝑚0, the same streamwise and radial components but opposite azimuthal286

component are derived287

{
𝑢̂−𝑚0 ,−1, 𝑣̂−𝑚0 ,−1, 𝑤̂−𝑚0 ,−1

}
=

{
𝑢̂𝑚0 ,−1, 𝑣̂𝑚0 ,−1,−𝑤̂𝑚0 ,−1

}
. (2.22)288

It also occurs that289

𝑢̂𝑚,𝑛 = 𝑣̂𝑚,𝑛 = 𝑤̂𝑚,𝑛 = 0 for (𝑚, 𝑛) ≠ (±𝑚0,−1). (2.23)290

Since the streamwise derivative of 𝑝𝑚,𝑛 is negligible in the G-momentum equation (2.16)291

under the low-frequency assumption, no initial condition for 𝑝𝑚,𝑛 is required.292

In the radial direction, equations (2.15)–(2.20) are subjected to the no-slip and no-293

penetration conditions at the wall (A = 𝑅),294

𝑢̂𝑚,𝑛 = 𝑣̂𝑚,𝑛 = 𝑤̂𝑚,𝑛 = 0, (2.24)295

while the boundary conditions at the pipe axis (A = 0) are296

𝑢̂′𝑚,𝑛 = 0, 𝑣̂𝑚,𝑛 = 0, 𝑤̂𝑚,𝑛 = 0, 𝑝′𝑚,𝑛 = 0, for 𝑚 = 0,

𝑢̂𝑚,𝑛 = 0, 𝑣̂′𝑚,𝑛 = 0, 𝑤̂′
𝑚,𝑛 = 0, 𝑝𝑚,𝑛 = 0, for |𝑚 | = 1,

𝑢̂𝑚,𝑛 = 0, 𝑣̂𝑚,𝑛 = 0, 𝑤̂𝑚,𝑛 = 0, 𝑝𝑚,𝑛 = 0, for |𝑚 | ⩾ 2,




(2.25)297

where the prime indicates the derivative with respect to A . Conditions (2.25) are derived298

following Batchelor & Gill (1962), Tuckerman (1989) and Lewis & Bellan (1990), who299

studied the physical constraints on the coefficients of Fourier expansions in cylindrical300

coordinates (refer also to supplementary material S3 of Ricco & Alvarenga (2022)).301
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2.3. Initial-boundary value problems302

For convenience of the numerical calculations, the nonlinear boundary-region equations303

(2.15)–(2.20), together with the initial conditions (2.21)–(2.23) and the boundary conditions304

(2.24)–(2.25), are solved in different forms according to the value of 𝑚.305

Case I For the components with 𝑚 ≠ 0, the pressure 𝑝𝑚,𝑛 and the azimuthal velocity306

𝑤̂𝑚,𝑛 can be eliminated from (2.15)–(2.19) as in Ricco & Alvarenga (2022). The resulting307

equations read308

(
𝑖𝑛 + 𝜕𝑈

𝜕Ḡ
+ 𝑚2

F A2

)
𝑢̂𝑚,𝑛 +

(
𝑉 − 1

F A

)
𝜕𝑢̂𝑚,𝑛

𝜕A
+𝑈

𝜕𝑢̂𝑚,𝑛

𝜕Ḡ
− 1

F
𝜕2𝑢̂𝑚,𝑛

𝜕A2
+ 𝜕𝑈

𝜕A
𝑣̂𝑚,𝑛 = A𝑡X̂𝑚,𝑛,

(2.26)309311

𝑉𝑣̂𝑚,𝑛 +𝑉𝑟
𝜕𝑣̂𝑚,𝑛

𝜕A
+𝑉𝑥

𝜕𝑣̂𝑚,𝑛

𝜕Ḡ
+𝑉𝑟𝑟

𝜕2𝑣̂𝑚,𝑛

𝜕A2
+𝑉𝑥𝑟

𝜕2𝑣̂𝑚,𝑛

𝜕Ḡ𝜕A
+𝑉𝑟𝑟𝑟

𝜕3𝑣̂𝑚,𝑛

𝜕A3
+𝑉𝑥𝑟𝑟

𝜕3𝑣̂𝑚,𝑛

𝜕Ḡ𝜕A2
+

𝑉𝑟𝑟𝑟𝑟
𝜕4𝑣̂𝑚,𝑛

𝜕A4
+ 𝑈̂𝑢̂𝑚,𝑛 +𝑈𝑟

𝜕𝑢̂𝑚,𝑛

𝜕A
+𝑈𝑥

𝜕𝑢̂𝑚,𝑛

𝜕Ḡ
+𝑈𝑟𝑟

𝜕2𝑢̂𝑚,𝑛

𝜕A2
+𝑈𝑥𝑟

𝜕2𝑢̂𝑚,𝑛

𝜕Ḡ𝜕A
+

𝑈𝑥𝑟𝑟

𝜕3𝑢̂𝑚,𝑛

𝜕Ḡ𝜕A2
= A𝑡

A2

𝑚2

𝜕2X̂𝑚,𝑛

𝜕Ḡ𝜕A
+ A𝑡Ŷ𝑚,𝑛 +

𝑖A𝑡

𝑚

𝜕
(
AẐ𝑚,𝑛

)

𝜕A
,

(2.27)

312

where the coefficients 𝑉,𝑉𝑟 , 𝑉𝑥 , · · · ,𝑈𝑥𝑟𝑟 are given in Appendix B. Only the initial and313

boundary conditions for {𝑢̂𝑚,𝑛, 𝑣̂𝑚,𝑛} are needed in this case. The initial conditions are given314

in (2.21)–(2.23). The boundary conditions are315

𝑢̂𝑚,𝑛 = 𝑣̂𝑚,𝑛 = 𝑣̂′𝑚,𝑛 = 0, at A = 𝑅 (2.28)316

and317

𝑢̂𝑚,𝑛 = 0, 𝑣̂′𝑚,𝑛 = 0, 𝑣̂′′′𝑚,𝑛 = 0, for |𝑚 | = 1,

𝑢̂𝑚,𝑛 = 0, 𝑣̂𝑚,𝑛 = 0, 𝑣̂′′𝑚,𝑛 = 0, for |𝑚 | = 2,

𝑢̂𝑚,𝑛 = 0, 𝑣̂𝑚,𝑛 = 0, 𝑣̂′𝑚,𝑛 = 0, for |𝑚 | > 2,




at A = 0. (2.29)318

At the pipe wall, A = 𝑅, the last condition 𝑤̂𝑚,𝑛 = 0 in (2.24) is replaced by 𝑣̂′𝑚,𝑛 = 0 in (2.28),319

which is obtained by inserting (2.24) into the continuity equation (2.15). At the pipe axis,320

A = 0, the conditions for 𝑤̂ and 𝑤̂′ in (2.25) for different 𝑚 are replaced following the physical321

constraints proposed by Batchelor & Gill (1962), Khorrami et al. (1989), Tuckerman (1989)322

and Lewis & Bellan (1990), as discussed in supplementary material S3 of Ricco & Alvarenga323

