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A B S T R A C T 

The stellar mass distribution in star-forming regions, stellar clusters and associations, the initial mass function (IMF), appears to 

be invariant across different star-forming environments, and is consistent with the IMF observed in the Galactic field. Deviations 

from the field, or standard, IMF, if genuine, would be considered strong evidence for a different set of physics at play during the 

formation of stars in the birth region in question. We analyse N -body simulations of the evolution of spatially and kinematically 

substructured star-forming regions to identify the formation of binary star clusters, where two (sub)clusters which form from 

the same Giant Molecular Cloud orbit a common centre of mass. We then compare the mass distributions of stars in each of 

the subclusters and compare them to the standard IMF, which we use to draw the stellar masses in the star-forming region from 

which the binary cluster(s) form. In each binary cluster that forms, the mass distributions of stars in one subcluster deviates from 

the standard IMF, and drastically so when we apply similar mass resolution limits as for the observed binary clusters. Therefore, 

if a binary subcluster is observed to have an unusual IMF, this may simply be the result of dynamical evolution, rather than 

different physical conditions for star formation in these systems. 

Key words: methods: statistical – stars: luminosity function, mass function – galaxies: star clusters: general. 

1  I N T RO D U C T I O N  

The majority of stars form in groups with tens, to thousands, of 

other stars (Lada & Lada 2003 ; Bressert et al. 2010 ). Some of these 

groups become long-lived star clusters (Kruijssen 2012 ), although 

most seem to be part of association-like comple x es (Wright 2020 ; 

Wright et al. 2023 ) which dissolve into the Galactic disc on relatively 

short ( < 20 Myr) time-scales. 

The distribution of stellar masses – the initial mass function 

(IMF) – appears largely invariant across many different astrophysical 

environments (see re vie ws by e.g. Bastian, Co v e y & Me yer 2010 ; 

Offner et al. 2014 ; Hennebelle & Grudi ́c 2024 , though see Dib 

et al. 2010 , Dib & Basu 2018 ; Dib 2022 , 2023 , Matzner 2024 

and Tanvir & Krumholz 2024 for arguments to the contrary, and 

Guszejnov, Hopkins & Graus 2019 for arguments against universality 

outside of the Milky Way). Bastian et al. ( 2010 ) assert that there is 

very little difference between the IMFs of bound, dense star clusters, 

and the IMFs of less dense and unbound stellar associations. We 

might therefore expect any observed variations in the IMF between 

star clusters, or a different IMF from that observed in the Galactic 

field, to indicate a significant deviation from the physics of star 

formation in the majority of stellar clusters and associations. 

A clustered environment in which we would not expect variations 

in the IMF is in so-called binary clusters (Slesnick, Hillenbrand & 

⋆ E-mail: R.Parker@sheffield.ac.uk 

† Royal Society Dorothy Hodgkin fellow 

Massey 2002 ). These are two (sub)clusters which orbit a common 

centre of mass (they do not appear to simply be chance projections), 

and are fairly common in both the Milky Way (Vereshchagin et al. 

2022 ) and in the Large Magellanic Cloud (up to 40 per cent of open 

clusters may be part of a binary pair, de La Fuente Marcos & de La 

Fuente Marcos 2009 ). Because of their close proximity and presumed 

shared orbit, they are thought to have formed within the same Giant 

Molecular Cloud (Dieball, M ̈uller & Grebel 2002 ; Dalessandro et al. 

2018 ; Song et al. 2022 ) and therefore we would expect the subclusters 

to have formed at similar (or identical) metallicities (De Silva et al. 

2015 ), and gas densities (Casado & Hendy 2023 ). 

Whilst their formation mechanisms are currently unclear (e.g. a 

small number may form via capture, Camargo 2021 ), binary clusters 

can form from the dynamical evolution of a single star-forming 

region. In some simulations of kinematically substructured star- 

forming regions, the stars coalesce into two (or more) subclusters 

(Parker et al. 2014 ; Arnold et al. 2017 ; Parker & Wright 2018 ; 

Schoettler et al. 2019 ; Darma, Arifyanto & Kouwenho v en 2021 ; 

Blaylock-Squibbs & Parker 2023 ), which appear similar to the 

observed binary clusters (Arnold et al. 2017 ; Darma et al. 2021 ). 

