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This paper proposes a solution to the challenging task of autonomously
landing Unmanned Aerial Vehicles (UAVs). An onboard computer vision module
integrates the vision system with the ground control communication and
video server connection. The vision platform performs feature extraction using
the Speeded Up Robust Features (SURF), followed by fast Structured Forests
edge detection and then smoothing with a Kalman filter for accurate runway
sidelines prediction. A thorough evaluation is performed over real-world and
simulation environments with respect to accuracy and processing time, in
comparisonwith state-of-the-art edge detection approaches. The vision system
is validated over videos with clear and difficult weather conditions, including
with fog, varying lighting conditions and crosswind landing. The experiments
are performed using data from the X-Plane 11 flight simulator and real flight
data from the Uncrewed Low-cost TRAnsport (ULTRA) self-flying cargo UAV.
The vision-led system can localise the runway sidelines with a Structured
Forests approach with an accuracy approximately 84.4%, outperforming the
state-of-the-art approaches and delivering real-time performance. The main
contribution of this work consists of the developed vision-led system for runway
detection to aid autonomous landing of UAVs using electro-optical cameras.
Although implemented with the ULTRA UAV, the vision-led system is applicable
to any other UAV.

KEYWORDS

aerial systems: perception and autonomy, vision-based navigation, computer vision for
automation, autonomous landing, autonomous vehicle navigation

1 Motivation

In recent years, UAVs have increasingly been included in the realm of automation
due to their ability to mitigate or remove possible human errors when it comes to
performing monotonous, perilous and time-consuming tasks. Computer vision and UAVs
are unified in a system, to be employed in different applications, including agriculture
(Perz and Wronowski, 2018), terrain modelling and map modelling (Zongjian, 2008),
cross-regional logistics (Windracers, 2023), and robot-assisted landing (Maier et al., 2016).
UAVs are contributing to several different applications by improving safety assurance,
increasing operational efficiency and mitigating the effects of human fatigue and error,
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especially in monotonous and repetitive tasks. Some critical
functionalities required of UAV swarms are collision avoidance, risk
mitigation in the event of a collision as well as safe landing. The
paper proposes a system for detecting the runway sidelines using
vision-based methodologies for automating the landing procedure.

Niu et al. (Niu et al., 2022) proposed a landing approach on
mobile UGV by using quick response (QR) codes that indicated
different altitudes. The approach adopted by the proposed UAV
landing system is based on the identification of the runway target to
extract a region of interest (ROI) using feature-matching of multiple
images and sidelines prediction using probabilistic methods which
leads to decision-making for abort or landing.

The main contributions of this paper are the following.• This paper presents a novel real-time vision-led runway
detection framework that adopts feature-matching,
specifically the Speeded-Up Robust Features (SURF)
(Bay et al., 2006) for runway region extraction. It
includes the fast, versatile Structured Forests (Dollár and
Zitnick, 2013) for edge detection, combined with Kalman
filtering for smooth prediction of the runway sidelines
(Borkar et al., 2009; Deng, 2020).• A comparison of the proposed framework for runway sideline
detection with the well-established edge Canny edge detection
algorithm is carried out. High accuracy is demonstrated on
simulated and real-world videos from the biggest fixed-wing
UAV built so far in the UK (Windracers, 2023).• A comprehensive evaluation of the developed system is
performed on varying lighting and weather conditions. These
include clear weather, fog, rain, low visibility and crosswind
landing.The system performance is validated over videos from
the X-Plane 11 simulator (Research, 2017) and real flight video
data collected with the ULTRA UAV (Windracers, 2023).

The structure of the paper is as follows. The related work
summarized in Section 2 presents vision systems that use well-
established computer vision approaches as well as deep learning.
The related work is focused on previous systems for runway
identification and edge extraction systems. Section 3 describes
the architecture of the proposed vision-led system for runway
detection and sidelines tracking. This section also presents the
overall system architecture, and its links with the autopilot and
ground control system. Section 4 presents our results and the
evaluation of the impact of changing reference image quantities
on processing time and accuracy. This section also compares the
edge detection algorithms and shows the results of the comparison
based on manually generated ground truth data from the ULTRA
UAV (Windracers, 2023) shown in Figure 1. The setup used for
the experiments is also described in Section 4. Finally, Section 5
summarizes the results.

2 Related work

2.1 Vision-based automated UAV landing
systems

Many approaches to autonomous landing assume that UAVs are
equipped with a Global Navigation Satellite System (GNSS) module

FIGURE 1
ULTRA self-flying cargo UAV (Windracers, 2023), one of the biggest
UAVs in the UK, capable of carrying 100 kg of payload.

(Abbott andPowell, 1999), (Patrik et al., 2019).However,UAVs often
operate in GNSS denied environments. Additionally, the downside
of depending on GNSS is its unreliability for runway alignment
during the landing approach since it does not provide heading
measurements and the GNSS is vulnerable to local electromagnetic
interference. Furthermore, an operator planning the mission far
away from the runway will often rely on digital maps which may
not always be accurate. Therefore, even with perfect GNSS signal
reception, the UAV may attempt a landing offset from the runway.

