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Abstract

The “extended solar cycle” indicates that there are two deeply seated toroidal magnetic field bands in each
hemisphere. Both bands migrate equatorward as a sunspot cycle progresses. Here, we examine the consequences of
global MHD instability of this migrating double-band system in tachocline on the latitudinal structure of unstable
modes, which are essentially MHD Rossby waves. We find that latitude-location, latitude-separation, and the
amplitude of the bands strongly influence the latitudinal structure and growth rates of the unstable modes of both
symmetries about the equator. These properties can lead to “teleconnections” between low- and high-latitudes in
each hemisphere and across the equator. High-latitude bands can destabilize low-latitude bands that would
otherwise be stable. Stronger high-latitude bands lead to strong interactions between low and high latitude in each
hemisphere, but inhibit cross-equatorial band-interaction. Strong cross-equatorial interactions of modes can
synchronize cycle minima in north and south. Symmetric and antisymmetric modes of similar amplitudes can lead
to substantial asymmetries between north and south. As a solar cycle progresses, excited MHD Rossby waves go
through a sequence of changes in latitude structure and growth rate, while maintaining strong links in latitude.
These changes and links are theoretical evidence of teleconnections between widely separated latitudes and
longitudes in the Sun, which may explain many of the evolving surface magnetic patterns observed as a solar cycle
progresses. The wider the separation between high- and low-latitude bands, the earlier the cross-equatorial
teleconnection starts in a cycle, and hence the earlier the cycle starts declining.

Unified Astronomy Thesaurus concepts: Solar activity (1475); Magnetohydrodynamics (1964); Solar interior
(1500); Solar photosphere (1518); Solar cycle (1487)

1. Introduction

Solar observation and modeling studies provide evidence of

the existence of extended solar cycles (ESCs). The first

extensive review of observations of ESCs can be found in

E. W. Cliver (2014). To mention a few specific examples of the

evidence of ESCs, we include, for instance, patterns of the

torsional oscillation (R. Howard & B. J. Labonte 1980;

H. B. Snodgrass & P. R. Wilson 1987; G. A. Guerrero et al.

2016), ephemeral active regions (K. L. Harvey &

S. F. Martin 1973; S. F. Martin 2018), prominences and

filaments (G. Bocchino 1933; R. Hansen & S. Hansen 1975),

the coronal green line emission (S. J. Tappin & R. C. Altrock

2013), and global-scale features of the Sun’s corona

(R. C. Altrock 1988). These observations may indicate that

the solar activity cycles start at higher latitudes (around

60°–70°) at a weak level ahead of the start of the actual sunspot

cycle. This high-latitude branch already appears around 60◦

latitude when the low-latitude branch is at ∼30° latitude. While

the former does not produce sunspots but rather only weak

ephemeral regions, the latter is responsible for solar activity

cycle. These two branches are observed to gradually move
toward the equator with the progress of the solar cycle.
Eventually, the low-latitude branch or active-cycle branch
reaches the equator and annihilates with its opposite-hemi-
sphere counterparts. The resulting situation could cause a solar
“tsunami” that activates the high-latitude branch, which reaches
about 30◦ by that time, and triggers the birth of the new cycle’s
spots (M. Dikpati et al. 2019). The annihilation could create a
void, into which the plasma flows from the poleward side of the
magnetic band. That plasma was essentially supporting the
magnetic band from a poleward slip. Then, the excess plasma
overflows back toward the pole in the form of poleward
propagating gravity waves, which perturb the high-latitude
band to stimulate spot emergence. P. R. Wilson (1987)
described this spatio-temporal extension of solar activity to
higher solar latitudes as the ESC. J. L. Leroy & J. C. Noens
(1983) found extended cycle of coronal activity patterns with
about 17 yr periods from the analysis of coronal emission and
morphology from Pic-du-Midi observatory, consistent with the
previous findings by J. P. Legrand & P. A. Simon (1981) from
100 year geomagnetic index analysis.
A plausible origin of such a double-branch migration

equatorward in a coherent fashion could be a pair of double
bands, one pair in each hemisphere, deeper down from the surface,
generated by a dynamo (M. Dikpati & P. Charbonneau 1999) at/
near the base of the convection zone or tachocline, with oppositely

The Astrophysical Journal, 977:99 (17pp), 2024 December 10 https://doi.org/10.3847/1538-4357/ad8b50

© 2024. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

1



signed bands at high and low latitudes in each hemisphere. A
recent study has discussed the concept of a dynamo driven by
magnetorotational instability in the near-surface shear layer
(G. M. Vasil et al. 2024), but their model does not address why
the same magnetorotational instability would not occur also in the
tachocline. Such a magnetorotational instability has indeed been
found to occur in the tachocline by many authors (D. Kagan &
J. C. Wheeler 2014; P. A. Gilman 2018; G. Mamatsashvili et al.
2019). Thus, if the magnetorotational instability can play a role in
solar dynamo occurring at the surface, such a dynamo can also
occur in the tachocline, where the large-scale coherent magnetic
structures are more likely to be sustained. There have been
attempts to simulate ESCs, with partial success. Nonetheless, the
ESCs are evident from various observations. A comprehensive
recent review by A. K. Srivastava et al. (2018) describes various
observations supporting the existence of ESCs. A plausible origin
of ESCs may be the tachocline, where the dynamo generates the
strong toroidal fields from which active regions emerge at the
surface through some recipes of flux emergence. In this scenario,
the global MHD tacholine instabilities can create bulges and
depressions in the plasma fluid; magnetic fields coinciding with
the bulges are more likely to be pushed up through the convection
zone to make their buoyant rise to the surface. The latitude–
longitude locations of these bulges are the “imprints” for flux-
emergence locations (see, e.g., Figure 11 of M. Dikpati &
S. W. McIntosh 2020). However, note that all flux-emergence
recipes rely on a threshold field strength (about 15 kG),
above which the flux would emerge from the tachocline to the
surface, taking a rise-time of about a few months (M. A. Weber
et al. 2013).

Given their existence, what can an ESC tell us about the
properties of the sunspot cycle itself? B. Belucz et al. (2023)
studied the global MHD of a double-banded toroidal system in
the tachocline to explore its implications for the properties of
solar activity and the solar cycle. They found that the high- and
low-latitude bands interact in the same hemisphere when their
latitude-separation is 30°, such as when they are at latitude 60°
and 30°, respectively. The double-band system does not
interact with the opposite-hemisphere counterpart across the
equator until the low-latitude bands in the north and south are
separated by less than 30°. This means that their cross-
equatorial interaction starts after the high- and low-latitude
bands in each hemisphere arrive at latitudes of 45° and 15°,
respectively. This happens to be when the solar cycle reaches
its peak. An optimal separation between the low-latitude bands
in two hemispheres is 30° for starting the interaction across the
equator. As the cycle passes through the peak and starts
declining, this latitudinal separation decreases, allowing more
interaction across the equator.