(2022). The azimuthal velocity 𝑤̂𝑚,𝑛 can be obtained a posteriori from the continuity equation324

and the pressure 𝑝𝑚,𝑛 can then be calculated from either the A-momentum equation (2.17)325

or the \-momentum equation (2.18).326

Case II For the components with𝑚 = 0, the pressure 𝑝0,𝑛 appears only in the A-momentum327

equation (2.17). The three velocity components {𝑢̂0,𝑛, 𝑣̂0,𝑛, 𝑤̂0,𝑛} can be solved by the328

continuity, G- and \-momentum equations,329

𝜕𝑢̂0,𝑛

𝜕Ḡ
+ 𝑣̂0,𝑛

A
+ 𝜕𝑣̂0,𝑛

𝜕A
= 0, (2.30)330

(
𝑖𝑛 + 𝜕𝑈

𝜕Ḡ

)
𝑢̂0,𝑛 +𝑈

𝜕𝑢̂0,𝑛

𝜕Ḡ
+

(
𝑉 − 1

F A

)
𝜕𝑢̂0,𝑛

𝜕A
+ 𝑣̂0,𝑛

𝜕𝑈

𝜕A
− 1

F
𝜕2𝑢̂0,𝑛

𝜕A2
+ dΓ̂0,𝑛

dḠ
= A𝑡X̂0,𝑛,

(2.31)

331

(
𝑖𝑛 + 𝑉

A
+ 1

F A2

)
𝑤̂0,𝑛 +𝑈

𝜕𝑤̂0,𝑛

𝜕Ḡ
+

(
𝑉 − 1

F A

)
𝜕𝑤̂0,𝑛

𝜕A
− 1

F
𝜕2𝑤̂0,𝑛

𝜕A2
= A𝑡Ẑ0,𝑛, (2.32)332
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𝑁𝑡

...
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−2

−1

0

1
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3
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−𝑁𝑡
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𝑚

𝑛

Figure 2: Sketch of Fourier modes induced by a pair of free-stream vortical modes. Dark
grey squares: forcing modes (±𝑚0,±1). Light grey squares: nonlinearly generated modes.

The modes in the shaded area are computed through the Hermitian property (2.8).

together with (2.20) for the conservation of the mass flow rate, as discussed in §2.1. The333

pressure 𝑝0,𝑛 is computed a posteriori by integrating the A-momentum equation (2.17). The334

boundary conditions for the velocity components and the pressure are given in (2.24) and335

(2.25) for 𝑚 = 0. The initial conditions for 𝑢̂0,𝑛, 𝑣̂0,𝑛, 𝑤̂0,𝑛 are null.336

2.4. Numerical procedures337

The initial-boundary value problems are solved by marching in the streamwise direction338

Ḡ. The governing equations for both cases are discretised by second-order finite-difference339

schemes employing a one-sided backward uniform grid along Ḡ and a central-difference340

uniform grid along A . The discretised system of case I forms a block tridiagonal matrix and341

is solved at each Ḡ location by a standard block tridiagonal matrix algorithm (Cebeci 2002).342

For case II, the composite trapezoidal rule is used for the calculation of the integral (2.20).343

Since the velocity components and the pressure gradient are computed simultaneously, the344

block tridiagonal structure of the matrix is lost. A novel modified block tridiagonal matrix345

algorithm is utilised to accelerate the numerical solution of this system, as discussed in346

Appendix C.347

The computation of the nonlinear terms on the right-hand sides of the momentum equations348

is refined by a predictor–corrector method at each Ḡ location. In the predictor step, the initial349

approximation of the nonlinear terms uses the results at the previous Ḡ location to treat the350

discretised nonlinear system explicitly. The velocity computed from the predictor step is used351

Rapids articles must not exceed this page length
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to improve the initial guess in the corrector step. This iteration is repeated until a convergence352

criterion is fulfilled. An under-relaxation method is used to accelerate this procedure. At each353

iteration, nonlinear terms are calculated using the pseudo-spectral method, in which first the354

Fourier coefficients of the velocity components are transformed to the physical space to carry355

out the multiplications, and the products are then transformed back to the spectral space.356

The aliasing error is eliminated by employing the 3/2 rule, which avoids the spurious energy357

cascade from the unresolved high-frequency modes into the resolved low-frequency ones.358

As the Hermitian property is applied for the azimuthal angle \, only the Fourier modes359

with non-negative indices 𝑚 need to be calculated. The modes with negative 𝑚 indices are360

evaluated through (2.8). Figure 2 shows a sketch of the Fourier modes induced by a pair361

of free-steam vortical modes (±𝑚0,±1). Only the modes with 𝑚 = ±𝑚0,±2𝑚0,±3𝑚0, · · ·362

and 𝑛 = ±1,±2,±3, · · · can be generated by nonlinearity. Fourier modes are truncated at363

𝑚 = ±𝑁𝜃 and 𝑛 = ±𝑁𝑡 for the azimuthal wavenumber and the frequency, respectively.364

Resolution checks show that the use of 𝑁𝑡 = 6, 𝑁𝜃 = 12 is sufficient to capture the nonlinear365

effects induced by the free-stream forcing modes with wavenumber 𝑚0 = 2. For larger 𝑚0, a366

correspondingly larger value of 𝑁𝜃 is necessary (e.g. 𝑁𝜃 = 18 for 𝑚0 = 3).367

3. Results368

In the analysis of the flow, the kinetic energy of the free-stream gust averaged over the pipe369

cross-section is kept constant:370

E𝑔𝑢𝑠𝑡

𝑚0 ,𝑙
=

1

2𝜋𝑅2

∫ 2𝜋

0

∫ 𝑅

0

(
|𝑢̃ |2 + |𝑣̃ |2 + |𝑤̃ |2

)
AdAd\371

=
4𝜖2

𝑅2

∫ 𝑅

0

[(
𝑢̂∞𝑚0

𝐽𝑚0
(A0)

)2

+
(
𝑣̂∞𝑚0

𝐽𝑚0
(A0)

A0

)2

+
(
𝑣̂∞𝑚0

𝐽′𝑚0
(A0)

𝑚0

)2
]
AdA, (3.1)372

373

where the gust velocity components in (2.2) have been used. The relation (2.3) is utilised to374

eliminate 𝑤̂∞
𝑚0

from (3.1). Without losing generality, 𝑢̂∞𝑚0
is fixed at 1 in our analysis. With375

𝑚0 and 𝑙 specified, the only parameter to be determined is 𝑣̂∞𝑚0
, which is found by equating376

E𝑔𝑢𝑠𝑡

𝑚0 ,𝑙
to E𝑔𝑢𝑠𝑡

1,1
, the perturbation energy for 𝑚0 = 𝑙 = 1 and 𝑣̂∞𝑚0

= 1. A similar approach was377

adopted in Schmid & Henningson (1994), where the maximum energy amplification was378

computed over initial conditions with the same energy norm. The intensity used to measure379

the fluctuation level of the gust is defined as 𝑇𝑢 =

√︃
(2/3)E𝑔𝑢𝑠𝑡

𝑚0 ,𝑙
.380

In §2, the circumferential wavelength of the gust 𝜆∗ at the pipe radius is selected as the381

reference length in order to relate our asymptotic analysis to the boundary-layer analysis of382