Runway detection is crucial for such a system. Amit et al.
(Amit and Mohan, 2021) proposed a runway identification and
tracking model with vision-based methodologies, processing and
identification. Akbar et al. (Akbar et al., 2019), assign template
matching, Hough Transforms (Cantoni Virginio et al., 2013), active
contours and machine learning into two groups, the template
matching and feature-based approaches. The author proposes a
low-cost solution to detect landing sites by providing rich textual
information based on the features. The authors of (Magallán-
Ramírez et al., 2022) have utilised a combination of Canny edge
detection filters andHough Transforms for the purposes ofmapping
for a ground-based robot operating in a maze.

Liu et al. (Liu et al., 2018) proposed a sensor-based, real-time
runway detection system. The system uses a search region, and
the runway template is generated using topological and sensory
data from their proposed “Synthetic Vision System” (SVS) and
“Enhanced Vision System” (EVS). The identification of the runway
area is based on template matching.

Jbara et al. (Abu-Jbara et al., 2015) proposed a system for
runway detection and tracking. The system can be implemented
for automatic takeoff and landing for UAVs. Segmentation region
completion and reduction of energy function were used for runway
edge identification in the video. Cortés-Pérez and Torres-Méndez
(Cortés-Pérez and Torres-Méndez, 2021) adopt an approach where
they use a Kalman Filter for generating robust measurements of the
position of the object of interest even if it leaves the field of view.
A more pertinent application of this is illustrated in (Borkar et al.,
2009), wherein aKalman filter is used to update the runway position,
which uses sensor data and vehicle attitude. This enables robust
tracking and estimation of runway sidelines.

Nazir et al. (Nazir et al., 2018), use images from an airborne
camera upon which they employ edge detection algorithms for
localising the runway. This paper proposes an evaluation method
based on identification and classification and a comparison of the
processing times of different runway identification models.
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2.2 Distinction between traditional
computer vision methods and deep
learning

Airport detection is a task that was featured in (Chen et al.,
2018), using Faster R-CNN (Ren et al., 2015). Numerous deep-
learning methodologies have been published, that partially solve
the task of runway detection. Such an example is the line-segment
detector used as proposed in (Zhang et al., 2017) for classification
over the regions.

Akbar et al. (Akbar et al., 2019), proposed a system that has two
stages for feature extraction on images and classification. CNN is
used for feature extraction and a softmax layer as a classifier for
runway identification. Hough transforms (Cantoni Virginio et al.,
2013) are used to extract the contours of the lines for runway
segmentation.

Traditional computer vision methods rely on hand-crafted
features and rule-based systems to analyse images and videos.
These methods often require a significant amount of domain
knowledge and can be prone to errors in certain scenarios
(Mohd Razak and Jafarpour, 2020; Aliyu et al., 2020). For example,
traditional computer vision algorithms designed to recognize
objects in images can fail when presented with images taken from
different angles or under different lighting conditions (Litjens et al.,
2017). Additionally, traditional methods may not be able to
handle a wide range of images and videos, making them less
flexible than deep learning-based approaches (Mohd Razak and
Jafarpour, 2020; Aliyu et al., 2020).

Deep learning models promise higher accuracy than traditional
approaches if a sufficient amount of training data is available
(Sinha et al., 2018; Balduzzi et al., 2021). By providing more
data to these models, the performance can be improved and can
be adapted for a wide range of scenarios (Yuan et al., 2020).
A downside of such models is the big data requirement for
training as shown in (Sinha et al., 2018) and the computational
resources needed for on-line inference. These may impact the
suitability for real-time applications on systems with limited
computational power.

The next subsection gives a succinct overview of feature-based
approaches for runway detection.

2.3 Feature-based approaches

Feature-based approaches, as outlined by Lowe (Lowe, 2004),
operate without being tied to a specific model for detecting and
tracking corners, edges, and other easily localized elements and can
instead track custom and complex features. The cost reduction in
the model creation is an advantage of this approach in comparison
with template matching. It exhibits resilience in adverse weather
conditions, such as low visibility due to fog or snow. In such
conditions certain runway features may be obscured, potentially
causing inaccuracies in detection, as illustrated in Figures 2A, B.

Even in challenging weather conditions, these feature-based
techniques, including well-established ones like SIFT (Lowe, 2004),
SURF (Bay et al., 2008), and edge detection (Sharifi et al., 2002),
remain widely applied in autonomous systems.

FIGURE 2
Runways on weather with fog and snow.

The SIFT algorithm (Lowe, 2004; Zhang, 2022) is invariant to
rotation, distortion, translation, noise and change in illumination
and is chosen for features extraction from images. The invariance
properties of the SIFT algorithm make it a viable candidate for
intelligent flight tasks.

In the context of runway landing approaches,
Miller et al. (Miller et al., 2008) leverage SIFT to detect terrain
as visual information. This strategic use allows the UAV to
navigate toward the runway even before it becomes visible by
registering images against prior images in which the location and
orientation are known.