The physics of the band-interaction across the equator has
been described by B. Belucz et al. (2023; see also A. Strugarek
et al. 2023) as an example of a “teleconnection.” In climate
studies, teleconnection is a general concept used to explain
various long distance, dynamic correlations that are caused by a
signal of a physical process occurring in one geographical
location that is communicated or transmitted to a widely
separated location. There it induces a physical response
(E. N. Lorenz 1951; B. J. Hoskins & D. J. Karoly 1981;
K. E. Trenberth et al. 1998; A. S. W. Teruya et al. 2024) that
helps explain, for example, geographically widely separated,
time dependent, climatic anomalies, such as the well-known El
Nino Southern Oscillation. In the earth’s atmosphere,

teleconnections come from energetically active Rossby wave

patterns (i.e., the ones having tilts), as well as packets of

Rossby waves carrying kinetic energy over great geographical

distances before “breaking” and depositing that energy to

change the weather in the location where the waves broke

(B. J. Hoskins & T. Ambrizzi 1993; N. Boers et al. 2019). In

the Sun, tilted patterns of Rossby waves are generated by the

global MHD tachocline instability. Essentially, the Rossby

waves form from the perturbations to the unperturbed reference

states of magnetic fields and differential rotations and can grow

(decay) by extracting energy from (depositing energy to) the

unperturbed differential rotation and magnetic field via the

action of Reynolds, Maxwell, and mixed stresses (M. Dikpati

et al. 2018a). As a result of this interaction among Rossby

waves and unperturbed reference states, axisymmetric toroidal

magnetic bands in each hemisphere bend or tip to form non-

axisymmetric patterns in such a way as to come closer to each

other at certain longitudes locally, and tip-away at certain other

longitudes (see Figure 4 in P. S. Cally et al. 2003).
This type of mechanism of communication between remote

regions via Rossby wave dynamics, though well-established

in the Earth’s atmospheric phenomena (J. M. Wallace &

D. S. Gutzler 1981; N. Boers et al. 2019), was relatively

recently discovered to exist in the Sun (R. J. Leamon et al.

2021), suggesting that Rossby waves in the Sun’s interior could

also play a role (A. S. W. Teruya et al. 2022). Clearly, there are

significant differences between conditions affecting the Earth’s

global atmosphere and the Sun. The Earth has fixed continents

and oceans as boundary conditions on the atmosphere, which

have no counterparts in the Sun, while the Sun has strong

dynamically significant magnetic fields that themselves display

global organization, manifested in the properties of sunspot

cycles and the solar corona. Magnetic fields play no role in the

Earth’s lower atmosphere global dynamics. Despite these

differences, the Sun and Earth have ubiquitous, global-scale

Rossby waves in common. Therefore, the two systems can both

be experiencing forms of teleconnection.
B. Belucz et al. (2023) showed that the optimal separation

between oppositely directed toroidal bands is about 30◦ for

triggering the teleconnection mechanism. Therefore, at the

beginning of a solar cycle, when the high-latitude band is at

∼60° and the low-latitude band is at ∼30° in each hemisphere,

the high- and low-latitude bands fulfill the criteria of the band

separation in latitude in each hemisphere and can interact via

teleconnection. However, the two low-latitude bands in the

northern and southern hemispheres are separated by much more

than 30°, and hence cannot interact across the equator. Their

interaction starts when they reach 15° latitude in each

hemisphere. This is the peak phase when the interaction starts.

As they drift further toward the equator, the cross-equatorial

interaction increases while the cycle declines.
While the observations indicate a roughly 30° separation

between the high- and low-latitude bands in each hemisphere,

Figure 1 reveals that this separation could vary from 20° to 40°.

This leads us to ask the following: (i) Do the high- and low-

latitude bands in each hemisphere interact more effectively

when they are 20° separated and less so when their separation

is 40°? (ii) Do the interactions between low-latitude bands in

the northern and southern hemispheres also change accord-

ingly? (iii) Does this impact the timing of the peak of the solar

cycle?
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The organization of our paper is as follows. Section 2
describes the MHD shallow-water model, which is the same as
that used in B. Belucz et al. (2023), where the governing
equations are given in detail; hence, we will skip showing the
equations here. Section 3 presents the results, including the
physical properties of the instability that are responsible for
producing a teleconnection in latitude, as well as how the
instability intensity is related to Alfvén waves and latitude-
separation between high- and low-latitude bands. Section 4
presents a summary and conclusions.

2. Model

In our previous article, (B. Belucz et al. 2023) we described the
MHD shallow-water model in detail; here, we present just a short
description. The model is for a thin conducting fluid shell with a
rigid bottom and deformable top surface. In this model, the
horizontal velocities and magnetic fields are much larger than their
vertical counterparts. An MHD shallow-water model has been
employed by many authors in the solar context (P. A. Gilman
2000; T. V. Zaqarashvili et al. 2007; D. A. Klimachkov &
A. S. Petrosyan 2017), as well as in the context of highly
magnetized astrophysical bodies, such as the Keplarian disk
(O. Umurhan 2008). Details of the formalism and the equations for
a thin spherical shell rotating with the core-rotation rate of the Sun
can be found in earlier papers, such as M. Dikpati et al. (2018a) or
B. Belucz et al. (2023).

The velocity and the magnetic field are defined as V =
ˆ ˆu vl f+ and ˆ ˆB a bl f= + , where l̂ and f̂ are unit vectors in

the longitudinal and latitudinal directions. The radial velocity
(w) is a linear function of height. The nondimensional unit of
length and time are the radius (r0) and inverse of the interior
rotation rate (ωc).

The nondimensional effective gravity, G, is defined as
G∼ 103|∇−∇ad|, for the overshoot layer of tachocline
is 10−2G 10−1, and in the radiative tachocline is
101G 102.

The latitudinal differential rotation, as derived from
helioseismology, can be expressed in the rotating frame as

( )s s s , 1c0 0 2
2

4
4w m m w= - - -

where μ is the sine latitude and s0, s2, and s4 are coefficients.

The interior rotation rate (ωc) approximately matches the

rotation rate at 32° latitude at the tachocline. The s0 parameter

is the rotation rate at the equator and the differential rotation

amplitude becomes (s2+ s4)/s0 (M. Dikpati et al. 2018a).
We prescribed the latitudinal profile of the band as

( )

( ) ( )

( ) ( )

( ) ( )

p f e e

p f e e . 2

h h
d d

l l
d d

0 0

0

h sh h sh

l sl l sl

2 2

2 2

a = -

+ -

b m b m

b m b m

- - - +

- - - +

In expression (2), f0n is the field strength ( f0n= 0.1 is 10 kG
in real units), βn controls the width of the toroidal field band,
dsn is the sine latitude of the center of the band, and pn are the
prefactors to scale the peak-field strength with the change in βn
in the Gaussian profile, so that the value of f0n denotes the
peak-field strength (n= h, l shows the parameters of high-
latitude and low-latitude bands).

3. Results

Before examining growth rate contours for instability, as
well as unstable eigenfunctions in detail, it is important to point
out relevant general features of the joint instability of latitudinal
differential rotation and banded toroidal field profiles. Unstable
perturbations grow in the form of longitudinally propagating
waves. These unstable waves have some properties of
magnetically modified Rossby waves in the MHD case, and
Rossby waves modified and constrained by the differential
rotation in the HD case. As such, these waves are distinct from
classical Rossby waves found in uniformly rotating thin
spherical shells (B. Haurwitz 1940), as well as from “pure”
Alfvén waves such as are found in conducting fluids with
uniform fields. Unstable waves extracting kinetic and/or
magnetic energy from differential rotation and toroidal fields
must have longitudinal phase velocities that fall within the
range of latitudinal differential rotation in the system
(P. A. Gilman & P. A. Fox 1997; M. Dikpati & P. A. Gilman
1999), regardless of the strength of the toroidal field. Waves
that are moving either faster or slower have less ability to be
modified by the differential rotation in situ to form the
perturbation structure needed to extract energy. Therefore, they
stay neutral energetically, and if excited would have to have
received their energy from a source other than instability of
differential rotation or toroidal fields.
We know from previous work that for a single band, the

latitude of its placement influences disturbance growth rates
because at different latitudes the same band experiences
differing amounts of differential rotation across the band. We
also know that unstable mode velocities extend well away from