Indeed, in their simulations, Darma et al. ( 2021 ) reproduce the 

frequency of observed binary clusters (20 per cent–40 per cent), and 

the mass ratios of the subclusters. 

In these simulated star-forming regions, the stars are drawn from an 

IMF that is consistent with the Galactic field IMF (e.g. Maschberger 

2013 ). Ho we ver, the subclusters often have a low mass ratio (one 

of the subclusters contains significantly more stars than the other, 

Darma et al. 2021 ) and the massive stars often all appear to congregate 

© 2024 The Author(s). 
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in just one of the subclusters (Parker et al. 2014 ; Blaylock-Squibbs & 

Parker 2023 ). 

In our previous work, we did not analyse the mass functions of the 

subclusters to look for variations, and deviations from the standard 

IMF. If binary clusters do form from the evolution of a single unbound 

star-forming region (as postulated by Arnold et al. 2017 ) with a 

universal IMF, how often are the IMFs of the subclusters statistically 

different? 

In this work, we ask whether a ‘standard’ IMF can be altered due 

to the dynamical evolution of a star-forming region and the formation 

of a binary star cluster. We recognize, ho we ver, that this does not test 

whether a non-universal IMF would subsequently evolve to resemble 

a universal IMF, in either binary or single star clusters (see e.g. 

Kouwenho v en et al. 2014 , for an example of dynamical evolution of 

non-standard IMFs in single clusters). 

In this paper, we identify binary clusters in similar simulations 

to those in Arnold et al. ( 2017 ), and then compare the stellar mass 

distributions of the subclusters to look for variations from the IMF 

from which the stellar masses for the birth star-forming regions were 

drawn. The paper is organized as follows. In Section 2 , we describe 

the set-up and e x ecution of the N -body simulations. We present our 

results in Section 3 , we provide a discussion in Section 4 , and we 

conclude in Section 5 . 

2  M E T H O D S  

In this section, we describe the set-up of our N -body simulations, 

before describing the alogorithms we use to identify binary star 

clusters in the simulations. 

2.1 N-body simulations 

The simulations contain N ⋆ = 1000 stars drawn from a Maschberger 

( 2013 ) IMF with a probability distribution of the form 

p( m ) ∝ 

(

m 

μ

)−α
( 

1 + 

(

m 

μ

)1 −α
) −β

. (1) 

Here, μ = 0 . 2 M ⊙ is the characteristic stellar mass, α = 2 . 3 is the 

Salpeter ( 1955 ) power-law exponent for higher mass stars, and β = 

1 . 4 describes the slope of the IMF for low-mass objects (which also 

deviates from the lognormal form; Bastian et al. 2010 ). We randomly 

sample this distribution in the mass range 0.1–50 M ⊙. This results 

in a total mass for each region between 550 and 650 M ⊙, with the 

variation simply due to stochastic sampling of this function. 

In previous papers (e.g. Parker et al. 2014 ; Arnold et al. 2017 ), we 

have shown that binary star clusters can form from the dynamical evo- 

lution of kinematically substructured star-forming regions. In those 

simulations, relatively close stars have small velocity dispersions (cf. 

Larson 1982 ), which enables the long-term survi v al of substructure in 

unbound star-forming regions. Substructure in star-forming regions 

that are bound tends to be erased by dynamical encounters. Ho we ver, 

Parker et al. ( 2014 ) show that in the absence of kinematic substructure 

(small velocity dispersions in the spatial substructure), unbound star- 

forming regions also erase substructure. 

We set up our simulations with substructure using the box-fractal 

method (Cartwright & Whitworth 2004 ; Goodwin & Whitworth 

2004 ; Daf fern-Po well & Parker 2020 ). The method is described in 

detail in the aforementioned cited papers, but we describe it briefly 

again here. 

We set up a cube with side length N div = 2, which is then 

divided into N div smaller subcubes. A particle is placed at the centre 

of each subcube and the probability of that particle’s cube being 

subdivided is N 
D−3 
div , where D is the fractal dimension. A low fractal 

dimension (e.g. D = 1 . 6), means the probability of a cube maturing 

is low, which terminates the subdivision and creates a substructured 

distribution. A high fractal dimension (e.g. D = 3 . 0) leads to a high 

probability of a cube maturing and subdividing again, resulting 

in a much smoother distribution. We adopt a fractal dimension of 

D = 1 . 6 in our simulations. 