However, the computational time and accuracy of the original
SIFT algorithm as evaluated by Daixian (Daixian, 2010), makes it
unsuitable for real-time applications.

Consequently, to address these concerns an enhanced version
of SIFT has been put forth, demonstrating improved real-time
performance, algorithmic stability, and matching accuracy.

Bay et al. introduced Speeded-Up Robust Features (SURF)
(Bay et al., 2006), an efficient image descriptor that outperforms
state-of-the-art methodologies. The SURF descriptor is based
on sums of Haar wavelet components and is asserted by the
author to be an efficient and effective scale and rotation-invariant
interest point detector and descriptor. The SURF algorithm
outperforms the histogram-based techniques utilized in the
SIFT algorithm.
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The basic procedures of SURF resemble those of SIFT (Lowe,
2004). In the publication of Bay et al. (Bay et al., 2008), three
primary processes are used for identifying discrete image point
correspondences, namely,: the selection, feature vector computation
and the matching. During the selection process, the interest points
are selected such as corners, and T-junctions.The feature vector that
is calculated represents the neighbourhood of each interest point.
The final stage is the comparison and matching of images based on
the computed feature vectors.

SURF, as described in the article of Bay et al. (Bay et al., 2008),
is based on the Hessian filter rather than relying on a histogram of
locally oriented gradients near the key point like SIFT algorithm.
The detector being employed here is based on the SURF algorithm.
Box filters and integral image results in the filter size replace the
SIFT technique of down-sampling by scaling up rather than scaling
down when transitioning between different scale spaces. According
to Bay et al. (Bay et al., 2008), this adjustment is anticipated to
potentially lead to an increase in computational performance.

SURF has been proven to be more efficient than SIFT with
respect to thematching speed (Bay et al., 2008). A variety of research
was conducted on SURF, by different researchers on different
applications, to verify high performance and robustness, Liu and
Wang (Liu and Wang, 2009) and Vardhan et al. (Vardhan et al.,
2015). Applications in which the SURF algorithm can be used
to utilise the increased computational performance are synthetic
aperture radar (SAR) image matching (Liu and Wang, 2009), visual
tracking (Li et al., 2012), and face recognition (Gupta et al., 2021).

3 A Synergistic approach for runway
detection

3.1 Region of interest extraction

The speed advantage of SURF can be attributed to many factors
in its feature extraction process including its use of a pre-computed
integral image. An integral image represents a type of data-structure
called summed-area table, which allows for fast evaluation of the
sum of values in a rectangular subset of a grid (Viola and Jones,
2001). It significantly speeds up calculations. The integral image II
is computed by:

II (x,y) = ∑
x≤x′,y≤y′ i(x′,y′) (1)

where, (x′,y′) denotes a pixel in the original image, (x,y) denotes a
pixel in the integral image, i(x′,y′) is the intensity value of the pixel(x′,y′) and II(x,y) is the intensity of the integral image at pixel (x,y).

The integral image (Equation 1) (Viola and Jones, 2001) can be
computed efficiently in a single pass using the equation:

II (x,y) = i (x,y) + II (x− 1,y) + II (x,y− 1) + II (x− 1,y− 1) (2)

Once the integral image (Equation 2) has been computed, the
evaluation of the sum of values within a rectangular sub-region in
the image requires only four array references to the integral image,
regardless of the size of the sub-region. For a rectangular sub-region
denoted as ABCD where A(x0,y0), B(x1,y0), C(x0,y1) and D(x1,y1)

are the vertices of the rectangular sub-region, the sum of values
within this sub-region can be calculated by:∑

x0≤x≤x1,y0≤y≤y1 i (x,y) = II (D) + II (A) − II (B) − II (C) , (3)

where x0,y0 and x1,y1 are the respective coordinates of the
considered vertices in the rectangular sub-region.

The use of integral images guarantees that the summation of
pixel values in Equation 3 is done in constant time, thus delivering
speedy results regardless of the size of the input image.

The SURF algorithm (Bay et al., 2006) involves several key
equations, including the creation of a Hessian matrix (Equation
4), descriptor computation (given below with Equation 6), and
orientation assignment (Equation 5).

The Hessian matrix is computed using box filters:

H (x,y,σ) = [[Lxx (x,y,kσ) Lxy (x,y,kσ)
Lxy (x,y,kσ) Lyy (x,y,kσ)]], (4)

where Lxx, Lxy, and Lyy are second-order partial derivatives, k is a
constant determining the scale and σ is the standard deviation of
the Gaussian kernel. Orientation θ (x,y) is assigned based on the
dominant direction of the local image gradient:

θ (x,y) = arctan(Lxy (x,y,σ)
Lxx (x,y,σ)) . (5)

The SURF descriptor is computed using Haar wavelets and the
following equation:

Di =∑
x,y ω (x,y) ⋅ hi (x,y) , (6)

where hi(x,y) represents Haar wavelet responses, and ω(x,y) is a
Gaussian weighting function.