Figure 1. ESC reveals that the separation between high- and low-latitude branches in each hemisphere may not be constant but may vary with the progress of the
cycle. Adapting Figure 7(d) from S. W. McIntosh et al. (2021; the extended cycle in NGDC green line), the double-arrows are overlaid on the extended cycle. This
reveals that the high- and low-latitude branches are more than 30° separated at the beginning of a solar cycle but their separation decreases as the cycle progresses.
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the band, while magnetic perturbations must remain close to
the band latitude, indicating that the interactions between
bands, whether in a single hemisphere or across the equator, are
carried out by the velocities, along with the pressure field, but
probably less so by the magnetic perturbations themselves. But
we also expect unstable modes with opposite symmetry about
the equator to be excited; one symmetry allows latitudinal flow
perturbations to cross the equator, while the other contains
latitudinal magnetic perturbations that cross the equator. So,
both magnetic fields and velocities can link the two hemi-
spheres. In addition, with two bands present, it is possible for
one band, particularly the low latitude one, to act as a barrier to
the velocity perturbations reaching beyond that band, which
limits interaction with the opposite hemisphere. All these
features, which are absent in the HD case, can help us interpret
the instability growth rates and unstable disturbance patterns
we find.

Kinetic energy of unstable modes is extracted from
differential rotation by growing perturbations that acquire a
“tilted” structure in latitude of the perturbation streamlines,
with those at lower local rotation lagging those at higher local
rotation. The tilt implies a correlation between longitude and
latitude components of velocities in the disturbance, implying a
Reynolds stress that transports angular momentum down the
rotation gradient, from lower latitudes to higher ones. The
amplitude of the perturbations is maximum at or near the
latitude where the latitude gradient of the total vorticity (i.e.,
the sum of the coordinate system vorticity and the relative
vorticity of the differential rotation itself) changes sign; the
phase speed of the unstable wave is close to the local rotation
speed at the latitude of the inflection point. The vorticity sign
change is a necessary condition for instability in the 2D case. In
the shallow-water case, it is modified to be the location where
the total “potential vorticity” gradient changes sign, potential
vorticity being defined as the total vorticity divided by the local
thickness of the shallow-water layer (M. Dikpati &
P. A. Gilman 2001). For the solar differential rotation profiles
of the form s s ssin sin0 2

2
4

4f f- - , where f is latitude, the s4
term guarantees that there is a sign change in the latitude
rotation gradient at a relatively high latitude, typically around
60°, implying instability whose disturbances peak at high
latitudes.

When a toroidal band system is added, the instability gets
enhanced, due to availability of additional energy source,
namely the magnetic energy. Maxwell stresses arising from
tilted total magnetic field lines (unperturbed reference state plus
perturbation magnetic fields) can extract kinetic energy from
the differential rotation, whereas a “mixed” stress, arising from
cross-correlation of the perturbation latitudinal flow with
longitudinal magnetic field and longitudinal flow with
latitudinal field, can extract magnetic energy out of the toroidal
band. Structurally, this energy extraction arises from a phase
shift in longitude between the perturbation velocities and their
magnetic counterparts, which can clearly be seen in the
eigenfunction plots later on. However, the hydrodynamic
instability generally can still coexist.

The single-band case has been studied extensively (M. Dikpati
& P. A. Gilman 1999; M. Dikpati et al. 2003) for a wide range of
band strengths, widths, and placement in latitude. But the double
band case has only been studied so far by B. Belucz et al. (2023)
for a restricted set of band placements. If two oppositely directed
bands are close to each other, there exists the possibility of

cancellation of perturbation flux, and therefore magnetic energy.
This can occur within a single hemisphere, or across the equator.
Which of the two energy extraction mechanisms is more
important depends primarily on the magnetic field amplitude of
the band. The stronger the peak field is, the more energy comes
from the magnetic field compared to that coming from the
differential rotation. But in all cases some differential rotation
must be present for the instability to happen. The larger the
rotation gradient across the band, the stronger is the instability. A
perturbation whose phase speed in longitude is substantially
different from the local rotation at the latitude of the toroidal field
peak will not be able to establish the steep longitude phase shifts
with latitude in the velocity and magnetic perturbations across the
width of the band. With two bands present, it is impossible to
optimize the energy extraction from both bands with a single
unstable eigenfunction because it has to have a single longitude
phase speed. But there can be two unstable modes for the same
longitude wavenumber, each one with a phase velocity optimized
to extract magnetic energy from one of the toroidal bands. We will
see that in the solutions we display.

3.1. Unstable Disturbance Growth Rates

We performed a detailed survey of growth rates of m= 1
unstable modes for both symmetries for 40° (Figure 2) and 20°
(Figure 3) separation. For all cases, we set G= 0.5, a plausible
value for a one layer tachocline.
In general, in the case of a double-band system there can be

more than one unstable mode for the same parameter values
because each band can act as a distinct energy source for
instability. In Figures 2 and 3, we have shown growth rates
only for the most unstable mode because it is likely that the
mode that will dominate if the disturbance is allowed to grow
to finite amplitude. For different parameter values, which mode
is the most unstable for the same m can change, resulting in
different growth rate “regimes” in a map of growth rate
contours.
We show the contours of growth rates for band pairs placed

at declining latitudes from top to bottom in Figures 2 and 3. In
each panel, the vertical axis is the peak-field strength of the
low-latitude band; the horizontal axis is the same for the higher
latitude band. The four frames in the left-hand column show the
antisymmetric modes and the right-hand column shows the
symmetric modes. The lighter color shading denotes higher
growth rates and the darkest color the slowest growth rates. In
B. Belucz et al. (2023), we found growth rates of disturbances
for double bands with 30◦ separation in their latitude locations.
It is useful to discuss Figures 2 and 3 together; they have

some properties in common but also differences. For example,
for both band separations, as the low-latitude band gets close to
the equator, the growth rates are smaller (shading gets darker).
This is more pronounced in the 20° separation case because the
high-latitude band is much closer to the equator. This effect
probably comes from the fact that latitude differential rotation
is weaker at the lowest latitudes, making less kinetic energy
available for instability of the combined bands and differential
rotation.
For both band separations and both symmetries, when the

band pair is placed closer to the equator, instability of the low-
latitude band disappears completely, and the high-latitude band
peak is weaker. This effect is clearly stronger for the narrower
band separations, with symmetric mode instability absent
regardless of high-latitude band amplitude for lower amplitude

4
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Figure 2. For G = 0.5, growth rate contours for m = 1 modes are displayed in the field-strength space, in which the x-axis denotes the strength of the high-latitude
band, denoted by H band in the x-axis label, and the y-axis that of the low-latitude band, denoted by L band in that label. Left-hand and right-hand panels are,
respectively, for antisymmetric (m = 1, A) and symmetric (m = 1, S) modes. As the band system migrates from high latitudes toward the equator, the four rows from
top to the bottom show how the instability features change, respectively, for bands at 60°–20° (aa, ab), 55°–15° (ba, bb), 50°–10° (ca, cb), and 45°–5° (da, db).
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Figure 3. The same as in Figure 2, but for 20° band separation.
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lower latitude bands. Antisymmetric modes require a high-
latitude band with peak strength between 10 and 20 kG,
depending on the low-latitude band peak. Even when there is
instability, the growth rates are rather small, implying e-folding
growth times of a few years. So, there are limits to the high-
latitude band’s causing instability of the low-latitude band.

