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Abstract. Scalarisation-based approaches to multi-objective Bayesian
optimization, such as the seminal ParEGO algorithm, may be either
single-surrogate or multi-surrogate. In the former case, a single surro-
gate model is built of the scalarised function; in the latter case, sep-
arate surrogates are built for each objective function. A recent study
argued that the multi-surrogate approach should be preferred and pre-
sented empirical őndings supportive of this case. However, these őndings
were based on an outdated approach to benchmarking algorithm perfor-
mance and were limited to low-dimensional problems. In this study, we
use the modern COCO benchmarking framework to analyse the perfor-
mance of single-surrogate and multi-surrogate ParEGO algorithms and
compare these to random sampling, Sobol space-őlling, and the high-
performing optimizer known as TPB. Our őndings broadly support the
original őndings for low-dimensional problems, but we őnd that multi-
surrogate ParEGO performs comparatively poorly in higher dimensions.
TPB tends to outperform both ParEGOs, suggesting that initial budget
investment in ideal and nadir point identiőcation is a favourable strategy.

Keywords: Bayesian Optimization · Multi-objective Optimization · Bench-
mark Problems · Surrogate Modelling.

1 Introduction

Multi-objective optimization deals with problems with multiple performance ob-
jectives, where there is usually no single solution that satisfies all objectives
simultaneously [13]. Without loss of generality, a multi-objective optimization
problem (MOP) can be defined as follows:

min
x

F(x) = (f1(x), f2(x), . . . , fm(x)) subject to x ∈ S, (1)

where a solution x is a vector of n decision variables defined in the domain S ⊆
R

n. S is known as the feasible region or decision space, the mapping F : S → Z

consists of m ≥ 2 objective functions and Z ⊂ R
m is the objective space. Let

a,b ∈ Z, then a is said to Pareto dominate b (denoted by a ≺ b) if and only
if a is not worse than b in all objectives (i.e. ai ≤ bi for every i ∈ {1, . . . ,m})
and a is better than b is at least one objective (i.e. ∃j ∈ {1, . . . ,m} such that
aj < bj). A solution x

∗ ∈ S is said to be Pareto-optimal to (1) in case there
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is no other x ∈ S such that x ≺ x
∗. The set that contains all Pareto-optimal

solutions is called the Pareto set (PS) and its image in the objective space is
called the Pareto front (PF).

The focus here is on closed-box MOPs with expensive-to-evaluate objective
functions. Many real-world problems fall into this category, particularly in engi-
neering design, where there is increasing reliance on computationally expensive
high-fidelity simulation models [9]. In practice it may be only possible to afford
a limited number of function evaluations (say 1000 or fewer), potentially due to
the time it takes to conduct a single evaluation, licensing limitations, or costs.

Multi-objective Bayesian optimization algorithms (BOAs) a popular choice
for solving these type of problems, since they are capable of providing an approx-
imate set of Pareto-optimal solutions using a limited number of function evalu-
ations. BOAs replace the expensive function with a cheap-to-evaluate surrogate
model. Gaussian process (GP) models [14] are often used since they provide not
only the predictions but also the corresponding uncertainty. The latter is impor-
tant because the search over a surrogate model does not simply imply finding the
location that improves the estimated fitness, since the model’s accuracy needs to
be taken into account. Acquisition functions (e.g. Expected Improvement (EI))
offer a criterion that promotes a balance between exploration and exploitation,
where exploration is associated with areas in the search space with high uncer-
tainty, whereas exploitation corresponds to areas with better fitness.