The particles at the final generation of subdivision become the stars 

in the simulation, and are assigned a small amount of positional noise 

to prevent the fractal having a grid-like appearance. The velocities 

of the first generation of particles are drawn from a Gaussian of 

mean zero, and the subsequent generations in the subdivision inherit 

this velocity, plus a small random component that decreases through 

each subdivision. This results in nearby stars having very similar 

velocities, but the velocities of distant stars can be very different. 

Finally, the velocities of the stars are scaled to a virial ratio 

αvir = T / | �| , where T is the total kinetic energy and | �| is the 

total gravitational potential energy of the stars, respectively. Our 

simulations are slightly supervirial, where αvir = 0 . 9 ( αvir = 0 . 5 is 

virial equilibrium). 

We do not include primordial binary stars in the simulations. 

We run 20 versions of the same simulation, identical apart from 

the random number seed used to initialize the masses, positions, 

and velocities of the stars. We evolve the star-forming regions as 

pure N -body simulations using the fourth-order Hermite integrator 

kira within the Starlab environment (Portegies Zwart et al. 1999 , 

2001 ). 

As discussed in Parker et al. ( 2014 ) and Arnold et al. ( 2017 ), the 

evolution of these supervirial, spatially and kinematically substruc- 

tured star-forming regions can result in very different morphologies. 

In addition to our binary clusters, some simulations can remain highly 

filamentary, or form three or four subclusters. In this work, we analyse 

only the simulations that formed binary clusters. 

The simulations are run for 10 Myr and we check whether there 

are binary clusters every 0.1 Myr throughout the simulations. 

2.2 Binary cluster identification 

To robustly identify binary clusters, we first check for distinct 

subclusters in space using the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN, Ester et al. 1996 ) algorithm. 

DBSCAN group points together that are within a specified search 

radius of one another, and then discards groups that have too few 

points in them. We use the implementation of DBSCAN in the 

scikit-learn PYTHON package (Pedregosa et al. 2011 ), adopting a 

search radius of 3 pc and a minimum subcluster size of N = 10. As 

our simulated star-forming regions expand from initial radii of 1 pc, 

to radii of 10s pc, this choice of search radius facilitates the robust 

indentification of subclusters when they form. 

We then use the INdex to Define Inherent Clustering And TEn- 

dencies (INDICATE, Buckner et al. 2019 ; Blaylock-Squibbs et al. 

2022 ) algorithm to assess the level of clustering of each individual 

star assigned to each subclusters. INDICATE works by comparing 

a distribution of stars to a uniform control grid of the same average 

density as the distribution of stars. The average distance, r̄ , to the 

n th nearest neighbour is calculated for the control grid. For each 

individual star, we determine how many stars are within r̄ compared 

to the average; if this number is significantly higher the star is said 

to be clustered. 

Finally, once we have identified stars in each subcluster using 

DBSCAN and INDICATE, we check that the total energy of each 
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Figure 1. A snapshot after 5 Myr of evolution of a star-forming region in 

the first of our two simulations that forms a binary cluster. The 10 most 

massive stars are shown by the red triangles, and all are located in one of the 

subclusters. 

star is ne gativ e, meaning that the star is gravitationally bound to the 

subcluster. 

We note that Darma et al. ( 2021 ) use an alternative method to find 

binary clusters in their simulations. They use a minimum spanning 

tree (MST) to link all of the stars via a single path, and then identify 

groups based on whether a star lies more than a certain MST branch 

length away from other stars. The stars that are less than a certain 

branch length from their connecting star in the MST are grouped 

together. Similarly, Parker & Wright ( 2018 ) identify groups using 

the friends-of-friends algorithm, which groups stars based on nearest 

neighbour distances and velocities. If we adopted either method we 

w ould lik ely identify the same binary clusters, but the exact stellar 

membership may vary. 

3  RE SULTS  

We analyse a suite of 20 simulations of supervirial (expanding) star- 

forming regions and visually identify two that subsequently form a 

distinct binary cluster system, using DBSCAN and INDICATE as 

outlined in Section 2.2 . We analyse each of the simulations in the 

x − y plane, x − z plane, y − z plane, and in 3D. 