The SURF algorithm is faster at feature extraction than SIFT
due to its use of integral images, box filters, Hessian matrices,
Haar wavelets and a lower number of scales in its scale-space
representation. Given the computational speed benefits of SURF
over SIFT as demonstrated in (Bay et al., 2008; Liu andWang, 2009),
SURF is chosen as the feature extraction algorithm in the proposed
method. The output of the SURF algorithm is a set of keypoints and
an Nx128 array of keypoint descriptors, where N is the number of
keypoints found in the image, and 128 is the number of descriptors
for each keypoint.

In the proposed implementation, SURF is used to extract
features and keypoints from the current video frame as well as from
the reference images. The algorithm iterates within the dataset of
reference images and finds the best matching image, depending on
the number of keypoints successfully matched between the current
video frame and the reference image. This feature matching is
performed using OpenCV (Bradski, 2000) functions.

Using built-in OpenCV functions, the homography matrix
between the best matched reference image and the current
video frame is calculated. The in-image locations of all the
matched keypoints from both the images are used to calculate the
homography matrix between the two images. This homography
matrix is then used to transform the bounding box of the runway
Region Of Interest (RoI) from the reference image to the current
frame. The runway RoI thus derived for the current frame is then
fed to the edge detection block of the vision system.
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3.2 Object tracking

Object tracking algorithms can be used as a tool for minimising
the computation time in cases where a system sequentially performs
feature matching on the frames with a feature matching algorithm.
This can exponentially increase the processing time in exchange for
negligible increases in accuracy. A relevant example of combining
feature matching and object tracking is the derivation of the region
of interest using SURF and tracking the region of interest using
object tracking in consecutive frames. Object tracking can be
applicable in various autonomous systems, where the target object
is identified, and a region of interest is outlined through a bounding
box and needs to be tracked for a number of frames.

The tracker is defined as the motion model that tracks the speed
and direction of the object’s movement, and appearance in the frame
(Sarkar et al., 2022).TheChannel Spatial Reliability Tracker (CSRT),
as noted in the comparative study (Sarkar et al., 2022) demonstrates
high efficiency, accuracy and versatility and is adopted within the
proposed approach for tracking the runway RoI.

CSRT as implemented in OpenCV is based on the paper by
Lukezic et al. (Lukežič et al., 2018) that utilises Discriminative
Correlation Filters (DCFs) (Hester and Casasent, 1980) enhanced
with spatial and channel reliability for performing robust real-
time object tracking. The advantage with this approach is that it
does not require the tracked object to be of rectangular shape
unlike other trackers (Lukežič et al., 2018) and can drive the object
search towards areas in the image that have a higher probability of
containing that object. It also delivers robust tracking performance
even in the event of occlusion, background clutter and non-rigid
transformations of the object.

DCFs work by using a set of filters to correlate a template of
the target object with a search window in subsequent frames to
find the location of the target object. The CSRT (Lukežič et al.,
2018) takes this a step further by implementing spatial and channel
reliability in the filtering step to allow for robust tracking even in
case of occlusions. It uses different feature channels like Histogram
of Oriented Gradients (HOG) and color histograms and assigns
weights to each channel to denote their reliability in effectively
defining the object. It also implements spatial reliabilitywhich allows
the tracker to focus on parts of the object that are more reliable
for tracking. The spatial reliability map is constructed from the
output of a graph labelling problem wherein pixels or patches of the
image are treated as nodes on a graph and relationships between the
nodes are represented as edges.These learned relationships allow the
preservation of spatial information and allow the tracker to learn
local as well as global information about the target. This helps in
tracking even in the event of occlusion.

With DCFs, the goal is to learn a filter w which produces strong
responses at the in-image target location when correlated with input
sources, and produces weak responses everywhere else. Given a set
of training examples {xi} and corresponding labels {yi}, the filter w
is learned by minimising the following objective function:

L (w) = ∑
i
‖w∗ xi − yi‖2 + λ‖w‖2, (7)

where∗ denotes a convolution operation, yi is the Gaussian-shaped
label centered at the target and λ is a regularisation parameter. The‖.‖ denotes the Euclidean norm operation.

The channel reliability feature is achieved by optimising the
objective function

L(wc,αc) =∑
i
‖αc (wc ∗ xci ) − yi‖2 + λ‖wc‖2. (8)

A filter is also implemented with a matrix of coefficients wc

for each feature channel c, with αc denoting the channel reliability
weight. Here, xci denotes the feature map of channel c for the
ith sample. The spatial reliability map M is learned adaptively,
modifying the objective function to:

L(wc,αc,M) =∑
i
‖αc (wc ∗ (M⊙ xci )) − yi‖2 + λ‖wc‖2, (9)

where ⊙ denotes element-wise multiplication.The filter and weights
Wc are updated iteratively

Wc = ∑i Xc
i ⊙Yi∑

i
Xc
i ⊙Xc

i + λ . (10)

where Xc
i denotes the Fourier transform of xci , Yi denotes the

Fourier transform of yi and Xc
i denotes the complex conjugate

of Xc
i . The filter weights update (Equation 10) typically involves

solving a ridge regression problem in the Fourier domain due to
the convolution operation (Liu and Dobriban, 2019). Thus, in each
frame, the response map is computed by applying the learned filter,
with main Equations 7–10 to the current frame’s features and the
position with the new response is considered as the target’s new
position. The filter and reliability maps are updated periodically
to adapt to changes in the target’s appearance. Since the CSRT
is much faster, it allows the vision system to keep track of the
runway RoI without having to run the SURF feature extraction
on every frame.