Various acquisition functions have been proposed and adapted for MOPs.
One approach is to use scalarisation functions that transform a MOP into a
series of single-objective optimization problems that are solved simultaneously.
Building a single surrogate of the scalarised objective vectors was popularised by
Knowles’ ParEGO [11] algorithm, and is known here as the single-surrogate ap-
proach. However, Chugh [5] recently questioned if it would be more advantageous
to instead build a surrogate model of each individual objective function and af-
terwards apply scalarisation to the objective vectors obtained by the surrogate
models, which is known as the multi-surrogate approach. One clear disadvan-
tage of the latter approach is the need to build multiple surrogate models as
opposed to just one, which increases the computational complexity. However,
Chugh argued that in the single-surrogate approach the fitness landscape of the
scalarisation function and the objective functions can differ, and that this issue is
not experienced by the multi-surrogate approach. The scalarising function built
by the multi-surrogate approach is not Gaussian, meaning a closed-form expres-
sion for EI is not available. Instead, Chugh approximated the scalarising function
using a Gumbel distribution, with EI estimated by Monte Carlo sampling of this
distribution. Chugh’s experimental results confirmed that the multi-surrogate
approach was more effective than the original original single-surrogate method.
However, these findings were limited to three DTLZ problems and one real-world
problem, and considered no more than five decision variables.

In the present paper, we seek to validate Chugh’s findings by testing sin-
gle and multi-surrogate scalarising strategies using a best practice approach for
contemporary MOP benchmarking:
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1. We consider all 55 bi-objective problems from the BBOB test suite that have
been designed to address issues with older problems like DTLZ [1].

2. We adopt the COCO benchmarking framework that can be customized for
comparing optimization algorithms on a budget, with empirical cumulative
distribution functions (ECDFs) providing a straightforward visual approach
for comparing optimization algorithms [10].

3. We do a comparison with a high-performing alternative algorithm for expen-
sive problems, TPB, guided by existing COCO benchmarking findings [16].

The rest of the paper is structured as follows. The single-surrogate and multi-
surrogate approaches are described in Section 2. Details about the COCO perfor-
mance assessment, the bi-objective BBOB problems, and experimental setup are
in Section 3. The experimental results along with a discussion are in Section 4,
and the paper concludes with Section 5.

2 Multi-objective Bayesian optimization: Single-surrogate

and Multi-surrogate Approaches with Scalarisation

This section starts by describing the general procedure followed by a generic
multi-objective Bayesian optimization algorithm that relies on the scalarisation
technique. Following this, the differences between the single-surrogate and multi-
surrogate approaches will be described in more detail.

The first step is to generate a space-filling sampling plan X = {x1, . . . ,xN} of
N solutions, and to use the expensive-to-evaluate objective functions to generate
the initial data {(xi, zi = F(xi))}

N
i=1. One approach to generate sampling plans is

to use Sobol sequences [15]. The second step is to generate a set of well distributed
weight vectors, where each vector targets the PF from a different direction. One
approach to generate weight vectors is to use a simplex design.

In an iterative approach starting from the first weight vector, the next step
is to use statistical surrogate model(s) in order to estimate where best to sample
the next solution. GP surrogate models are a popular choice here due to their
uncertainty estimation capabilities and the EI is an acquisition function that uses
the GP properties to create a balance between exploration and exploitation. The
next solution to be sampled is found by maximising the EI function, and is then
added to X . Following the evaluation of the new solution, this process repeats
iteratively where the next weight vector is chosen, the surrogate model(s) are
updated, and a new solution is found again by conducting a search over the EI.
More details about the scalarisation technique, including how the weight vectors
are integrated, are provided below.

2.1 Single-surrogate Approach

Assuming initial data, the next step is to calculate a scalar fitness value for each
solution by using a scalarisation function, and this provides the data

{(xi, s(zi,w, ξ))}Ni=1 (2)
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that is to be used for constructing a single surrogate model. A generic scalari-
sation function s(z,w, ξ) maps an objective vector z corresponding to solution
x with respect to some weight vector w = (w1, . . . , wm)T , and the vector ξ con-
tains parameters that are used to customize the given scalarisation function. An
example is the weighted Chebyshev augmented function given by:

s(x) = max
1≤i≤m

(wizi(x)) + ρ

m∑

i=1

wizi(x), (3)

where ρ is a small positive number set to 0.05 as suggested by [11].
A surrogate model is constructed with training data from (2), and both the

prediction and uncertainty of the model are considered together in a normally
distributed random variable S(x) ∼ N (ŝ(x), ε̂2s(x)), where ŝ(x) and ε̂2s(x) are
respectively the prediction mean and prediction variance. The EI criterion is
related to the notion of improvement, and assuming minimisation, the improve-
ment at x is given by I(x) = max(s(x+) − S(x), 0), where x