We show a snapshot from one of our two simulations that forms 

a binary cluster in Fig. 1 . Whilst two distinct subclusters are clearly 

visible, the ten most massive stars (shown by the red triangles) are 

all located in the more massive subcluster. 

This simulation forms a binary cluster from just after 2 Myr, which 

remains until the end of the simulation. The snapshot we show in 

Fig. 1 is at 5 Myr. 

In Fig. 2 , we show the stars in this simulation (again after 5 Myr 

of evolution) identified as members of the two subclusters with 

DBSCAN and INDICATE. Members of the more massive/populous 

subcluster (‘Cluster 0’) are shown in blue (285 stars with a total mass 

of 356 M ⊙), and members of the lower mass subcluster (‘Cluster 1’) 

are shown in orange (112 stars with a total mass of 85 M ⊙). Stars not 

assigned to either cluster are shown by the black points. The mass 

distribution of stars in each of these subclusters are then compared 

to a standard Maschberger ( 2013 ) IMF. 

Figure 2. Plot showing an example binary cluster from our simulations at 

an age of 5 Myr, with the stars coloured according to the subclusters there are 

assigned to with DBSCAN. The black points are stars that are not assigned 

to either subcluster. 

Many of the observed binary clusters are located at significant 

distances from the Sun (kpcs) and so the lower mass limit for stars that 

can be individually resolved can be as high as 1 M ⊙. We perform our 

analysis on the entire simulation data, before restricting the sample 

to stars with masses exceeding 0.2, 0.3, and 0.4 M ⊙. 

For each subcluster, we perform one-sample Kolmogorov- 

Smirnov tests Daniel ( 1990 ) and one-sample Cram ́er -v on Mises tests 

Cs ̈org ̋o & F ara way ( 1996 ) to compare the mass distribution of each 

subcluster to the standard Maschberger IMF used to generate the 

whole population. 

The minimum KS-test p-values for each simulation that forms a 

binary cluster are shown in Tables 1 and 2 . The columns in each 

table are the lower mass limit (below which stars are not included in 

the KS test), and then the KS p-value for each subcluster in various 

projections. Where the p-value falls below 0.1, we reject the null 

hypothesis that the mass function in the subcluster shares the same 

underlying parent distribution as the normal Maschberger ( 2013 ) 

IMF used to set up the masses in the simulations. 

In Fig. 3 , we visualize the evolution of the 3D data from our 

first simulation (Table 1 ) where we impose a minimum mass of 

0.3 M ⊙ for our IMF comparisons. Each line represents the p-value 

for each subcluster IMF comparison as the simulation evolves (the 

star-forming region forms a distinct binary cluster after ∼2.1 Myr). In 

this simulation, the KS test between the mass function of Subcluster 1 

(shown by the orange line) and the standard Maschberger ( 2013 ) IMF 

suggests the two mass functions do not share the same underlying 

parent distribution. 

The deviation from the input IMF of the simulation in Subcluster 

1 is likely due to the massive stars all residing in the other subcluster. 

This has been routinely observed in similar simulations Arnold et al. 

( 2017 ), Parker & Wright ( 2018 ), Park, Goodwin & Kim ( 2020 ), and 

is usually simply due to random dynamic motion within the original 

spatial and kinematic substructure, rather than any differences in 

the initial conditions. To demonstrate this, we compare the IMF 

of Subluster 1 to 100 randomly generated IMFs with the same 

lower mass cut-off (0.3 M ⊙). This is shown in Fig. 4 , where the 

dot–dashed black line is the IMF from Subcluster 1, and the 100 
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Table 1. Minimum KS-test p-values for our first simulation in which a binary cluster forms. Columns are the stellar minimum mass in the IMF 

comparisons, and then the smallest p-values calculated from KS tests between the mass function of the subclusters and the Maschberger ( 2013 ) IMF, in 

different projections. p-values below 0.1 are shown in bold font. 