3.3 Structured forests for fast edge
detection

The structured forests dedicated to fast edge detection
can be considered as a computer vision methodology that
was proposed by P. Dollár and C. L. Zitnick, (Dollár and
Zitnick, 2013). The structured forests algorithm includes
learning by generating decision trees for the local structures
in the ground truth annotated images. Critical attributes of
the training are the orientation, color, texture and gradient
magnitude. The resultant structured forests are used on new
images to predict edges during the testing process rapidly. A key
advantage of the structured forest algorithm (Dollár and Zitnick,
2013), is its computational efficiency, which is important for
real-time applications.

The algorithm aims to learn a map denoting the feature space
of the input image. The individual nodes of the decision trees that
are constructed during the training process predict a local structure.
Significant attributes used for training include gradient magnitude,
orientation, color, and texture features (Dollár and Zitnick, 2013).
The edge prediction efficiency is achieved thanks to the aggregation
of the outcomes from all decision trees.

Since the edge detection block detects edges in all orientations in
the image, a Hough transform (Cantoni Virginio et al., 2013) is used
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to truncate horizontal edges and only retain edges with orientations
between [π/4,3π/4] and [−π/4,−3π/4]. The rationale behind this is
that when the aircraft is on approach for landing, the runway edges
will not exceed a 45deg inclination with respect to the x-axis.

3.4 Runway sidelines prediction and
tracking

The output of the Hough transform consists of a set of lines
represented by polar coordinates in the form (r, θ), where r is
the length of the perpendicular line connecting the coordinate
origin and the Hough transform line and θ is the orientation
of that perpendicular line with respect to the x-axis. Next, a
Kalman filter (Borkar et al., 2009) is designed to predict the location
of the two sidelines of the airport runway.

The Kalman filter gives the predicted distance r and the
predicted orientation angle θ and their predicted derivatives ̇r and
θ̇ of the left (L) and right (R) runway sidelines. The state vector
is represented as: x = [rL, ̇rL,θL, ̇θL, rR, ̇rR,θR, ̇θR]T. Here T denotes
a transpose operation. The Kalman filter uses as measurements
the information from the edge detection block which consists of
the Hough transform results (Cantoni Virginio et al., 2013). The
Kalman filter state update is based on a constant velocity model,
with a unit sampling time. The measurement update equation is
also a linear model, with a unit measurement matrix.The system
state and measurement noises are considered to be mutually
uncorrelated, white noises. The state covariance matrix Q is in the
form:Q = diag(QL,QR), withQL = QR = diag(0.25,0.5,0.5,1) and the
measurement matrix is: R = I∗0.9 and I the identity matrix. The
values of Q and R are chosen based on physical considerations
linked with the prediction error and inaccuracies in the video data,
respectively. Accurate prediction of sidelines is achieved in real-time
using the frames based on variance and noise.

3.5 System architecture

The proposed system is a combination of the approaches so
far illustrated. The main assumption here is that the camera is
centrally mounted on the UAV such that a central line drawn in
the video frame accurately denotes the centre line of the UAV.
The core approach adopted for deriving the region of interest that
describes the runway is the SURF algorithm, used for performing
feature matching (Bay et al., 2008). The second process being
performed is lane detection and tracking in the predicted runway
region. The lane prediction is performed using a combination of
Structured Forests edge detection, Hough transforms and Kalman
filtering (Borkar et al., 2009).

Whilst in simulation mode, live feed video that simulates a
flight scenario is transmitted from the main computer. The main
computer acts as the camera of the system that runs the X-Plane
11 flight simulator alongside the autopilot controlling the mission
and the video server that is responsible for transmitting the video
throughout the network. The onboard software is hosted on the
development board which includes the software that detects the
runway, predicts the lanes and makes a decision of landing or abort.

Upon activation, the onboard system is connected to the
autopilot, receiving the mission information such as waypoints, and
landing waypoints. A connection to the video server is established
during system activation and after mission derivation. The overall
approach can be observed in Figure 3. The system then uses the
prior knowledge from airport runways at different locations, from
previous flights, to extract features for the process of feature
matching.The vision-based auto-landing system is armedduring the
whole flight and it is part of the decision-making process during the
UAV landing approach phase.