+ is the location
of the current best known scalar fitness value from amongst the evaluated solu-
tions, that is, x+ = argmin

x∈X s(x). The EI is obtained by taking the expected
value of this improvement as given by:

E[I(x)] =

{

(s(x+)− ŝ(x))Φ
(

s(x+)−ŝ(x)
ε̂s(x)

)

+ ε̂s(x)φ
(

s(x+)−ŝ(x)
ε̂s(x)

)

if ε̂s(x) > 0

0 if ε̂s(x) = 0
(4)

where Φ(·) and φ(·) are the cumulative and probability density functions of the
standard normal distribution, respectively.

2.2 Multi-surrogate Approach

The multi-surrogate approach constructs a separate surrogate model for each
objective function, meaning that m surrogate models are created from the data

{(xi, f1(xi))}
N
i=1, {(xi, f2(xi))}

N
i=1, . . . , {(xi, fm(xi))}

N
i=1 (5)

Given that there is no analytical closed-form expression to determine the EI
in the multi-surrogate approach, an alternative is to use Monte Carlo integration
by producing NC samples from the surrogates [8, 6]. Consider x to be a solution
that we wish to estimate the expected improvement, let qij(x) be the jth sample

for the ith objective from the normal distribution with predictive mean f̂i(x)
and predictive variance ε̂2fi(x), where i = 1, . . . ,m and j = 1, . . . , NC . These
samples are then scalarised, and we show an example with the weighted Cheby-
shev augmented function in (6), but note that any other scalarisation function
could have been used instead.

sj(x) = max
1≤i≤m

(wiqij(x)) + ρ

m∑

i=1

wiqij(x) (6)

The improvement at x w.r.t. the jth sample is Ij(x) = max(s(x+)−sj(x), 0),
and an approximation to the expected improvement across all samples is

E[I(x)] ≈
1

NC

NC∑

j=1

Ij(x). (7)



Surrogate Strategies for Scalarisation-based Bayesian Optimizers 5

3 COCO Performance Evaluation and Experimental

Setup

3.1 Performance Assessment in COCO

We use the indicator ICOCO

HV provided by the the COCO library, which is to be
minimised [3]. This indicator is applied to an archive of non-dominated solutions,
and takes the negative hypervolume of the (normalised) objective-vectors of the
solutions that are inside the region of interest, defined by the ideal (zideal) and
nadir (znadir) vectors, that is, [zideal, znadir]. In case there are no solutions that
dominate znadir, then it calculates the (normalised) Euclidean distance of the
closest solution to the region of interest.

During the optimization run of each algorithm we record the number of func-
tion evaluations (“runtime”) to reach certain ICOCO

HV indicator values, known as
targets. Two anchoring targets are chosen, corresponding to the best performance
achieved across all the optimization algorithms involved in the experiment for
two budgets: 50×n (yielding the hardest target) and 0.5×n (yielding the easiest
target). An intermediate 29 further targets are then defined equidistantly on a
log-scale between the two anchors. The runtimes to these targets are displayed
in the form of empirical cumulative distribution functions [10, 1].

3.2 The Bi-objective BBOB Problems and Algorithm Settings

The performance of the multi-objective optimization algorithms is shown on all
55 bi-objective BBOB problems that are found in the bbob-biobj test suite, part
of the COCO library [1], named F1 . . . F55. The first and second objective func-
tions from these problems are different combinations of the 24 single-objective
noiseless BBOB functions. These problems are scalable in the number of decision
variables, and we consider n to be: 2, 3, 5, 10 and 20. The term instance is used
refer to a given parametrisation of a problem-dimension pair, and we consider
the first 15 instances since the COCO library provides hypervolume reference
values for these cases. Each optimization algorithm conducts a single run per
instance, and a different random seed is used for each run. The search space is
defined by the hyperbox [−100, 100]n for all problems.