Lower mass limit x − y plane x − z plane y − z plane 3D 

(M ⊙) Cluster 0 Cluster 1 Cluster 0 Cluster 1 Cluster 0 Cluster 1 Cluster 0 Cluster 1 

0.1 0.59820 0.48283 0.48249 0.44278 0.75322 0.33696 0.38451 0.37001 

0.2 0.38424 0.17151 0.40682 0.14866 0.48792 0.12405 0.40006 0.14086 

0.3 0.17972 0.03390 0.20263 0.02776 0.17919 0.02699 0.16804 0.02206 

0.4 0.32499 0.00746 0.42828 0.00516 0.26908 0.00842 0.28671 0.00516 

Table 2. Minimum KS-test p-values for our second simulation in which a binary cluster forms. Columns are the stellar minimum mass in the IMF 

comparisons, and then the smallest p-values calculated from KS tests between the mass function of the subclusters and the Maschberger ( 2013 ) IMF, in 

different projections. p-values below 0.1 are shown in bold font. 

Lower mass limit x − y plane x − z plane y − z plane 3D 

(M ⊙) Cluster 0 Cluster 1 Cluster 0 Cluster 1 Cluster 0 Cluster 1 Cluster 0 Cluster 1 

0.1 0.64328 0.13556 0.72191 0.39337 0.46959 0.37119 0.73853 0.26136 

0.2 0.56805 0.04982 0.72085 0.19499 0.81819 0.19662 0.50805 0.18027 

0.3 0.13998 0.24801 0.15601 0.54855 0.14256 0.52831 0.09353 0.33140 

0.4 0.94218 0.48598 0.82477 0.43458 0.79448 0.81981 0.93308 0.35565 

Figure 3. Evolution of the p-value for the KS test between a Maschberger 

( 2013 ) IMF and the mass function in each of the subclusters of the binary 

cluster that forms after 2.1 Myr in our first simulation. The blue line 

corresponds to the more massive Cluster 0 and the orange line corresponds 

to the less massive Cluster 1. The region where the p−value from the KS 

test is less than 0.1 is shown by the grey shaded area below the dashed line. 

To mimic observational limitations, stars with masses below 0.3 M ⊙ are not 

included in the analysis. 

random realizations are shown by the light grey lines. In 34 of these 

realizations (shown by the darker grey lines), a KS test between 

them and the IMF of Subcluster 1 returns a p -value < 0.1, suggesting 

we can reject the hypothesis that they share the same underlying 

parent distribution. This e x ercise clearly demonstrates the deficiency 

in high-mass stars in Subcluster 1 in this simulation is responsible 

for the differences between the two mass functions. 

4  D ISC U SSION  

Whilst we have shown that binary clusters that form from a star- 

forming region with a normal IMF may develop subclusters whose 

Figure 4. Comparison between the IMF of the stars in Subcluster 1 in our 

first simulation (Table 1 ), shown by the black dot–dashed line, and randomly 

generated IMFs with the same lower mass cut-off (0.3 M ⊙). Of the 100 

randomly generated IMFs (shown by the light grey lines), in 34 a KS test 

between the randomly generated IMF and the simulation IMF returns a p - 

value less than 0.1, suggesting we can reject the hypothesis that they share 

the same underlying parent distribution (these are shown by the darker grey 

lines). The simulated IMF in Subcluster 1 also appears ‘bottom heavy’ – it 

contains no stars more massive than 4 M ⊙, and all of the more massive stars 

are situated in Subcluster 0. 

mass functions deviate from the IMF, there are several important 

caveats to our results. 

First, we do not know whether binary clusters do form from 

the dynamical evolution of an unbound, spatially and kinematically 

substructured star-forming region (Arnold et al. 2017 ). Whilst some 

star-forming regions appear to be expanding (Kounkel et al. 2018 ), 

it is unclear whether they are subtructured to the degree required to 

produce the binary clusters in our simulations. Ho we ver, we note 

that Darma et al. ( 2021 ) show that binary clusters can also form if 

the star-forming region is initially in virial equilibrium. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/d
o
i/1

0
.1

0
9
3
/m

n
ra

s
/s

ta
e
2
6
4
8
/7

9
0
9
0
9
1
 b

y
 g

u
e
s
t o

n
 0

6
 D

e
c
e
m

b
e
r 2

0
2
4



496 S. S. K. Singh-Bal et al. 

MNRAS 536, 492–497 (2025) 

On a related point, our simulations do not include a background gas 

potential, and clearly do not react to the removal of any such potential. 