For bands separated by 20°, for symmetric modes, instability
disappears altogether when the low-latitude band reaches 5°,
while antisymmetric modes are stable for high-latitude bands of
15 kG strength or less, no matter what the low-latitude band
strength.

A second feature in common is that as the band pair moves
closer to the equator, the peak in disturbance growth rates
migrates to a higher peak in the high-latitude band. In other
words, it takes a stronger high-latitude band and therefore more
magnetic energy available to make the whole system unstable.
A third common feature is that for both band separations there
are different growth rate domains for weak and strong peaks in
the low-latitude band. This feature is more pronounced for
equatorially symmetric than antisymmetric modes. This is an
example of different unstable eigenfunctions for the same
wavenumber m. Each is extracting energies from different
energy sources to grow. We return to this point in the
discussion of later figures. For bands separated by 20°, the
boundary between the two growth rate regimes occurs for low-
latitude bands of about 10 kG. For band separation of 40°, the
regime change, again most clearly seen for symmetric modes,
occurs for low-latitude band peaks near 20 kG.

For both the 20° and 40° band separations, there is an
additional effect at work, which is different for the two
different separations. For single bands, the amount of
instability depends in part on where the band is located with
respect to the local the differential rotation because the
instability is realized by the local rotational shear across the
band. The latitude where the maximum shear occurs is a
function of the total profile of differential rotation from the
equator to pole, which generally peaks at or near 45°. So, the
high-latitude band instability will be strongest near that
latitude. This effect is particularly important for the case of
40° separation. With 20° separation, when the low-latitude
band is at 5°, the high-latitude band is at 25°, implying that the
band will be less unstable.

Regardless of the fact that in these calculations, while there
are always two toroidal bands in each hemisphere, the unstable
eigenfunctions are truly global, with different latitude structures
for opposite symmetries, we can ask this question: As a
function of the parameters of the problem, which toroidal band
has the greatest contribution to the instability? The way to
answer this question from the results in Figures 2 and 3 is to
realize that where the growth rate contours are nearly vertical,
signifying growth rate nearly independent of the low-latitude
band’s peak amplitude, the instability is determined by the
strength of the high-latitude band. This will also be evident in
the structure of the eigenfunctions shown in later figures.
Conversely, when the growth rate contours are nearly
horizontal, the strength of the low-latitude band dominates in
the instability.

If we apply these inferences to Figure 2, we see that for weak
high-latitude bands (near left boundary of all frames), the
growth rate is nearly independent of the low-latitude band
peak. This is clear evidence of a strong linkage between low
and high latitudes for even weak high-latitude bands. This

effect is most pronounced for antisymmetric modes, but is
present for symmetric modes too. We infer that this implies that
the appearance of a new toroidal band at high latitudes can
enhance magnetic activity in the declining phases of the present
cycle, at least until the low-latitude band is unstable, i.e., until
the band is not too close to the equator. We regard this result as
evidence of a teleconnection between high and low latitudes,
first suggested by S. W. McIntosh et al. (2021). It may
influence the late stages of the present cycle, as well as the
timing of the appearance of the next one.
We can also see from Figures 2 and 3 that for low-latitude

bands, a wide range of field strengths are actually destabilized
by the presence of a new high-latitude band of intermediate
strength. Even if the low-latitude band is unstable without a
high-latitude band present, its growth rate is much larger when
the high-latitude band is present, indicating the release of
magnetic energy by the unstable high-latitude band through the
perturbations (mainly velocities, since they have much wider
extent in latitude) to destabilize the low-latitude band. This can
lead to a stronger current sunspot cycle. Taking this reasoning a
step further, namely why the instability could help spot
emergence, we can refer to Figure 11 of M. Dikpati &
S. W. McIntosh (2020), which displays that the toroidal
magnetic band coinciding with bulges in tachocline fluid (i.e.,
region of high pressure-departure relative to the surrounding) is
more prone to emerge through the convection zone. Thus, it is
possible that the instability due to the appearance of a new
high-latitude toroidal band can cause a later phase rise in
activity from the low-latitude band, perhaps leading to a double
maximum in sunspot number for that cycle. That second peak
in activity with time might also extend that sunspot cycle in
that hemisphere.
For much higher amplitude peaks of the low-latitude band,

the growth rate contours are much more horizontal, indicating
that the low-latitude band is determining the strength of the
instability. By inference, for such high fields, the influence of a
weak high-latitude band is much less. However, such high
fields close to the equator may be unrealistic for the Sun.
Magnetic buoyancy instability for toroidal fields significantly
above 10 kG in peak value should have already erupted as
sunspots (P. A. Gilman 2018).
When we look for the same effects in Figure 3, for which the

band separation is just 20°, we see vertical growth rate contours
extending to even higher peaks in the low-latitude band. We
also see it for both mode symmetries. So, in this case the
closeness in latitude of the high-latitude band to the low-
latitude one makes its influence even stronger. A growth rate
contour map for intermediate separations, such as 30°, studied
in B. Belucz et al. (2023), show similar features to those shown
here. Therefore, the influence of a weak, high-latitude toroidal
band, representing the start of a new sunspot cycle, is a robust
feature of the double banded system, and needs to be taken into
account in both observational analyses and model simulations
of sunspot cycles.
The horizontal and vertical axes in each plot represent limits

for which one of the bands is absent; the horizontal axis has no
low-latitude band; the vertical axis has no high-latitude band.
From Figure 2 we can clearly see instability of antisymmetric
modes extends all the way down to zero amplitude low-latitude
bands. As the low-latitude band peak rises vertically on the
plot, the low-latitude band starts to interfere with the instability
of the high-latitude band, lowering the growth rate, but as the

7

The Astrophysical Journal, 977:99 (17pp), 2024 December 10 Dikpati et al.



low-latitude band gets stronger still, it can supply more energy
for instability, with the high-latitude band triggering instability
of the low-latitude band. The unstable disturbance eigenfunc-
tions should look significantly different in the two regimes. The
regime change in growth rate occurs at a higher low-latitude
band strength when the band separation is larger because the
perturbations associated with each band, being further
separated, are less able to interact to influence instability in
the other band.

By contrast, the limit for which the high-latitude band goes
to zero, seen close to the left-hand vertical axis on each frame,
behaves quite differently. As the vertical axis is approached
from the right, decreasing the high-latitude band peak, the
growth rates go down monotonically to zero for lower latitudes
of band placements and near zero for higher latitude band pairs.
This is true for both symmetries and both separations. The two
band system becomes stable even before the high-latitude band
vanishes, particularly for lowest latitude placement of the band
pair. These features come from the fact that if the low-latitude
band is low enough in latitude, its single-band instability is
very weak because the latitude gradient of differential rotation
is weak at low latitudes. Instability of the remaining low-
latitude band is weak or zero, even for very high band peaks.
Considering the succession of sunspot cycles, we can infer
from this result that without a growing high-latitude band for
the next cycle, sunspot appearances of the cycle from the low-
latitude band may disappear sooner than they would otherwise,
leaving even a gap between cycles, signifying a longer than
average solar minimum.

In summary, we can explain the results above physically by
invoking the three instability mechanisms described at the
beginning of this section. For low-latitude bands, the two
mechanisms for producing instability are too weak. There is not
enough differential rotation to produce the disturbance stream-
line and magnetic perturbation tilts to produce a Reynolds or
Maxwell stress to extract kinetic energy from the weak
differential rotation gradient. There is also not enough
differential rotation to stimulate the longitude phase shift
between the magnetic and velocity perturbations, so no
magnetic energy is extracted from the toroidal band by the
action of mixed stress.