The single-surrogate and multi-surrogate approaches are referred to as ParEGO
and MParEGO, respectively. For these algorithms the size of the sampling plan
is set to N = 11n − 1 and the number of scalarising vectors is set to 11, as
suggested in [11]. Based on our own set of experiments the number of solutions
used to train the surrogate model is set to 100 and, specifically for MParEGO,
the number of samples to conduct the Monte Carlo integration is NC = 200. The
surrogate model adopted by ParEGO and MParEGO follows the Kriging mod-
elling approach from [9], and uses a squared exponential kernel, where the length
scales are treated as hyperparameters to be learned. We use the single-objective
evolutionary algorithm ACROMUSE [12] to learn the kernel hyperparameters
and search the surrogate model.
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Other algorithms considered for comparison are TPB [16], Sobol [15], and
uniform random search (known here as Random). TPB is a high-performing op-
timizer for expensive problems according to previous COCO findings. Sobol is an
anytime space-filling DoE technique that relies on quasi-random low-discrepancy
sequences. The budget for TPB is set to 50 × n, and given that this is not an
anytime algorithm its performance can only be compared with the other op-
timization algorithm at this particular point. This is also inline with how the
ECDF targets are chosen, that is, the hardest target is chosen at 50 × n. For
the other algorithms the budget is set to 1000 function evaluations, and their
performance can be compared at any point during the optimization run since
they are all anytime algorithms. In the description of the TPB algorithm in [16],
it is mentioned that the first solution to be evaluated is the search space origin,
and this follows the suggestion by the COCO library authors in [2], where the
search space origin is a specially good search point, and should be evaluated first
in order to avoid disfavouring any algorithm that does not evaluate this solu-
tion. However, we believe that by first evaluating this solution it has a strong
bias on the performance of the algorithms since in some cases the solution set
is already very close to the region of interest. Therefore, for TPB we replace
this solution by a random location inside the hyperbox [−100, 100]n. To conduct
the optimization runs, we use a Python implementation of TPB provided by its
authors,1 while the other algorithms are our Tigon C++ implementation [7].

4 Experimental Results

4.1 Single-surrogate versus Multi-surrogate

This section presents the experimental results for the single- and multi-surrogate
approaches, namely ParEGO and MParEGO, respectively, when applied to the
optimization problems from the bbob-biobj test suite.

Fig. 1 shows the ECDF graphs aggregated over all functions, for a maxi-
mum budget of 1000 functions evaluations. The vertical dashed line is shown
at N function evaluations, indicating the last evaluation of the initial sampling
plan. Since ParEGO and MParEGO use the same DoE technique (i.e. Sobol) to
generate the sampling plan, they show equal performance for the first N evalua-
tions, and this matches with the performance shown by Sobol. Notably, for lower
dimensions (i.e. 2, 3 and 5) MParEGO outperforms ParEGO, but for higher di-
mensions (i.e. 10 and 20) ParEGO attains better performance than MParEGO.
As the number of dimensions increases from 2 to 5, the performance gap be-
tween MParEGO and ParEGO widens, and the same can be said, but reversely,
between 10 and 20 dimensions.

We now consider ECDF graphs aggregated over groups of functions defined
by five subgroups: separable, moderate, ill-conditioned, multimodal weakly struc-
tured, and multimodal with global structure. Fig. 2 and 4 show a selection of
different groups of functions in dimension 5 and 20, respectively. In problems

1 https://github.com/ryojitanabe/tpb
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Fig. 1: Empirical runtime distributions aggregated over all bbob-biobj functions
in dimensions 2, 3, 5, 10 and 20, comparing the algorithms ParEGO, MParEGO,
Sobol, Random, and TPB.
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Fig. 2: Empirical runtime distributions per function group of the bbob-biobj suite
for algorithms ParEGO, MParEGO, Sobol, Random, and TPB in dimension 5.
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Fig. 3: Empirical runtime distributions for the algorithms ParEGO, MParEGO,
Sobol, Random, and TPB on single functions from the bbob-biobj suite that form
part of the multimodal with global structure group (first row), and multimodal
weak global structure (second row) in dimension 5.