The simulations are supervirial to begin with, which could mimic 

early expansion due to gas removal (Tutukov 1978 ; Goodwin 1997 ; 

Baumgardt & Kroupa 2007 ; Shukirgaliyev et al. 2018 ); however, 

if this occurred when substructure was still present it would likely 

imply that the massive star(s) had formed first, and already started to 

evolv e, before an y significant numbers of low-mass stars had formed. 

Man y observ ed binary clusters are older systems, and their massiv e 

stars may have already left the main sequence, and/or been ejected 

(Schoettler et al. 2019 ; Farias, Tan & Eyer 2020 ; Schoettler et al. 

2020 ). Therefore, their mass functions may not be IMFs, and the 

stellar evolution within binary clusters may act to homogenize 

disparate mass functions between the subclusters (e.g. if the massive 

stars are no longer present). 

Observations of relatively nearby Galactic binary clusters do not 

appear to display any significant variations in the mass functions 

of the subclusters (e.g. h and χ Per are consistent with Salpeter 

1955 slope mass function, Slesnick et al. 2002 ). Ho we ver, Bragg & 

Kenyon ( 2005 ) find that h Per is mass-se gre gated, but χ Per is not, 

and intriguingly, the h Per subcluster is the more massive component 

(the mass ratio of the subclusters is 0.78, Bragg & Kenyon 2005 ). 

The simulation we present in Fig. 1 is mass-se gre gated in the most 

massive of the subclusters, possibly due to the most massive stars 

all residing in this subcluster and dominating their local potential 

well (Parker et al. 2014 ; Parker & Dale 2017 ). A similar result is 

found when simulating clusters close to the Galactic centre (Park 

et al. 2020 ). Park et al. ( 2020 ) find that the strong tidal field near 

the Galactic centre shears apart star -forming regions, b ut subclusters 

form in the tidal tails of the sheared regions. These subclusters can 

be significantly mass-se gre gated with a top-heavy IMF, or not mass- 

se gre gated at all, depending on the (stochastic) dynamical evolution 

of the star-forming region. 

That there are massive stars in the 12.8 Myr h - and χ -Per system 

suggests that either the massive stars take significant time to form 

after low-mass star formation, or that massive stars prolong their lives 

due to either significant (100 km s −1 ) rotation (Limongi & Chieffi

2018 ), or through mergers (Schneider et al. 2014 ). In our simulations, 

the stars all form at the same time, but this may be a valid assumption 

in light of these recent developments in our understanding of massive 

star evolution. 

Whilst many studies show that the removal of the gas potential by 

feedback from massive stars can dominate the dynamical evolution 

of star-forming regions, analysis of hydrodynamical simulations 

(Lucas, Bonnell & Dale 2020 ) suggests that supernovae do not cause 

the destruction of the star-forming region, but rather the energy from 

the supernova(e) simply leaks out through the path of least resistance, 

such as a cavity or low-density part of the gas cloud. 

5  C O N C L U S I O N S  

We analyse N -body simulations of the dynamical evolution of 

supervirial (unbound) star-forming regions and identify those regions 

that form binary star clusters – two subclusters orbiting a common 

centre of mass. We then compare the mass distributions of stars in 

the subclusters to a standard IMF. Our conclusions are the following: 

(i) In a set of 20 simulations, identical apart from the random 

number seed used to initialize the masses, positions, and velocities 

of stars, two form obvious binary clusters. 

(ii) In both simulations, a KS test between the mass distribution 

of stars in one of the subclusters, and the IMF used as an input to 

the simulations, returns a low p−value, such that we can reject the 

hypothesis that they share the same underlying parent distribution. 

(iii) The apparent deviation from the standard IMF happens less 

often if we include stars down to the hydrogen-burning limit. Whilst 

most observations of binary clusters are only sensitive to individual 

stellar masses of ∼0.5 M ⊙, future observations may probe lower 

masses. We would not expect any deviation from the standard IMF 

if observations were complete down to 0.1 M ⊙. 

Our results demonstrate that observed variations in an IMF in 

binary star clusters can result from the dynamical evolution of a 

single population of stars with a standard IMF. 
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