Once the autopilot conveys that the UAV is on approach for
landing, the system enables the automated landing vision software
where the live feed images captured from the UAV are processed.
Feature matching is applied between the prior knowledge features
and the live feed to extract an RoI describing the runway. The
RoI is then used to extract the runway’s sidelines. The sidelines
are predicted using the Kalman filter at every time step. Figure 4
shows the complete system with the bounding box of the region
of interest, the resultant lines from edge detection and Hough
transform in red and the merged lines in blue. The green lines
represent the predicted lines from the Kalman filter. The runway
edges outside the bounding box are not detected since the algorithm
performs the search only inside the area of the image enclosed by
the bounding box as the bounding box demarcates the runway RoI.
This is done to reduce processing times as the size of the image
to be analysed becomes smaller. The altitude at which the vision
system is triggered is decided based on operational requirements
and constraints.

The functioning of the vision system can be observed in Figure 5.
The main components of the vision system are: 1) the feature
extraction block, 2) the edge detection block and the Kalman filter
block (as described in Section 3.5. The raw video frames are fed
to the feature extraction block in a sequential manner, where the
SURF algorithm is applied to extract features from each frame.These
extracted features are then compared to the features extracted from
the reference images and template matching is performed. Once the
runway location is verified using the template matching, an RoI is
then adopted for the video stream. The desired RoI from the input
image is then selected and fed to the edge detection block, where
the RoI is processed by applying structured forests edge detection. A
Hough transform is then applied to the sequential images in order
to discard horizontal lines. The output of the Hough transform is
then supplied as input to a Kalman filter which provides an efficient
prediction of the left and right runway sidelines. The RoI used for
the runway is tracked using the CSRT algorithm for a number of
consecutive frames, and then an update step of feature matching is
executed to update the RoI describing the runway and continue the
process of runway line prediction.

3.6 Software-in-the-loop simulation

Software-In-The-Loop (SITL) establishes communication
between the autopilot module and the X-Plane 11
simulator (Research, 2017), to guide, and extract real-time flight
data from the aircraft. The autopilot needs to be configured with
the mission that the UAV will follow for the desired flight. Upon
configuration and activation, the flight controller will take control
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FIGURE 3
Overall system block diagram.

FIGURE 4
Complete system on real-world scenario.

of the aircraft and execute the mission from take-off to landing.This
methodology allows image extraction and processing during a test
flight to be executed in real-time with all the components acting as
a closed-loop network.

The closed-loopnetwork setup involves a data link that transmits
data from the autopilot module to the computer vision module and
the vision module broadcasts that data to the ground station for
user observation. The SITL methodology is a crucial part of testing
the vision-based system in both simulation and real environments
as the system is inactive, deriving images and processing them for
runway detection and lane tracking, until the autopilot issues the
signal that the UAV initiates the landing approach. The landing or
abort decision of the vision-based system will be made at a certain
altitude which will be derived from the autopilot.

The SITL is utilized for testing and deployment as it offers ease of
deployment with a host machine used as the UAV’s camera, with the
processing unit connected directly to that source.This methodology
eliminates the necessity of using any hardware dedicated to flight

controllers or actual drones, which can be an expensive procedure,
especially when runningmultiple tests over time.The next Section 4
describes the experimental set-up and the evaluation
of the results.

4 Performance evaluation

4.1 Feature matching results

The established system for runway identification and RoI
selection relies on feature matching and the SURF algorithm. The
selection of SURF was made based on its robustness to distortion,
illumination and viewpoint changes. The system activates using the
information transmitted by the autopilot module on the landing
approach. The system searches for matching features between the
reference images and the current live images transmitted by the
video server (fixed camera).
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FIGURE 5
Vision system information flow.

The reference images are collected from previous flights of the
ULTRA UAV (Windracers, 2023) and datasets were generated for
different runway locations.This process was performedmanually by
an operator using a custom-made user interface which analyses and
shows the video to the operator.The operator can stop the video and
select the runway. The selected region is then extracted and saved
with the airport credentials, for future use in real-time flights.

The generation of reference image based on prior knowledge is
essential for the accurate performance of the system. The operator
manually selects images containing the runway RoI which will
act as a template for the runway detection system. Reference
image datasets were created for several airports. When the vision
system is activated, image descriptors and key points are extracted
from the reference images. The set of key points is compared
with the real-time image. This can be a computationally expensive
process when using multiple reference images. An experiment was
performed to find the optimal number of reference images so that
the computational time is manageable for the system. The results
from the testing show that the processing time increases with a larger
amount of images as references during the comparison of key points.
The second test that was performed is the investigation of how the
accuracy of the system on runway identification is affected by the
number of images selected as reference (Tsapparellas et al., 2023).
The results of the test can be observed in Figure 7. The results show
that the accuracy is affected when the reference images are limited
from one to nine images. The optimal number of reference images
to meet the criteria of high accuracy and fast processing times was
decided to be a range from 10 to 15 reference images. These results
can be observed in Figures 6, 7.