Leib et al. (1999), while the numerical results are presented herein with quantities rescaled383

by the pipe radius 𝑅∗, i.e. 𝒖 = 𝒖(G𝑅, A𝑅; 𝑘𝑥,𝑅, 𝑅𝑒𝑅, 𝑙, 𝑚0), where G𝑅 = G∗/𝑅∗, A𝑅 = A∗/𝑅∗,384

𝑘𝑥,𝑅 = 𝑘∗𝑥𝑅
∗ and 𝑅𝑒𝑅 = 𝑈∗

∞𝑅
∗/𝜈∗. We focus on the nonlinear evolution of disturbances in385

the parameter space 𝑘𝑥,𝑅 ≪ 1 and 𝑅𝑒𝑅 < 10000, where Tollmien–Schlichting waves are not386

present (refer to figure 2 of Ricco & Alvarenga (2022)). In our reference case, 𝑘𝑥,𝑅 = 0.02,387

𝑅𝑒𝑅 = 1000, 𝑙 = 3, 𝑚0 = 2 and 𝜖 = 0.05 (i.e. 𝑇𝑢 ≈ 4%).388

The intensity of the disturbances is monitored by the root mean square (r.m.s.) of the389

streamwise velocity fluctuation, 𝑢𝑟𝑚𝑠 (Pope 2000, p.687):390

𝑢𝑟𝑚𝑠 = A𝑡

(
𝑁𝜃∑︁

𝑚=−𝑁𝜃

𝑁𝑡∑︁

𝑛=−𝑁𝑡

��𝑢̂𝑚,𝑛

��2
)1/2

, 𝑛 ≠ 0. (3.2)391
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Figure 3: Thick lines: nonlinear streamwise development of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 for 𝜖 = 0.001
(dotted), 0.01 (dash-dotted), 0.03 (dashed), 0.05 (solid). Thin lines: linear solutions

rescaled by corresponding 𝜖 value.

3.1. Effect of flow parameters392

Figure 3 shows the nonlinear streamwise development of the maximum 𝑢𝑟𝑚𝑠 (thick lines),393

i.e. 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 = max𝑟𝑅 𝑢𝑟𝑚𝑠, for different values of 𝜖 = 0.001, 0.01, 0.03, 0.05 (i.e. 𝑇𝑢 ≈394

0.08%, 0.8%, 2.4%, 4%). The linear results are rescaled by the corresponding 𝜖 value and395

displayed by thin lines. The linear and nonlinear solutions overlap when the amplitude396

of the oncoming disturbance is small (𝜖 = 0.001) due to the weak nonlinear interaction,397

while nonlinear effects become more intense as 𝜖 increases. When 𝜖 = 0.03 and 0.05,398

the nonlinear growth of the disturbances agrees with the corresponding linear growth only399

near the pipe inlet, and becomes much slower farther downstream. The peak location of400

the nonlinear profiles moves upstream as 𝜖 increases, and the peak amplitude is lower than401

the corresponding linear one. This latter result indicates the stabilising role of nonlinearity402

and the overprediction of the linear results. The maximum amplification of the nonlinear403

solution for 𝜖 = 0.05 is, for example, only 54.4% of that of the linear solution. Sufficiently404

downstream, both linear and nonlinear disturbances experience monotonic decay and tend to405

zero. The stabilising effect of nonlinearity has already been noticed, for example, by Ricco406

et al. (2011) and Marensi & Ricco (2017) for the development of the streaks in boundary407

layers over flat and concave plates, respectively.408

Figure 4 shows the effects of different parameters, 𝑘𝑥,𝑅, 𝑅𝑒𝑅, 𝑙 and 𝑚0, on the nonlinear409

development of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 along the streamwise direction G𝑅. In figure 4(𝑎), the overlap of410

profiles at the smaller G𝑅 indicates that the streamwise wavenumber 𝑘𝑥,𝑅 has no influence411

on the initial growth of the disturbances. The profiles for 𝑘𝑥,𝑅 = 0.001 and 0.02 are almost412

indistinguishable for the whole extent G𝑅 of the pipe. By further increasing 𝑘𝑥,𝑅 up to 0.1,413

the amplitude of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 reaches a lower peak and decays at a larger rate.414

Figure 4(𝑏) displays the influence of the Reynolds number 𝑅𝑒𝑅 ranging from 1000 to415

2500. The independence of the initial growth of the disturbance is also found by changing416

𝑅𝑒𝑅. For 𝑅𝑒𝑅 ⩽ 2000, the evolution features one maximum after the initial growth, while,417

for 𝑅𝑒𝑅 > 2000, two maxima are observed. Farther downstream, the disturbance decays at a418

slower rate as 𝑅𝑒𝑅 increases.419
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Figure 4: Effects of different parameters on the streamwise development of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 . (𝑎)
Streamwise wavenumber 𝑘𝑥,𝑅; (𝑏) Reynolds number 𝑅𝑒𝑅; (𝑐) parameter 𝑙 characterising

the radial length scale; (𝑑) azimuthal wavenumber 𝑚0.

Figure 4(𝑐) shows how the change of the parameter 𝑙 affects the downstream development420

of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 . As the characteristic radial scale of the oncoming disturbances is defined by the421

𝑙th zero of the Bessel function, i.e. 𝜉𝑚0 ,𝑙 in expansion (2.1)–(2.2), a large 𝑙 value corresponds422

to a small characteristic radial length scale, as shown in figure 20(𝑎) of Ricco & Alvarenga423

(2022) The most intense growth occurs for 𝑙 = 3.424

The effect of the azimuthal wavenumber 𝑚0 is shown in figure 4(𝑑). Increasing 𝑚0 induces425

a more intense initial growth. Different from the linear case where the maximum growth is426

found at wavenumber 𝑚0 = 3 (Ricco & Alvarenga 2022), the nonlinear disturbances grow427

the most for 𝑚0 = 2. A similar finding was reported by Reshotko & Tumin (2001) in the428

analysis of spatial transient growth in fully developed pipe flow, where non-stationary optimal429

disturbances were obtained for azimuthal wavenumbers larger than 1. The smaller 𝑚0, the430

more the disturbances persist downstream.431

3.2. Results for a representative case432

The representative case with 𝑘𝑥,𝑅 = 0.02, 𝑅𝑒𝑅 = 1000, 𝑙 = 3, 𝑚0 = 2, 𝜖 = 0.05 is analysed.433

Figures 5(𝑎) and 5(𝑏) show the profiles of 𝑢𝑟𝑚𝑠 at different streamwise locations. The434

maximum of 𝑢𝑟𝑚𝑠 appears close to the wall for locations near the pipe inlet, and gradually435

shifts towards the centreline as G𝑅 increases. Its amplitude increases with G𝑅 up to G𝑅 ≈ 26,436

after which a monotonic decrease occurs downstream. Near the pipe inlet, a significant437

disturbance growth is obtained in the region close to the pipe core (0.1 < A𝑅 < 0.5) where438

the base flow is largely inviscid. The disturbances in boundary layers subjected to free-stream439

turbulence show a similar growth in the outer region (figure 2(𝑐) of Matsubara & Alfredsson440
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Figure 5: Profiles of 𝑢𝑟𝑚𝑠 , 𝑣𝑟𝑚𝑠 and 𝑤𝑟𝑚𝑠 at different streamwise locations: (𝑎) growing
𝑢𝑟𝑚𝑠 at G𝑅 = 4, 8, 12, 16, 20, 24; (𝑏) decaying 𝑢𝑟𝑚𝑠 at G𝑅 = 28, 44, 70, 104, 140, 191.
(𝑐, 𝑑) 𝑣𝑟𝑚𝑠 and 𝑤𝑟𝑚𝑠 at G𝑅 = 4, 12, 20, 28, 44, 70. Arrows indicate the increasing G𝑅

direction.