3.2. Unstable Eigenfunctions and their Teleconnections

The growth rates shown in Figures 2 and 3 reveal how one
band can destabilize the other, particularly the lower latitude
band, which might be stable if the high-latitude band is not
present. One can think of this as a form of teleconnection
because the bands are separated by between 20° and 40° in
latitude and the magnetic linkage between them is weak
because magnetic perturbations are confined to the neighbor-
hood of the latitude of the toroidal band. However, perturbation
velocities associated with the unstable high-latitude band easily
reach the low-latitude band, perturbing it even when, by itself,
that band would be stable. This triggering mechanism
happening in the Sun could help to determine the timing of
the onset of a sunspot cycle. Figures 4 and 5 give typical
examples of the actual eigenfunctions for both symmetries
about the equator, for toroidal separations of 40° (Figure 4) and
20° (Figure 5).

In Figure 4, we can see that when the bands are at 55° and
15°, respectively, there are substantial perturbation velocities,
and magnetic fields between the bands, associated with top-

surface deformations, but very little is happening in the domain
straddling the equator between the two low-latitude bands. As
the band pair gets closer to the equator, there starts to be more
perturbation between the two low-latitude bands, particularly
for the antisymmetric modes, but the primary perturbation
patterns remain between the bands in one hemisphere, as well
as poleward of the high-latitude band. In effect, perturbation
velocities associated with the unstable high-latitude band are
disturbing the low-latitude band in such a way that it becomes
unstable too. We can also see that in between the bands the
velocity vectors have a pronounced tilt away from latitude
circles. This is evidence of angular momentum getting
transported from lower latitudes to higher ones, releasing
kinetic energy to drive instability of both toroidal bands, but
mainly the one at higher latitudes. When the band pair migrates
by just 10° in latitude, the tilt disappears; so the continued
instability of the double-band system has to be driven primarily
by magnetic energy. Most of the energy for instability is
coming from the high-latitude band, due to having a larger
rotation gradient across the band.
The teleconnection mechanism here arises in the form of

perturbation velocities associated with the unstable high-
latitude band reaching the low-latitude band and destabilizing
it, or in some cases making it more unstable than it would be
without the high-latitude band present. Magnetic fields are not
directly involved in this communication by velocities because
magnetic field perturbations are confined to the immediate
neighborhood of the high-latitude band. This teleconnection
has a “reach” of several tens of degrees in latitude, enough to
connect toroidal fields of the next cycle to the present one. The
main mechanism is the formation of latitudinal tilts in the
velocity and magnetic disturbance patterns, which are caused
by the longitudinally propagating Rossby waves generated by
this instability. Alfvén waves, which also propagate in
longitude, would rather be confined to the toroidal bands
themselves, and hence are not part of this mechanism.
However, Alfvén waves associated with toroidal bands could
lead to teleconnections in longitude, which is beyond the scope
of the present study.
In the context of an advancing sunspot cycle, we can infer

that without the presence of the high-latitude band, the low-
latitude band at 5° would not be unstable at all, showing that
the presence of a new high-latitude band can actually extend
the spot production during the current sunspot cycle. This is
because the instability can create the conditions for magnetic
flux emergence in the form of sunspots (see, e.g., Figure 11 of
M. Dikpati & S. W. McIntosh 2020). If the new high-latitude
band happened to develop late, the current spot cycle might end
early. We can also see that as the band pair moves closer to the
equator, instability of the low-latitude band becomes stronger
than it was when it was at a higher latitude, as evidenced by the
relative length of perturbation magnetic arrows particularly.
Our interpretation of these results and their connection to

sunspot cycles is that instability of a toroidal band coupled with
local latitudinal differential rotation contributes to the timing of
the appearance of sunspots and their frequency of eruption in
both the ascending and descending phases of a cycle. This
connection has been discussed in previous papers (M. Dikpati
et al. 2018b). By the time that the low-latitude band reaches 5°,
the perturbation velocities and magnetic fields are close enough
together that they are virtually certain to interact across the
equator. Unstable modes of each symmetry have one latitudinal
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perturbation vector that crosses the equator to connect with the
other hemisphere. In reality, modes of both symmetries are
unstable, so in a combined solution with both symmetries
present, there will be both velocity and magnetic connections
between the hemispheres. A nonlinear simulation would map

out the details of how this cross-equatorial teleconnection
works.
Figure 5 shows a typical progression of the eigenfunctions

moving toward the equator that are separated by only 20°. This
could represent a situation on the Sun where there were slightly

Figure 4. Snapshots of flows (white arrow vectors) and magnetic fields (black arrow vectors) overlaid on top-surface of the shell (color-map) in latitude–longitude
planform for the antisymmetric and symmetric m = 1 modes, respectively, in left-hand and right-hand columns, for toroidal field bands separated by 40°. For all
panels, the high-latitude band’s peak is 10 kG and the low-latitude band’s peak is 30 kG. Red-yellow denotes bulging of the tachocline top surface, and green-blue the
depression. Panels from top to bottom show how the eigenfunctions evolve as the band system migrates equatorward, keeping the same band separation and band
amplitude.

9

The Astrophysical Journal, 977:99 (17pp), 2024 December 10 Dikpati et al.



overlapping sunspot cycles, or at least a very short minimum
between cycles. We see that for both symmetries the
interactions between instability of both bands is tightly
connected, and by the time the low-latitude band reaches 5°
the low-latitude perturbations show very rapid reversals in

perturbation velocity and magnetic arrows with latitude, as well
as across the equator, while still showing velocity perturbations
at higher latitudes that are very broad and tilted with latitude. In
this case, the energy is extracted from differential rotation from
high-latitudes, where the inflection point is present. The

Figure 5. Snapshots of flows (white arrow vectors) and magnetic fields (black arrow vectors) overlaid on the top-surface of the shell (color-map) in latitude–longitude
planform for the antisymmetric and symmetric m = 1 modes, respectively, in left-hand and right-hand columns, for toroidal bands separated by 20°. For all panels, the
high-latitude band’s peak is 10 kG and the low-latitude band’s peak is 30 kG. Red-yellow denotes bulging of the tachocline top surface, and green-blue the
depressions. Panels from top to bottom display how the eigenfunctions for double-band system always connect between them in each hemisphere, and then eventually
allow cross-equatorial communication as the high- and low-latitude bands migrate toward the equator.
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resulting instability leads to the tilted velocity vectors occurring
on the poleward side of the high-latitude band, but still the
instability is essentially global, and involves the combination of
differential rotation and two toroidal bands in each hemisphere.
Here again, without the high-latitude band, the low-latitude
band would not be unstable, showing just how important the
interaction between bands is in determining how global the
MHD instability is, and how different it is from both the single-
band and no-band cases. Here, the rise in relative strength of
instability of the low-latitude band compared to the higher
latitude one, as evidenced by the perturbation arrow lengths, is
evident.

3.3. Evolution of Unstable Eigenfunctions Through a Sunspot
Cycle

In a real sequence of sunspot cycles, a succession of toroidal
field bands would be migrating toward the equator with time
and at rates that may be faster in midlatitudes compared to near
the equator, while at the same time their peak magnetic fields
are changing, rising during the ascending phase and declining
during the declining phase. The latitude spacing between
the bands probably also changes, becoming narrower in latitude
with the equatorward migration. To illustrate how the unstable
eigenfunctions might change with time as the sunspot cycle
advances, in Figure 6 we show a sequence of three phases,
across which the high-latitude band is increasing in peak
strength while the low-latitude peak decreases. The band
separation drops from 40° at the beginning of the sequence to
20° at the end of the sequence.