Additionally, during testing, the approach angle of the aircraft
towards landing was seen to have an effect on the efficacy of the
runway detection. The vision system was activated halfway down
the final approach to the landing in the pre-flare stage (before the
aircraft starts pitching the nose up tomake contact with the ground).
This means that the aircraft was flying parallel to the runway and

descending at a constant rate when the vision system was activated.
The final approach angle was calculated using the airfield weather
conditions to provide a known pitch of the aircraft relative to ground
level. The system was tested with different aircraft pitch angles on
approach ranging from4deg to 10deg. At a pitch angle of <6deg, the
runway detection and sidelines prediction were unreliable. At pitch
angles of >6deg, the runway was consistently detected along with
the sidelines. Pitch angles of >10deg were not tested due to the risk
of unreasonable downward velocities on landing. This is because a
shallow approach angle provides a narrowviewing angle between the
camera and the runway and due to the camera placement, the small
part of the runway that is visible gets occluded by the aircraft. This
could result in insufficient feature extraction by SURF, which in turn
could worsen the performance of all downstream image processing
blocks. Steep approach angles give a wide viewing angle between the
camera and the runway which provides a large view of the runway
in spite of the occlusion by the aircraft.

A large view of the runway provides SURFwith a good input and
results in rich feature extraction and hence good performance by all
the downstream components. This problem can be easily remedied
by placing the camera on the underside of the aircraft where it can
have unhindered views of the runway below.

The one-step ahead predicted sideline parameters are used to
calculate themiddle line of the runway.Then this information is part
of the on-board computer vision module as shown in Figure 4.

4.2 UAV flights data repository

In the pursuit of crafting diverse flight scenarios, the X-Plane 11
simulator (Research, 2017), emerges as an advanced flight simulator
that offers precise control over aircraft dynamics from take-off
to landing. Varied meteorological conditions are used to generate
a rich dataset to develop a system with a global solution. X-
Plane 11 (Research, 2017) can authentically replicate challenges that
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FIGURE 6
Effect of reference image quantity on navigation system
processing time.

FIGURE 7
Accuracy impact from image quantity.

a pilot may face during a flight, such as adverse weather. Examples
of adverse weather conditions that were simulated are strong winds,
fog, and rain.

The ground truth data generated from the simulation
environment as well as real flight data is manually annotated.
Each frame was manually annotated to describe the sidelines of
the presented runway. This experiment will enhance the knowledge
of which algorithm performs efficiently and accurately on aerial
imaging for the task of automated UAV landing. Examples of
the ground truth images can be observed in Figure 8, with the
ground truth lines being represented by the light green color. The
real-world videos collected with the ULTRA UAV and simulated
data, together with the created ground-truth used for validation
can be accessed from the University of Sheffield’s ORDA data
repository (Tsapparellas et al., 2024). The data includes videos from
Solent, Llanbedr airport, Isle of Man and Seattle. The dataset also
includes videos generated from the X-Plane 11 Simulator in varying
weather conditions such as clear weather, snow and fog, as well as
crosswind landing approaches. The repository is a valuable asset
for stimulating reproducible research. Figure 9 showcases some
example images from the X-Plane 11 simulator and Figure 10
illustrates real images from the flights of the ULTRA UAV. These
figures along with Figure 2 showcase the difficulty of the task of

runway detection and localisation given the similarity of the runway
surface with the surroundings.

4.3 Experimental setup

The experimental setup includes the X-Plane 11 simulator and
autopilot developed by Distributed Avionics (Avionics, 2023). X-
Plane 11 provides an excellent environment for studying different
UAV flight phases, including taking off from an airport, circling,
cruise, to the approach and touchdown phases - all of which
can be compiled into videos for a representation of these diverse
scenarios. This approach, inspired by Bittar et al. (Bittar et al.,
2014), involves employing a software-in-the-loop system with X-
Plane 11 (Research, 2017) and Simulink. Their paper sought to
design an algorithm steering a fixed-wing aircraft within the
simulation environment. The data collected from this procedure,
which is in the form of videos, will be used to test the system in
different conditions.The tests were performed on anNVIDIA Jetson
Xavier NX development board, which has a 6-core NVIDIA Carmel
ARMv8.2 CPU, 8 GB of RAM and a 384-core NVIDIA Volta GPU.
The board can draw a maximum power of 20W.

When evaluating the proposed approach against the Canny
edge detector, the user provides the region of interest for each
step to ensure accurate results of the region of interest extraction,
as automating this process is not the experimental objective.
The evaluation system then uses the original image as input for
both the structured forests model and the Canny edge detector
to perform edge detection. The computational time for both
methods is measured for all processed frames and it is averaged
for each algorithm. The computational time of the proposed
intelligent landing approach compared with the state-of-the-art
approach is similar, of the order of 0.007 s per frame and a
difference of 0.000057 s between the two. This provides real-time
performance, with the Canny edge detector being quicker than the
proposed approach.