(2001) and figure 10 of Ricco et al. (2011)). This growth does not occur in the linearised case,441

where the disturbances are confined in the near-wall region (figure 15 of Ricco & Alvarenga442

(2022)). The streamwise developments of 𝑣𝑟𝑚𝑠 and 𝑤𝑟𝑚𝑠 are shown in figures 5(𝑐) and 5(𝑑).443

The amplitudes of 𝑣𝑟𝑚𝑠 and 𝑤𝑟𝑚𝑠 are comparable with that of 𝑢𝑟𝑚𝑠 close to the pipe inlet,444

while they become much smaller downstream after considerable attenuation.445

Figure 6 displays the downstream development of the forcing mode (𝑚, 𝑛) = (2, 1) (red446

line) and the nonlinearly generated modes, which are characterised by max𝑟𝑅 |A𝑡 𝑢̂𝑚,𝑛 |, the447

maximum intensity of |A𝑡 𝑢̂𝑚,𝑛 | at each G𝑅 location. For the assumed free-stream disturbances448

(2.1), modes (𝑚, 𝑛) and (−𝑚, 𝑛) have the same amplitude. Modes (𝑚, 𝑛) and (−𝑚,−𝑛) also449

have the same amplitude because of the Hermitian property (2.8). Therefore, without losing450

generality, only the results for 𝑚 ⩾ 0 and 𝑛 ⩾ 0 are presented. The mean-flow distortion 𝑢̂0,0451

acquires considerable growth shortly downstream of the pipe inlet, overshoots the forcing452

mode 𝑢̂2,1 at G𝑅 ≈ 24.4, and becomes dominant downstream. The amplitude of the higher453

harmonics also grows because of the strong nonlinear interaction when 𝜖 = 0.05, and then454

attenuates due to viscous effects. Downstream of G𝑅 = 200, only the forcing mode 𝑢̂2,1, the455

mean-flow distortion 𝑢̂0,0 and the pulsatile mode 𝑢̂0,2 still exist. They all decay to zero farther456

downstream.457

Figure 7 shows the streamwise velocity profiles of the mean-flow distortion A𝑡 𝑢̂0,0, the458

forcing modes A𝑡 |𝑢̂2,1 | and the higher harmonics A𝑡 |𝑢̂0,2 |, A𝑡 |𝑢̂4,0 |, A𝑡 |𝑢̂4,2 | at six different459

streamwise locations, G𝑅 = 4, 16, 32, 51, 96, 180. The most intense growth is obtained by460

max𝑟𝑅 |A𝑡 𝑢̂0,0 | at G𝑅 = 51 (refer to figure 6). The ordinate axis in 7(𝑎) and 7( 𝑓 ) is stretched461
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Figure 6: Streamwise development of the forcing mode (red line) and nonlinearly
generated modes, characterised by max𝑟𝑅 |A𝑡 𝑢̂𝑚,𝑛 |.

by a factor of 2 for clarity. Significant growth and decay in the velocity amplitude are462

observed for modes A𝑡 𝑢̂0,0, A𝑡 |𝑢̂2,1 | and A𝑡 |𝑢̂0,2 | along the pipe entrance. Moreover, the shape463

of velocity profiles changes substantially as the flow evolves downstream. The positive values464

of the mode A𝑡 𝑢̂0,0 near the wall indicate an increase of the wall-shear stress. The second465

harmonics, A𝑡 |𝑢̂4,0 | and A𝑡 |𝑢̂4,2 |, experience considerable attenuation shortly after the initial466

growth and are almost negligible at G𝑅 = 96 and 180.467

Figure 8 shows the streamwise velocity profiles of the laminar base flow 𝑈 (dashed lines)468

and the mean flow 𝑈̄ (solid lines), i.e. the velocity averaged in 𝑡 and \, at the same streamwise469

locations as those in figure 7. Mathematically, the distorted mean flow 𝑈̄ is the sum of the470

laminar base flow and the mean-flow distortion, i.e. 𝑈̄ = 𝑈 + A𝑡 𝑢̂0,0. A significant deviation471

from the laminar base flow is observed in figure 8(𝑑) (G𝑅 = 51), where max𝑟𝑅 |A𝑡 𝑢̂0,0 | reaches472

the maximum growth. In the pipe core region, the profile exhibits a deficit with respect to473

the laminar base flow, while it is larger than the laminar value near the wall. The profiles of474

the mean-flow distortion A𝑡 𝑢̂0,0 shown in figure 7 further explain these velocity deficits and475

surpluses. Positive mean-flow distortion A𝑡 𝑢̂0,0 always exists near the pipe wall, while in the476

pipe core it is positive only near the inlet, and negative farther downstream.477

Figure 9 displays contour plots of the velocity components 𝑢̃, 𝑣̃ and 𝑤̃ (from left to right) at478

𝑡 = 0 and four different streamwise locations G𝑅 = 4, 26, 60, 150 (from top to bottom). These479

plots visualise the formation and evolution of elongated pipe-entrance nonlinear structures480

(EPENS). Near the pipe inlet (G𝑅 = 4), the three velocity components are of comparable481

amplitude. The EPENS appear because the streamwise component 𝑢̃ becomes prevalent at482

G𝑅 = 26 (attributed to the growth of 𝑢̃ and the attenuation of 𝑣̃ and 𝑤̃), where the disturbances483

are most amplified, as shown in figure 3. In contrast to the nonlinear streaks observed in484

transitional boundary-layer flows (Matsubara & Alfredsson 2001) that are confined in the485

near-wall region, these EPENS occupy the entire cross-section with two high-speed streaks486

near the pipe wall, and two low-speed streaks near the pipe core. The twofold rotational487

symmetry featured by these EPENS results from the dominance of the forcing mode 𝑢̂2,1488

among all the modes with 𝑚 ≠ 0 (refer to figure 6). The modes with 𝑚 = 0 are uniform in489

the azimuthal direction. The gradual downstream attenuation after G𝑅 = 26 can be observed490
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Figure 7: Streamwise velocity profiles of the mean-flow distortion A𝑡 𝑢̂0,0, forcing modes
A𝑡 |𝑢̂2,1 | and second harmonics A𝑡 |𝑢̂0,2 |, A𝑡 |𝑢̂4,0 |, A𝑡 |𝑢̂4,2 | at different streamwise locations.