Figure 6 displays dramatic changes in the eigenfunctions of
both symmetries of unstable modes from the beginning to the
end of the sequence. For symmetric modes, the perturbation
velocities and magnetic fields go from being dominant
poleward of the low-latitude band to more pronounced in the
equatorial domain in both hemispheres at the end of the
sequence, when the low-latitude band is at 5°. For both
symmetries, there are strong cross-equatorial interactions, as
evidenced by the length of the perturbation arrows. The
changes in the antisymmetric modes are even more dramatic
because we see that between the first and second planforms in
the sequence the most unstable mode switches from long-
itudinal wavenumber m= 1 to m= 2. This switching is not
unusual; we have seen this before. For example, Table 1 of
M. Dikpati et al. (2018b) has presented such a case. This
change is coupled with the relative amplitude shifting to much
lower latitudes, together with strong perturbation zonal flows in
very low latitudes. In the symmetric modes, there are strong
cross-equatorial flows.

So, for both symmetries, the connections between the
northern and southern hemispheres are particularly strong late
in the cycle. In the Sun and in a full nonlinear shallow-water
model simulation, several different m modes of both symme-
tries will be excited, leading to a much more complex picture,
including significant differences in the total patterns between
north and south. But we expect that the dominant features of
individual modes described in Figures 4–6 above would be
quite evident in any composite synoptic map, like those for
individual modes and individual symmetries about the equator,
just more variable and complex.

In some respects, we can think of the toroidal bands as being
imposed on Rossby waves in the solar tachocline by the solar
dynamo. The band migration toward the equator as a sunspot

cycle progresses causes the structure of the unstable MHD
Rossby waves to change with time, including which long-
itudinal wavenumbers are dominant in the wave spectrum. The
latitudinal structure of all these unstable waves evolves
substantially, with the bands being both a source of instability
and forcing their disturbance profiles in latitude to change to
accommodate the bands. In turn, this evolving structure,
including the bulges and depressions in the top boundary of the
shallow-water tachocline model, may determine where in
longitude the toroidal fields will most likely emerge from, to
manifest as active regions and sunspots at the surface. These
emergences are also a part of the dynamo, providing surface
magnetic fields that can be advected and diffused to the poles to
reverse the sign of the polar fields, providing the seed for the
next toroidal band and the next sunspot cycle. Thus, the Rossby
waves and dynamo are dynamically linked in some ways, but
the dynamo is responsible for the characteristics of the Rossby
waves that prevail (see, e.g., a more detailed review on solar
Rossby waves and dynamo in Section 5.5 of T. V. Zaqarashvili
et al. 2021).
It is well known (see, e.g., M. Dikpati et al. 2007) that

although the timing of the peak in a sunspot cycle may differ by
up to three years between hemispheres (cycle 24 being a recent
example of a three-year difference), the timing of solar
minimum is virtually never more than one year apart. This
near synchronization between north and south could be caused
by the cross-equatorial interactions of MHD Rossby waves, as
illustrated in Figures 4–6. Midlatitudes, where maximum solar
activity is found, are not so tightly coupled between north and
south. Closer to the poles, the generation of a new high-latitude
band by the dynamo could vary in timing between hemispheres
because it depends on when the polar fields reverse, which in
turn is influenced strongly by the amount of magnetic flux
carried to the poles from lower latitudes from the previous
sunspot cycle.
Since surface meridional circulation is known to vary in

amplitude by as much as a factor of two within a sunspot cycle
time frame, the rate at which previous active region magnetic
flux gets to polar latitudes can vary by a similar amount. We
speculate that if the cross-equatorial interaction did not occur in
the Sun, it is much more likely that sunspot cycles in the two
hemispheres could get substantially out of phase with each
other than has been observed over the past several centuries. It
is worth recalling that without the second band at high latitudes
the low-latitude bands may be stable, limiting the cross-
equatorial connection. Thus, the high-latitude bands may help
synchronize sunspot cycles in northern and southern hemi-
spheres. If so, then the teleconnections described here are truly
global.

3.4. Focus on Details of Cross-equatorial Interactions

The cross-equatorial communication between north and
south arising from low-latitude MHD Rossby waves is
sufficiently important in understanding the Sun’s global
magnetic structure that in Figure 7 we show synoptic maps
constructed by assigning an amplitude to MHD Rossby wave
eigensolutions, so that maps can be constructed that show the
combination of Rossby waves, differential rotation, and
toroidal field. For this purpose, we have chosen the eigenfunc-
tions displayed in Figures 5(c), (f) for toroidal bands positioned
at 25° and 5°. We have somewhat arbitrarily assigned a value
to the perturbation eigenfunctions, a 10% amplitude relative to
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the reference state, to illustrate the total velocity and magnetic
patterns. Obviously, in a nonlinear simulation this amplitude
would be determined internally by the model itself, e.g., in the
nonlinear simulations by M. Dikpati et al. (2018b) this
amplitude was found to be about 40%. Here, we assigned a
modest amplitude of 10%.

Before interpreting Figure 7 in detail, we recall the
symmetries about the equator of the velocity and magnetic
components for what we have called antisymmetric and
symmetric modes. For the antisymmetric mode, the latitude
velocity is antisymmetric about the equator, so it has a zero
value there. The longitudinal velocity is symmetric about the

Figure 6. Same as in Figures 4 and 5, but for variable band separation during the band system’s equatorward migration; separation between high- and low-latitude
bands in each hemisphere decreases from 35° to 20° by the time low-latitude band reaches 5°-latitude. The field-strength of both bands also changes with the frames,
as labeled, roughly according to the progress of solar cycle. Note that unstable antisymmetric modes with highest growth rate change wavenumber from m = 1 to 2
(bottom two panels in the left-hand column).
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equator. For the antisymmetric modes, the symmetries of the
magnetic components about the equator are reversed: the
latitudinal field is symmetric, while the longitudinal field
reverses sign at the equator. This follows from the antisym-
metric reference state toroidal field.

The result of these symmetry properties, seen in Figure 7, is
that the total flow (perturbation plus differential rotation) leads
for the antisymmetric mode to a pattern of flow to the right of
each half wavelength in longitude, alternating with almost no
longitudinal flow (Figure 7(a)). By contrast, for the symmetric
mode (Figure 7(c)), the perturbation part of the longitudinal
flow is adding to differential rotation in one hemisphere while
subtracting from it at the same longitude in the opposite
hemisphere. The result is a pattern of virtually horizontal
velocity arrows extending across the equator at every longitude
where the east–west flow is added to differential rotation,
resulting in the wavelike pattern seen there. For both
symmetries, the latitude velocities are smaller to those in
longitude, leading to the nearly horizontal patterns we see. But
even though the latitudinal velocities may be small, they still
may be important for interactions across the equator. The
magnitude of their effects are best determined by nonlinear
calculations that are beyond the scope of this paper.

In Figures 7(b), (d) there are analogous patterns for the total
magnetic field, with the major difference being that the toroidal
fields are much more confined in latitude, consistent with the
reference state toroidal bandwidth. In Figure 7(b), we see a
sequence of longitudes with total field bulging in latitude,
alternating with more constricted total fields, while in
Figure 7(d) we get a wavelike pattern again, with an in-phase
appearance between the two hemispheres; namely, in one
hemisphere the total field is displaced further away from the
equator at a longitude, while at the same longitude the total
field in the other hemisphere is displaced toward the equator.
We see that for modes of both symmetries, there are essentially
no magnetic fields crossing the equator. This is a consequence
of the linear calculation with the assumption of a purely

antisymmetric toroidal field in the unperturbed state. In a
nonlinear calculation, the MHD would be free to push toroidal
fields even across the equator or bring oppositely directed
toroidal fields together at some longitudes, which is again
beyond the scope of this study.