Next, the image Cartesian (x,y) coordinates of the runway
sidelines are derived from the predicted Kalman filter states. Since
the task is to compare the efficacy of the runway sidelines detection,
the predicted lines are compared with ground truth lines generated
by the authors. The ground truth lines accurately denote the edges
of the runway as seen in Figure 8. Since we are detecting runway
sidelines, we end up with two predicted lines, one for each sideline
of the runway. We thus have two corresponding ground truth lines
and when comparing we must compare each predicted edge to
its corresponding ground truth edge, i.e., the left predicted edge
must be compared with the left ground truth edge and similarly
for the right predicted edge. For this, we must compute the cross
product (Equation 11) between a predicted edge and a ground
truth edge to see if they correspond to each other in terms of
which side of the runway they represent. This cross product is
computed as follows:

Cross product = (y1 − y0) ∗ (xgt − x1) − (x1 − x0) ∗ (ygt − y1) ,
(11)

where (x0,y0) and (x1,y1) are points on the predicted line and(xgt,ygt) is a point on the ground truth line. If the value of the cross
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FIGURE 8
Ground truth example images from the dataset (Tsapparellas et al., 2024).

FIGURE 9
Images from X-Plane 11 simulator from dataset (Tsapparellas et al., 2024).

product is 0, this means that all three points are co-linear and the
two lines can be compared. Once it is determined that the ground
truth point is co-linear with the predicted line, it is then verified
whether the ground truth point (xgt,ygt) lies on the line segment
connecting (x0,y0) and (x1,y1). If both these conditions are satisfied,
then the prediction is considered to be a successful one. These
condition checks are performed for every predicted line/ground

truth line pair and the Accuracy metric (Equation 12) is calculated
as follows:

Accuracy = Number o f success ful predictions
Number o f total predictions ∗ 100 (12)

The accuracy metrics can be observed in Table 1. As can be
observed from the table, the proposed approach delivers better
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FIGURE 10
Real images from ULTRA flights from dataset (Tsapparellas et al., 2024).

TABLE 1 Accuracy metrics for comparison between the proposed
approach using Structured Forests (SF) and an approach using the Canny
edge detector. The average results presented in the table are calculated
over 3,000 frames.

Runway sidelines detectors Canny Proposed SF

Scenario Accuracy

Clear Weather Simulation Videos 100% 100%

Fog and Crosswind Simulation Videos 52.25% 56.25%

Adverse Lighting Simulation Videos 87.3% 99.2%

Clear Weather Real Videos 55.3% 82.4%

Overall Information

Average Accuracy 73.7% 84.4%

Average Processing Time 0.007895 0.007952

Total Frames for Evaluation 3,000 3,000

results in the scenarios with Fog and Crosswind, in Adverse
Lighting and delivers better performance on real-world videos.
A detailed comparison of edge detection approaches, including
recently developed deep learning methods, is presented in the
surveys (Zhou et al., 2024; Sun et al., 2022). Deep learning edge
detection methods have a potential but they need a significant
amount of data and these methods are a scope of a future work.

In addition to the accuracy metric, we have evaluated
the F1 score for evaluating the detected lines, following the
definition from (Zhou et al., 2024). The F1 score, can be defined
as F1 = 2Nc/(Ng +Nt), in which Nc, Ng, and Nt are the number of
correct line segment pairs, line segment ground truth, and detected
line segments, respectively.

As can be observed in Table 2, the proposed approach delivers
a higher ratio of true positives than the Canny edge detector
across Fog and Crosswind, Adverse Lighting and on real-world
videos, with the highest difference being observed in Adverse
Lighting (Simulation Videos) and in Clear Weather conditions
(Real Videos).

TABLE 2 F1 score metrics for comparison between the proposed
approach SF and an approach using the Canny edge detector. The
average results presented in this table are calculated over 3,000 frames.

Runway sidelines detectors Canny Proposed SF

Scenario F1-score

Clear Weather Simulation Videos 0.7898 0.7898

Fog and Crosswind Simulation Videos 0.5218 0.5617

Adverse Lighting Simulation Videos 0.8450 0.9624

Clear Weather Real Videos 0.5044 0.7516

Overall Information

Average F1 Score 0.6652 0.7663

Total Frames for Evaluation 3,000 3,000

5 Conclusion

This paper presents an efficient real-time system for vision-
led runway localisation for aiding autonomous landing for fixed-
wing UAVs. It can recognise and extract the region of the runway
during the UAV landing phase and predicts the side-lines of the
runway. A multi-image matching algorithm is used during the
runway region extraction and edge detection, which acts as an
information bank for the prediction of sidelines using aKalmanfilter
and smooths the results. Based on the performed experiments, the
optimal number of reference images needed to keep high accuracy
and low computation time is in the range of 10–15 images. The
results from the comparison of edge detectors for accuracy and
performance indicate that Structured Forests for edge detection
outperform the Canny edge detector on accuracy, with a detection
rate of 84.4 % and 73.7 %, respectively. Unlike approaches rooted
in deep learning, the proposed approach does not require large
amounts of training data and can deliver real-time performance
even on low power systems. There is a trade-off in accuracy,
speed and robustness when choosing between deep-learning based
methods and traditional computer vision methods as seen in the
proposed system.
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Although the tests were performed on a fixed-wing UAV, the
proposed system is generic and can be applied to another type of
aircraft. This work paves the route to automating the landing of a
single UAV and a swarm of UAVs which is a significant step forward
towards improving UAVs autonomy.
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