in the last two rows of figure 9, corresponding to G𝑅 = 60 and 150. At G𝑅 = 60 and 150,491

the low-speed streaks merge near the pipe core, flanked by the high-speed streaks on their492

sides. Contours of the streamwise velocity 𝑢̃ at G𝑅 = 200 and four different time phases493

𝑡 = 0, 𝜋/4, 𝜋/2, 3𝜋/4 are shown in figure 10. The radial and azimuthal velocities 𝑣̃ and 𝑤̃ are494

O(10−5) at that location, thus are not shown. The distributions of 𝑢̃ at 𝑡 ∈ [𝜋, 2𝜋] exhibit the495

same features as those at 𝑡 ∈ [0, 𝜋], but with a rotation of 90◦ around the pipe axis.496

3.3. Comparison with travelling waves497

The nonlinear vortical structures evolving along the pipe entrance are now compared with498

travelling waves appearing in fully developed pipe flow. Inspired by the self-sustained499

process proposed by Waleffe (1997), Faisst & Eckhardt (2003) and Wedin & Kerswell500

(2004) discovered three-dimensional travelling waves (TWs) in pipe flow. These nonlinear501

waves consist of streamwise vortices, streaks and streamwise-dependent wavy structures.502

They were also observed experimentally in turbulent puffs and in fully developed turbulence503

by Hof et al. (2004). New families of TWs have also been reported in Pringle & Kerswell504
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Figure 8: Streamwise velocity profiles of the laminar base flow 𝑈 (dashed line) and the
distorted mean flow 𝑈̄ = 𝑈 + A𝑡 𝑢̂0,0 (solid line) at different streamwise locations.

(2007) and Pringle et al. (2009). These TWs are nonlinear solutions of the Navier–Stokes505

equations and they capture distinct features of coherent structures observed in turbulent pipe506

flow (Graham & Floryan 2021). Willis & Kerswell (2008) suggested that these TWs populate507

an intermediate region between the laminar and turbulent states in phase space. However,508

the physical origin of these TWs has not been discussed and remains unclear.509

As shown in figure 11, excellent visual agreement occurs between the R3-TW (where510

Rℎ represents the ℎ-fold rotational symmetry) found by Wedin & Kerswell (2004) and the511

R3-EPENS at the same Reynolds number, 𝑅𝑒𝑅 = 900. (The Reynolds number based on the512

pipe diameter used in Wedin & Kerswell (2004), Willis et al. (2017) and Kerswell & Tutty513

(2007) has been converted to 𝑅𝑒𝑅 herein.) The EPENS are shown at G𝑅 = 18 and 𝑡 = 0,514

where 𝑢𝑢𝑟𝑚,𝑚𝑎𝑥 attains the largest amplitude. Remarkable agreement is observed for the515

streamwise vortices and the high/low-speed streaks, although the TWs are found in fully516

developed pipe flow while the EPENS exist in the pipe entrance region. Both the R3-TW517

and R3-EPENS have three equispaced low-speed streaks (dark) located towards the centre518

and three equispaced high-speed streaks (light) positioned near the wall. For both sets of519
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Figure 9: Contours of the velocity components 𝑢̃, 𝑣̃ and 𝑤̃ (from left to right) at the time
instant 𝑡 = 0 and four different locations G𝑅 = 4, 26, 60, 150 (from top to bottom), where
the red/blue coloured shading indicates velocity faster/slower than the laminar base-flow

velocity 𝑈. The same shading is used in figure 10.
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Figure 10: Contours of the streamwise velocity 𝑢̃ at the streamwise location G𝑅 = 200 and
four different time phases (𝑎) 𝑡 = 0, (𝑏) 𝑡 = 𝜋/4, (𝑐) 𝑡 = 𝜋/2, and (𝑑) 𝑡 = 3𝜋/4.

nonlinear structures, streamwise vortices are located between adjacent low-speed and high-520

speed streaks, moving fluid towards the pipe axis in correspondence with low-speed streaks521

and wallward where high-speed streaks exist.522

The TWs originate mathematically from saddle–node bifurcations and are calculated using523

a homotopy approach. However, this numerical method does not explain the physical origin of524

TWs. The method to compute the EPENS instead describes the physical origin of EPENS, i.e.525

the EPENS arise from the algebraic growth, nonlinear interactions and streamwise stretching526

of realistic vortical disturbances convected by the uniform flow approaching and entering the527

pipe inlet. We note that other receptivity mechanisms, such as wall vibration or roughness,528

could also create them. Wedin & Kerswell (2004) found that multiple solution branches529

coexist at higher Reynolds numbers (refer to figure 10 of Wedin & Kerswell (2004)). Besides530

the Rℎ solution shown in figure 11(𝑎), which consists of ℎ high-speed streaks near the wall,531

Wedin & Kerswell (2004) also discovered solutions with 2ℎ near-wall high-speed streaks in532

other branches. Only EPENS with ℎ high-speed streaks are instead found in our computations.533

With figure 11(𝑏) as a reference, computations of EPENS for 𝑚0 = 3 are carried out for534

different 𝑅𝑒𝑅, 𝑘𝑥,𝑅 and 𝑙. The results are displayed in figure 12 at the locations where the535
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(𝑎) (𝑏)

Figure 11: Comparison of velocity fields between the R3-TW and R3-EPENS for
𝑅𝑒𝑅 = 900. The cross-section vectors 𝑣̃ 𝒋 + 𝑤̃𝒌 (where 𝒋 and 𝒌 are unit vectors in the
radial and azimuthal directions) are indicated by arrows. The streamwise velocity 𝑢̃ is

indicated by the shading, where light/dark colour indicates 𝑢̃ faster/slower than the
laminar base-flow velocity 𝑈. The same shading is used in figures 12, 13 and 14. (𝑎) The
R3-TW found by Wedin & Kerswell (2004). (𝑏) The R3-EPENS calculated at G𝑅 = 18,
where they are most amplified, and 𝑡 = 0 with 𝜖 = 0.05, 𝑘𝑥,𝑅 = 0.02, 𝑙 = 3 and 𝑚0 = 3.

Figure 12: Velocity fields of R3-EPENS at locations where they are most amplified and
𝑡 = 0 for different 𝑅𝑒𝑅 , 𝑘𝑥,𝑅 and 𝑙. Unless otherwise stated, the parameters are 𝜖 = 0.05,
𝑅𝑒𝑅 = 900, 𝑘𝑥,𝑅 = 0.02, 𝑙 = 3 and 𝑚0 = 3. (𝑎) 𝑅𝑒𝑅 = 785, G𝑅 = 17. (𝑏) 𝑘𝑥,𝑅 = 0.002,
G𝑅 = 18. (𝑐) 𝑙 = 2, G𝑅 = 22. (𝑑) 𝑅𝑒𝑅 = 1600, G𝑅 = 19. (𝑒) 𝑘𝑥,𝑅 = 0.2, G𝑅 = 15. ( 𝑓 )

𝑙 = 4, G𝑅 = 20.