3.5. Properties of Unstable Modes in Relation to Alfvén Wave
Speed and Band Separation

In this section, we examine the dependence of the phase
speeds and instability intensity (measured by growth rate) of
unstable modes on the Alfvén wave speed (which is
proportional to peak-field strength) for various band separa-
tions. We deliberately fix the low-latitude band at 10° latitude
because a single band at this latitude is stable. The presence of
a high-latitude band plays the roles of destabilizer of the
double-band system. With this choice, we can gain maximum
insight about the instability features of a double-band system
with high-latitude band placed at various locations.
In Figure 8, we show growth rates and longitudinal phase

velocities for cases with the low-latitude band fixed at 10° but
varying in peak amplitude from zero to 50 kG, while the high-
latitude band is fixed at a strength of 10 kG but placed at 10°
intervals from 10° to 60°. Both the 10° and the 60° separations are
probably not realistic when compared to observed sunspot cycle
patterns, but we include them for completeness. The left-hand
column of Figure 8 shows growth rates for all modes, while the
right-hand column depicts the phase velocities for the same modes.
We have added the phase speed of the local rotation rate, relative
to the rotating reference frame, to compare with the disturbance
phase speed in the same dimensionless units. At the top of the
figure, we have added a dimensional Alfvén wave phase speed that
corresponds to the dimensionless peak field at the bottom.
The unstable mode properties depicted in Figure 8 are:

(a) As we have seen in Figures 2 and 3, there are two classes
of unstable modes with comparable growth rates, which
occur for both equatorial symmetries. One set, from band

Figure 7. Equatorial region enlarged to display cross-equatorial communication via flows (top panels) and fields (bottom panels) for the case of the bands at 5° and
25° in each hemisphere, i.e., for the cases presented in Figures 5(c) and (f). Again, left-hand and right-hand panels, respectively, display m = 2, A and m = 1, S. Note
that the velocity vectors are also plotted in black arrows instead of white arrows for better visibility. Note that in this enlargement green is the prominent color in the
right-hand panels because green implies no bulges or depressions, which is the case near the equator for the symmetric mode. We see this near the equator for all
symmetric modes, such as in Figure 5 right-hand panels.
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pairs that are relatively close together (10°–30° separa-
tions) are present only for low-latitude band’s strength
above a threshold value. The other set of modes is present
for all low-latitude band strengths; it overlaps with the
first set, beginning with 20° separation. Both mode types
are present, with comparable growth rates, for band
separations up to 40°, beyond which only one set of
dominant modes is shown for each symmetry. In all cases
in which only one unstable mode is present, there may be
a second unstable mode, but its growth rate is so low that
it is physically insignificant.

(b) The longitudinal phase velocities of the single unstable
modes for both symmetries when the bands are separated

by 50° or 60° (green and yellow/orange curves,
respectively) are very close to the local rotation rate of
the high-latitude band. This indicates that the instability
energy source is the magnetic energy of the high-latitude
band, together with kinetic energy of the differential
rotation profile, which has an inflection point around 60°.
Kinetic and magnetic energies can be extracted when
there are tilts in velocity vectors and longitudinal phase
shifts with latitude between velocity and magnetic
vectors. In these cases, the low-latitude toroidal band is
also unstable, but it contributes much less energy to the
growing modes. Nevertheless, these modes are global,
and grow at the same rate everywhere.

Figure 8. Growth rates (left-hand panels) and phase velocities (right-hand panels) are displayed for a double-band system, for which the low-latitude band (i.e., the
active-cycle’s band) is placed at 10° and the high-latitude band is placed at five different latitudes, namely at 20°, 30°, 40°, 50°, and 60°. Panels (a) and (c) display
growth rates and phase velocities for m = 1 antisymmetric modes, and panels (b) and (d) for m = 1 symmetric modes. The purpose of keeping the field strength of
high-latitude band fixed at 10 kG and varying the strength of low-latitude band is to show how the instability intensity varies with Alfvén speed provided by the low-
latitude band’s peak-field strength. Furthermore, the choice of placing the low-latitude band at 10° is to demonstrate that the presence of a high-latitude band interacts
to make the double-band system unstable when a low-latitude band is not unstable by itself at such a low-latitude. Note that there are two modes with comparable
growth rates in two cases, namely when the bands are at 10° and 30°, and are at 10° and 40°. We distinguish these two cases by a dashed–triple–dotted curves as
opposed to dashed curves in the antisymmetric case, and by a dotted curves as opposed to solid curves in the symmetric case.
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(c) High latitude bands placed at 40°, 30°, and 20° lead to two
quite different types of unstable modes, which also differ by
equatorial symmetry. For unstable antisymmetric modes, the
phase velocities are close to the local rotation rate of the
higher latitude band location, for all low-latitude band
strengths and for band separations of 30° and 20° (dashed
black and blue curves). This indicates that the energy for
disturbance growth is coming from the high-latitude band.
For 20° band separation (blue dashed–triple–dotted curve)
the phase speed of the mode is more negative, closely
matching the local differential rotation speed near 60°. Here,
hydrodynamic instability has taken over, destabilizing both
bands. For 10° band separation, phase speed matches the
local differential rotation near 30° (see the dashed red curve
in panel (c)).

The characteristics of the corresponding equatorially sym-
metric unstable modes are analogous to their antisymmetric
counterparts. The same separation of modes into those present
for all low-latitude band peak strengths, and those which
require a finite strength of low-latitude band to be unstable, is
still present, though some details differ. For band separations of
40° and 50°, modes have the highest growth rates and phase
speeds close to the rotation rate of the high-latitude band
location. For smaller band-separations, the two unstable modes
are distinguishable in a similar way, one type having phase
speeds closer to the local rotation rate at higher latitude than
both bands, and the other with phase speed close to the rotation
at the high-latitude band.

To discuss the global structures of eigenfunction we pick a
representative case. Figure 9 shows the eigenfunctions for the
two characteristic symmetric modes with comparable growth
rates when the bands are at 10° and 40°. The upper panel (a)
shows the eigenfunction for the mode with phase speed
matching the local rotation rate around 40°, while the lower
panel (b) shows the unstable mode with phase speed matching
the local rotation speed around 60°. The slower propagating
mode (panel (a)) shows no tilts in velocity vectors (white
arrows) but significant phase shift between velocity and
magnetic vectors, indicating that the energy for this mode
comes primarily from the magnetic fields. In this mode, there
are essentially no perturbation velocities poleward of about
60°. By contrast, for the eigenfunction in panel (b), we can
clearly see the tilted perturbation velocity patterns poleward of
the high-latitude band, extending nearly to the pole, showing
that angular momentum is being transported to higher latitudes
by Reynolds stresses in the wave, thereby extracting kinetic
energy out of the differential rotation to drive the instability.
Judging by the lengths of the perturbation fields, mostly in
longitude, for both modes, more magnetic energy is being
extracted from the high-latitude band than from the one at low
latitudes—but both are unstable with the same growth rate,
however, for growing modes.

Note that the instability intensity (measured by growth rates)
increases as the band separation increases (see, for example, the
left-hand panels (a) and (b) in Figure 8). This is because the
maximum gradient in the differential rotation being at ∼60°,
more kinetic energy is available for extraction by the
perturbation the closer the high-latitude band is to 60°.

Finally, Figure 8 shows that both growth rates and phase
speeds depend only very mildly on the Alfvén Speeds. This is
because we are analyzing unstable modes. For the neutral
modes, the phase speed depends on both classical hydrodynamic

Rossby waves’ speed (vHD) and Alfvén speed (vA) following the

relation, ( )v v v v1 2 4HD HD
2

A
2=  + (B. Raphaldini et al.

2019; M. Dikpati et al. 2020). Therefore, for zero magnetic field
the phase speed matches the classical Rossby waves’ phase speed
vHD, while for zero rotation the phase speed matches that of pure
Alfvén waves vA. However, for growing modes, the phase speeds
are also modified by the differential rotation and are closer to the
local rotation rate near the band latitude, therefore the strong
dependence on the Alfvén wave speeds is not seen in this case.

4. Summary and Conclusions

There is increasing evidence, reviewed in the introduction, that
there are typically two toroidal field bands in each hemisphere—a
low-latitude band that is producing spots and a high-latitude band
from which other magnetic features are emerging, foretelling of
the next sunspot cycle. The combination of spots and other
magnetic features in high latitudes is often characterized as the
“extended” solar cycle, which has recently been shown to contain
predictive capability for the upcoming solar activity cycle’s
features, namely the strength and timing of the peak of the cycle
(S. M. McIntosh et al. 2020). In particular, the authors suggested a
linear relationship between the timing of the terminator and the
peak-strength of the following cycle. Solar cycle 25 was predicted
slightly higher in 2020 (S. M. McIntosh et al. 2020) based on the
predicted terminator. However, the prediction was revised
(S. W. McIntosh et al. 2023) to be lower than the initial
prediction in 2020 after the observation of the terminator of cycle
24, but still higher than that predicted by NOAA/NASA
prediction panel, and is more compatible with the current stage
of solar cycle 25.
Here, we have used an MHD shallow-water model for the

solar tachocline to study the instability of the combination of
latitudinal differential rotation and two toroidal bands present
in each hemisphere. We have found that having two toroidal
bands present leads to complex interactions between low and
high-latitude bands in one hemisphere, as well as between low-
latitude bands across the equator.
These interactions between the double bands in each hemi-

sphere leads to global unstable modes that are generally quite
different from the case when there is a single toroidal band in each
hemisphere. The details depend strongly on the amount of
latitudinal separation between bands and the relative strength of
each band. There are domains for which the high-latitude band
governs the instability of the low-latitude band, and vice versa.
Results are different for modes with opposite symmetry about the
equator, but there are analogous properties too.
The complexity of the instability of the double band system

stems from the fact that there are multiple reservoirs of energy in
the unperturbed state that are available to drive the instability.
Energy from the differential rotation is extracted most readily if
the mode phase speed in longitude is close to that of the local
differential rotation, namely near 60◦. We found that the growth
rates and phase speeds of the unstable modes depend strongly on
the band location and band separation, but only mildly on the
magnetic field strength (Alfvén wave speeds).
As a solar cycle progresses, the spacing between the bands is

expected to shrink and the amplitude of both bands will also
change. Thus, the progress of bands toward the equator results
in constantly evolving dominant modes of instability, including a
change in preferred longitudinal wavenumber. Consequently, the
degree of connection between low and high latitudes and across
the equator also changes. Low-latitude bands that would be stable
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in the absence of a new high-latitude band are kept unstable by
interaction with the new high-latitude band. This can clearly affect
the timing of the end of a sunspot cycle. Interactions between
unstable bands across the equator can help synchronize solar
minimum in the northern and southern hemispheres, which is
observed to differ by no more than one year, while sunspot
maximum is seen to vary between hemispheres by up to three
years. The length of the minimum phase in each hemisphere may
also be affected by the timing of formation of the next high-
latitude toroidal band in each hemisphere.

The cross-equatorial interactions due to unstable MHD Rossby
waves are particularly complex. Depending on mode symmetry
about the equator, instability at low latitudes can modify the
background toroidal field by warping it away from a flat ring

concentric with the rotation axis, as well as introduce latitudinal
bulges and constrictions in it. These changes are accompanied by
modifications in the differential rotation that include periodic
speeding up and slowing down of the differential rotation for one
symmetry, and a periodic oscillation between hemispheres of the
maximum zonal flow. In addition, one symmetry provides north–
south flow across the equator, while the other has analogous north–
south magnetic perturbations. Thus, both kind of symmetries in the
unstable modes provide a plausible physical mechanism for
magnetic teleconnections in the Sun. In the linear case, these are
constrained by the narrowness of the band in each hemisphere.
Each of these properties of unstable eigensolutions combined with
differential rotation and toroidal bands will acquire finite
amplitudes, and evolve further, in a nonlinear simulation. These

Figure 9. Eigenfunctions displayed in latitude–longitude space for two distinct modes of similar growth rates for the double-band system when a high-latitude band is
at 40° and the low-latitude one is at 10° latitudes. The low-latitude band’s field-strength is 0.3 in dimensionless unit, or 30 kG dimensional; as in earlier Figures, the
high-latitude band’s field-strength is 10 kG. Eigenfunctions in top and bottom panels respectively correspond to the cases with solid and dotted black curves in panels
(c), (d) of Figure 8. Note that these solid and dotted curves in panel (d) of Figure 8 respectively display lower and higher phase speeds. Latitude–longitude structures
look quite different for these two modes.
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effects will further tie the two hemispheres together, as well as
connect low and high latitudes with each other in each hemisphere.

Through extensive research, the links between two widely
separated regions in the Earth’s oceanic systems and also in the
atmosphere have been attributed to the teleconnection mechanism,
the physical foundation of which relies on the terrestrial Rossby
waves. In the Sun, and also between the Sun and the Earth
through the interplanetary region, evidence of magnetic tele-
connection mechanism has been found (S. W. McIntosh et al.
2021; U. B. I. Ugwu 2022). Physical foundation behind the
magnetic teleconnection can be attributed to the magnetically
modified Rossby waves. Alternatively, in some cases, though the
links among widely separated geographical locations, such as
Siberia, Europe, North America, China, and West Africa, were
found through the analysis magnetic susceptibility data, the
connections may not be via magnetically modified Rossby waves,
instead those links were attributed to climatological teleconnection
through flows and events (M. E. Evans et al. 2003). We conclude
that many properties of global instability of combined differential
rotation and multiple toroidal field bands play important roles in
producing magnetic teleconnection between the two hemispheres
across the equator. This has profound impact on the timing,
evolution, and amplitude of solar magnetic cycles.

The present work reveals the role of Rossby waves in
promoting cross-equatorial interactions, as well as interactions
between different latitudes. Other recent works have suggested
similar roles of Rossby waves in the longitudinal organization
of photospheric magnetic fields (B. Raphaldini et al. 2023),
sunspot groups, as well as recurrent active region emergences
at the same location (M. Dikpati & S. W. McIntosh 2020;
M. Dikpati et al. 2021; B. Raphaldini et al. 2023) and
sympathetic flares, i.e., flares occurring at different regions of
the Sun in a short interval (Y. J. Moon et al. 2002; R. Mawad &
X. Moussas 2022). This highlights the importance of properly
representing and monitoring active Rossby waves (by combin-
ing observations and numerical models) in understanding and
predicting the magnetic activity of the Sun.
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