EPENS are most amplified. Figure 11(𝑎) corresponds to solution 𝑎 in figure 10 of Wedin &536

Kerswell (2004), which was used for the branch continuation. This branch was traced down537

to 𝑅𝑒𝑅 = 785 and up to 𝑅𝑒𝑅 = 1600. Figures 12(𝑎) and 12(𝑑) show the EPENS calculated538

at these two Reynolds numbers. The similarities in the dominant streaks and vortices of539
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Figure 13: Comparison of velocity fields between TWs and EPENS for rotational
symmetries R5 at 𝑅𝑒𝑅 = 1242.75 and R6 at 𝑅𝑒𝑅 = 1434.5. (𝑎, 𝑐) The R5- and R6-TW
found by Wedin & Kerswell (2004) at their saddle-node bifurcations. (𝑏, 𝑑) The R5- and
R6-EPENS calculated at G𝑅 = 12 and 11, where they are most amplified, and 𝑡 = 0 for

𝜖 = 0.05, 𝑘𝑥,𝑅 = 0.02, 𝑙 = 3, and 𝑚0 = 5, 6.

EPENS for different 𝑅𝑒𝑅 are observed. As 𝑅𝑒𝑅 increases, the low-speed streaks appear540

slightly narrower along the azimuthal direction, and the high-speed streaks become slightly541

more flattened towards the wall. The close resemblance among TWs pertaining to the same542

branch for different 𝑅𝑒𝑅 was also reported in Wedin & Kerswell (2004). Figures 12(𝑏) and543

12(𝑒) show that varying the frequency by one hundred times has only a minimal impact on544

the EPENS. The robustness of the EPENS is further confirmed in figures 12(𝑏) and 12(𝑒)545

by varying the radial modulation of the inlet perturbation flow, given by the change of the546

parameter 𝑙. Increasing 𝑙, indicating an inlet perturbed flow with a smaller radial length scale,547

has only a mild influence on the EPENS. This result proves that the EPENS are likely to be548

a strong attractor of the dynamical system.549

Except for the R3 symmetry, only TWs at their saddle-node bifurcations are presented for550

other rotational symmetry in Wedin & Kerswell (2004). Among these solutions, R5- and551

R6-TWs consist of ℎ high-speed streaks near the wall, while R1-, R2- and R4-TWs have552

2ℎ high-speed streaks. Remarkable agreement between TWs and EPENS is also obtained553

for the R5 and R6 rotational symmetries, as reported in figure 13. The EPENS with ℎ-554

fold rotational symmetry observed downstream is always excited by free-stream vortical555

disturbances with azimuthal wavenumber 𝑚0 = ℎ. The discovery of R1-TWs, which possess556

no discrete rotational symmetry, was reported in Pringle & Kerswell (2007). These TWs557

are more important than the rotationally symmetric ones because the upper/lower branches558

correspond to much higher/lower wall-shear stress values compared to rotationally symmetric559



22

(𝑎) (𝑏)

(𝑐) (𝑑)

Figure 14: Comparison of velocity fields between the asymmetric TWs and R1-EPENS
for 𝑅𝑒𝑅 = 1450 (𝑎, 𝑏) and 1340 (𝑐, 𝑑). (𝑎, 𝑐) The asymmetric TWs found by Pringle &

Kerswell (2007) and Willis et al. (2017), where the white/dark coloured shading indicates
𝑢̃ faster/slower than the laminar base-flow velocity 𝑈. (𝑏, 𝑑) The R1-EPENS calculated at
G𝑅 = 36, where they are most amplified, and 𝑡 = 0 with 𝜖 = 0.05, 𝑘𝑥,𝑅 = 0.02, 𝑙 = 3, and

𝑚0 = 1.

ones. Figure 14(𝑎) shows the velocity field of an asymmetric TW of these new families. One560

low-speed streak is centred at half the distance between the wall and the centreline, and is561

surrounded by two high-speed streaks. As shown in figure 14(𝑏), rotationally asymmetric562

EPENS are also found in our calculation when 𝑚0 = 1. However, they consist of one wide563

near-wall high-speed streak flanked by two low-speed streaks, and one low-intensity high-564

speed streak on the opposite side of the wide high-speed streak. The cross-section velocity565

vector field reveals that counter-rotating streamwise vortices occur between the high-speed566

and the low-speed streaks. Using a feedback control strategy, a new asymmetric TW was567

identified by Willis et al. (2017) (figure 14(𝑐)). Good agreement is noted between the streaks568

of their TW and our R1-EPENS at the same Reynolds number, whereas only very weak569

streamwise vortices are found between the wide high-speed streak and low-speed streaks in570

their case.571

The comparison of streamwise velocity isosurfaces of the R3-TW calculated by Kerswell572

& Tutty (2007) and the R3-EPENS at 𝑅𝑒𝑅 = 1200 is also very good, as shown in figure 15,573

where the light and dark shadings denote the streamwise velocity for 𝑢̃ = 0.3𝑈 and −0.3𝑈.574

The R3-TW is displayed versus its wavelength (the diameter of the pipe is used as a reference575

length), while the R3-EPENS is displayed for 13 < G𝑅 < 17. Along these distances, both the576

near-wall high-speed streaks and the low-speed streaks near the pipe core for both the TW577

and EPENS evolve slowly in the streamwise direction.578
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(𝑎) (𝑏)

Figure 15: Comparison of streamwise velocity isosurfaces between the R3-TW and
R3-EPENS for 𝑅𝑒𝑅 = 1200. The light and dark shading represents the streamwise

velocity 𝑢̃ that equals 0.3𝑈 and −0.3𝑈. (𝑎) The R3-TW over the wavelength found by
Kerswell & Tutty (2007). (𝑏) The R3-EPENS calculated for 13 ≪ G𝑅 ≪ 17 and 𝑡 = 0

with 𝜖 = 0.05, 𝑘𝑥,𝑅 = 0.2, 𝑙 = 3 and 𝑚0 = 3.

Considering the richness of the phase space, further comparison between TWs and EPENS579

for different parameters are warranted to fully understand their connection. One challenge in580

searching for an TW is the daunting numerical process required to find a good initial guess,581

whereas EPENS can be calculated much more rapidly using our approach. It is therefore582

suggested that EPENS could be used as initial guesses in the search for TWs.583

3.4. Comparison with experimental data584

Ricco & Alvarenga (2022) compared their linearised numerical results to the experimental585

measurements by Wygnanski & Champagne (1973). For both the mean and perturbation flow,586

excellent agreement was obtained at a low level of free-stream turbulence intensity, while587

a significant deviation between the linear results and the experimental data was reported588

for higher intensities. In figure 16, the experimental data at high turbulence intensity are589

compared with our nonlinear results. The turbulence intensity was measured by (𝑢𝑟𝑚𝑠/𝑈̄)𝑐𝑙590

in Wygnanski & Champagne (1973), where the subscript 𝑐𝑙 refers to the value at the pipe axis.591

The values of (𝑢𝑟𝑚𝑠/𝑈̄)𝑐𝑙 = 5.8% and 7.8% in Wygnanski & Champagne (1973) are found592

to be equivalent to 𝜖 = 0.082 and 0.12 in our calculation for the case with 𝑘𝑥,𝑅 = 0.118,593

𝑙 = 2 and 𝑚0 = 2. Figure 16(𝑎) shows the good agreement in the mean-flow velocity594

profiles except in the near-wall region where the numerical calculations underpredict the595

experimental data. Good agreement also occurs in the comparison of the perturbation-flow596

velocity profiles, as shown in figure 16(𝑏). In Ricco & Alvarenga (2022), the velocity profile597

was instead predicted by the linearised boundary-region equations to be zero at the pipe axis.598

The finite perturbations near the pipe axis are well predicted when the nonlinear interactions599

(i.e. A𝑡 𝑢̂0,0) are taken into account. Both studies show the same trend: as the turbulent intensity600

increases, a larger peak is reached, and the peak position moves towards the wall. The peak601

of the profiles measured by Wygnanski & Champagne (1973) is obtained at a lower value and602

located closer to the wall compared to our calculations. The disagreements are likely to come603

from the different inflows at the pipe inlet. In experiments, the disturbances were generated604

by an orifice plate or a circular disk placed at the inlet, and no precise information about605

the resulting initial flow was given. The analytical expression (2.1) is instead used to model606

the vortical disturbances in our calculations. As the flow is described by an initial-boundary607
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Figure 16: Comparison of (𝑎) the mean flow and (𝑏) the perturbation flow between the
experimental measurements (circles) and present numerical results (lines) for 𝑅𝑒𝑅 = 1200

at G𝑅 = 30. Open and solid circles: experimental data measured by Wygnanski &
Champagne (1973) (refer to as WC73 in the figure) with (𝑢𝑟𝑚𝑠/𝑈̄)𝑐𝑙 = 5.8% and 7.8%.

Dotted and solid lines: present results with 𝜖 = 0.082, 0.12, 𝑘𝑥,𝑅 = 0.118, 𝑙 = 2 and
𝑚0 = 2.

value problem in the pipe entrance, the inflow characteristics are crucial for an accurate608

prediction of the downstream development of the flow.609

4. Summary and conclusions610

As a step towards understanding the laminar–turbulent transition in pipe flow, we have611

investigated the nonlinear evolution of free-stream vortical disturbances entrained in the612

entrance region of a circular pipe by using a high Reynolds number asymptotic approach. The613

oncoming disturbances are modelled by a pair of vortical modes with the same frequency but614

opposite azimuthal wavenumber. A long-wavelength hypothesis is utilised. This hypothesis is615

inspired by the experimental finding that streamwise-elongated streaks induced by free-stream616

disturbances in boundary layers amplify significantly (Matsubara & Alfredsson 2001). The617

disturbance amplitude is assumed to be intense enough for nonlinear interactions to occur.618

The present study can therefore be viewed as an extension of Ricco & Alvarenga (2022) to619

the nonlinear case.620

The resultant nonlinear system is solved numerically by a marching procedure in the621

streamwise direction. A parametric study reveals the stabilising effect of nonlinearity on the622

intense algebraic disturbance growth near the pipe inlet. The linear theory thus overpredicts623

the nonlinear disturbance intensity. The effect of the Reynolds number, the streamwise and624

azimuthal wavelengths, and the radial length scale of the inlet disturbance on the nonlinear625

evolution of the disturbances is investigated. The mean-flow distortion 𝑢̂0,0 grows significantly626

shortly downstream of the pipe inlet, being negative in the pipe core and positive near the627

wall, indicating an increase of wall-shear stress.628

We report the formation, amplification and attenuation of rotationally symmetric elongated629

pipe-entrance nonlinear structures (EPENS). The distinct features of Rℎ-EPENS (ℎ > 1) are630

equispaced ℎ high-speed streaks around the pipe wall and ℎ low-speed streaks in the pipe core.631

A remarkable resemblance between these structures and nonlinear travelling waves (TWs)632

occurring in fully developed pipe flow is noted for 𝑚0 = 3, 5, 6. Rotationally asymmetric633

EPENS are discovered for 𝑚0 = 1. They also agree well with asymmetric TWs for 𝑚0 = 1.634

These similarities may shed light on the physical origin of nonlinear TWs. The robustness635

of the EPENS in response to changes of different inlet flow conditions is demonstrated,636
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indicating that the EPENS are likely to be a strong attractor of the dynamical system. We637

also suggest the potential use of EPENS as an initial guess in the numerical search for the638

nonlinear TWs. More investigations are necessary to clarify the connection between the639

EPENS and the TWs.640

With the inclusion of nonlinear effects, good agreement between our calculations and641

the experimental measurements of Wygnanski & Champagne (1973) is obtained for both642

the mean flow and the perturbation flow. Further improvement may be gained by using643

a continuous spectrum of free-stream disturbances as oncoming disturbances. Performing644

a secondary instability analysis of the EPENS is also of interest. The EPENS attenuate645

downstream in our calculation, but they may persist when the growth of small-amplitude646

secondary disturbances is taken into account.647

It is our hope that the theoretical work presented herein will motivate more direct numerical648

simulations and experimental investigations in the entrance region of pipe flow.649

Acknowledgements. The authors would like to thank the Faculty of Engineering of the University of650

Sheffield for funding this research. The authors are also indebted to Dr Elena Marensi for her insightful651

comments.652

Funding. This work was funded by Faculty of Engineering University Research Scholarship from University653

of Sheffield.654

Declaration of interests. The authors report no conflict of interest.655

Appendix A. Conservation of the mass flow rate656

At each instant in time and at each streamwise location, the mass flow rate is conserved.657

Since the flow is incompressible, this condition translates to the conservation of the bulk658

velocity, i.e. the streamwise velocity averaged on the cross-section of the pipe is equal to the659

oncoming velocity 𝑈∗
∞:660

1

𝜋𝑅2

∫ 2𝜋

0

∫ 𝑅

0

(𝑈 + A𝑡 𝑢̄) AdAd\ = 1. (A 1)661

Substituting (2.7) into (A 1), equation (2.11) is obtained for the laminar base flow and662

∞∑︁

𝑚,𝑛=−∞

∫ 2𝜋

0

∫ 𝑅

0

𝑢̂𝑚,𝑛𝑒
𝑖𝑚𝜃+𝑖𝑛𝑡AdAd\ = 0. (A 2)663

By using the orthogonality property of the Fourier series, equation (2.20) is obtained, which is664

the condition needed to solve the system because the pressure Γ0,𝑛 is an additional unknown.665

Appendix B. Coefficients of equation (2.27)666

The expressions of {𝑉,𝑉𝑟 , 𝑉𝑥 , · · · ,𝑈𝑥𝑟𝑟 } in equation (2.27) are

𝑉 =

(
1 − 1

𝑚2

) (
𝑖𝑛 + 𝜕𝑉

𝜕A
+ 𝑚2 − 1

F A2

)
+ 2A

𝑚2

𝜕2𝑈

𝜕Ḡ𝜕A
+ A2

𝑚2

𝜕3𝑈

𝜕Ḡ𝜕A2
,

𝑉𝑟 =

[(
1 − 4

𝑚2

)
𝑉 − 3A

𝑚2

(
𝑖𝑛 + 𝜕𝑉

𝜕A

)
−

(
2 + 1

𝑚2

)
1

F A

]
+ A2

𝑚2

𝜕2𝑈

𝜕Ḡ𝜕A
,

𝑉𝑥 =

(
1 − 1

𝑚2

)
𝑈 + A

𝑚2

(
𝜕𝑈

𝜕A
+ A

𝜕2𝑈

𝜕A2

)
,
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𝑉𝑟𝑟 = −
[
A

𝑚2

(
𝑖𝑛A + 5𝑉 + A

𝜕𝑉

𝜕A

)
+

(
2 − 5

𝑚2

)
1

F

]
,

𝑉𝑥𝑟 = −3𝑈A

𝑚2
,

𝑉𝑟𝑟𝑟 = − A

𝑚2

(
A𝑉 − 6

F

)
,

𝑉𝑥𝑟𝑟 = −A
2𝑈

𝑚2
,

𝑉𝑟𝑟𝑟𝑟 =
A2

𝑚2F ,

𝑈 =
𝜕𝑉

𝜕Ḡ
+ 2A

𝑚2

𝜕2𝑈

𝜕Ḡ2
+ A2

𝑚2

𝜕3𝑈

𝜕Ḡ2𝜕A
,

𝑈𝑟 =
A

𝑚2

𝜕𝑉

𝜕Ḡ
,

𝑈𝑥 = − 2

F A
+ 6A

𝑚2

𝜕𝑈

𝜕Ḡ
+ 2A2

𝑚2

𝜕2𝑈

𝜕Ḡ𝜕A
,

𝑈𝑟𝑟 =
A2

𝑚2

𝜕𝑉

𝜕Ḡ
,

𝑈𝑥𝑟 =
2

𝑚2

(
1

F − 2𝑉A − A2 𝜕𝑉

𝜕A

)
,

𝑈𝑥𝑟𝑟 =
2A

𝑚2F .

Appendix C. Modified block tridiagonal matrix algorithm667

A modified block tridiagonal matrix algorithm is devised for solving the discretised version668

of system (2.30)-(2.32) together with the discretised (2.20) for 𝑚 = 0,669

𝑨𝜹 = 𝒃. (C 1)670

In expanded form, the system (C 1) is671



𝐴1 𝐶1 𝐸1

𝐵2 𝐴2 𝐶2 𝐸2

· · · · · · · · · · · ·
𝐵 𝑗 𝐴 𝑗 𝐶 𝑗 𝐸 𝑗

· · · · · · · · · · · ·
𝐵𝐽−3 𝐴𝐽−3 𝐶𝐽−3 𝐸𝐽−3

𝐵𝐽−2 𝐴𝐽−2 𝐸𝐽−2

𝐷1 𝐷2 𝐷3 · · · 𝐷𝐽−2 0





𝛿1

𝛿2

· · ·
𝛿 𝑗

· · ·
𝛿𝐽−3

𝛿𝐽−2

Π



=



𝑏1

𝑏2

· · ·
𝑏 𝑗

· · ·
𝑏𝐽−3

𝑏𝐽−2

0



(C 2)672

where 𝐴 𝑗 , 𝐵 𝑗 and 𝐶 𝑗 are 3 × 3 matrices, 𝐸 𝑗 , 𝛿 𝑗 and 𝑏 𝑗 are 3 × 1 matrices, 𝐷 𝑗 is a 1 × 3673

matrix, and Π is a scalar. In equation (C 2), row 𝑗 for 2 ⩽ 𝑗 ⩽ 𝐽−3 represents the discretised674

equations (2.30)–(2.32) at the interior nodes, while rows 1 and 𝐽 − 2 refer to the equations at675

the boundaries. The last row is the discretised integral (2.20).676

First, we add any two decoupled equations to the system in order to add two rows at the677

bottom of matrix 𝑨 and two columns on the right of matrix 𝑨. This step makes 𝐷 𝑗 and 𝐸 𝑗678

3×3 matrices, and creates two 3×1 matrices, 𝛿𝐽−1 and 𝑏𝐽−1, at the bottom of 𝜹 and 𝒃, which679

is necessary in order to render the system suitable for the block elimination. The matrices680
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𝐷 𝑗 and 𝐸 𝑗 are renamed D 𝑗 and E 𝑗 . The system (C 2) becomes681



𝐴1 𝐶1 E1

𝐵2 𝐴2 𝐶2 E2

· · · · · · · · · · · ·
𝐵 𝑗 𝐴 𝑗 𝐶 𝑗 E 𝑗

· · · · · · · · · · · ·
𝐵𝐽−3 𝐴𝐽−3 𝐶𝐽−3 E𝐽−3

𝐵𝐽−2 𝐴𝐽−2 E𝐽−2

D1 D2 D3 · · · D𝐽−2 E𝐽−1





𝛿1

𝛿2

· · ·
𝛿 𝑗

· · ·
𝛿𝐽−3

𝛿𝐽−2

𝛿𝐽−1



=



𝑏1

𝑏2

· · ·
𝑏 𝑗

· · ·
𝑏𝐽−3

𝑏𝐽−2

𝑏𝐽−1



(C 3)682

The standard block tridiagonal matrix algorithm described in Cebeci (2002) is modified to683

solve (C 3), which also consists of the forward sweep and backward substitution. However,684

in each forward sweep, one more step needs to be performed to eliminate D 𝑗 , which leads to685



𝐼 𝐶′
1

E′
1

𝐼 𝐶′
2

E′
2

· · · · · · · · ·
𝐼 𝐶′

𝑗 E′
𝑗

· · · · · · · · ·
𝐼 𝐶′

𝐽−3
E′
𝐽−3

𝐼 E′
𝐽−2

E′
𝐽−1





𝛿1

𝛿2

· · ·
𝛿 𝑗

· · ·
𝛿𝐽−3

𝛿𝐽−2

𝛿𝐽−1



=



𝑏′
1

𝑏′
2

· · ·
𝑏′𝑗
· · ·
𝑏′
𝐽−3

𝑏′
𝐽−2

𝑏′
𝐽−1



(C 4)686

where the prime denotes the new coefficients. The solution is then obtained by backward687

substitution:688




𝛿𝐽−1 = E′−1
𝐽−1

𝑏′
𝐽−1

,

𝛿𝐽−2 = 𝑏′
𝐽−2

− E′
𝐽−2

𝛿𝐽−1

𝛿𝑖 = 𝑏′𝑖 − 𝐶′
𝑖 𝛿𝑖+1 − E′

𝑖𝛿𝐽−1, 𝑖 = 𝐽 − 3, 𝐽 − 4, · · · , 1.
(C 5)689
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