with 5 dimensions, MParEGO performs better than ParEGO for most problems,
and the only exception is when the two objectives are from the multimodal with
global structure group (multimodal-multimodal) (Fig. 2e). The ECDF graphs of
the individual functions from this group are shown in Fig. 3 (first row), where
ParEGO attains better performance for most function evaluations, and at 1000
functions evaluations the performance of ParEGO in comparison with MParEGO
is: better for F46 (Fig. 3a), similar for F47 (Fig. 3b), and worse for F50 (Fig. 3c).
Multi-modality is not necessarily an issue for MParEGO since as shown in the
Fig. 3 (second row) all the problems from the multimodal with weak global struc-
ture group show MParEGO outperforming ParEGO. There are some cases where
ParEGO does not perform much better than random search, e.g., problems F53,
and F55 as shown in Fig. 3d and 3f, but for these problems the performance of
MParEGO is considerably better than random search.

In problems with 20 dimensions (Fig. 4), ParEGO performs considerably
better than MParEGO. In some cases, the performance of MParEGO is not
much better (or even worse) than random search, as shown in Fig. 5. These
problems have in common the Rastrigin function (f15) which is know to cause
discontinuities in both the PS and PF [1], and the other objective comes from
other groups (except the multi-modal with weak global structure group).
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Fig. 4: Empirical runtime distributions per function group of the bbob-biobj suite
for algorithms ParEGO, MParEGO, Sobol, Random, and TPB in dimension 20.

4.2 Comparison with a State-of-the-art Optimization Algorithm for

Expensive Problems

In this section, a comparison is conducted with TPB. The TPB optimization
runs are for a budget of 50 × n function evaluations, and this implies that for
n ∈ {2, 3, 5, 10, 20} the number of functions evaluations are 100, 150, 250, 500,
and 1000, respectively.

For the case where all functions are aggregated, and across all dimensions,
TPB performs better than the other algorithms as shown in Fig. 1. For the
different groups with n = 5 (Fig. 2), TPB attains better performance for most
cases, and the only exception is for the multimodal with global structure group
(Fig. 2e) where ParEGO attains better performance. For n = 20 as shown in
Fig. 4, TPB does better than both ParEGO algorithms in 11 out of the 15 groups,
and in the four cases that ParEGO does better, it is ParEGO (not MParEGO)
that is able to outperform TPB. TPB performs particularly well on the separable
group (Fig. 4a), and on the separable plus multimodality with weak structure
group (Fig. 4b). However, TPB performance is worse than random search in the
multimodal with global structure group (Fig. 4c), and in some individual cases
where the multimodal with global structure is combined with other functions
as in F24 (Fig. 5c). Considering the functions from the multimodal with global
structure group in Fig. 6, the performance of TPB is worst than random search
in F47 (Fig. 6b) and F50 (Fig. 6c), while being marginally better than both
random search and MParEGO in F46 (Fig. 6a).
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Fig. 5: Empirical runtime distributions for algorithms ParEGO, MParEGO,
Sobol, Random, and TPB on single functions from the bbob-biobj suite that
shows MParEGO not performing much better (or even worse) than random
search in dimension 20.

1 10 100 1000

# f-eval

0.0

0.2

0.4

0.6

0.8

1.0

F
ra
ct
io
n
of

fu
n
ct
io
n
,t
ar
ge
t
p
ai
rs bbob-biobj f46, 20-D

31 targets: 0.5..50
15 instances

46 Rastrigin/Rastrigin

ParEGO

MParEGO

Sobol

Random

TPB b50

DoE

(a)

1 10 100 1000

# f-eval

0.0

0.2

0.4

0.6

0.8

1.0

F
ra
ct
io
n
of

fu
n
ct
io
n
,t
ar
ge
t
p
ai
rs bbob-biobj f47, 20-D

31 targets: 0.5..50
15 instances

47 Rastrigin/Schaffer F7

ParEGO

MParEGO

Sobol

Random

TPB b50

DoE

(b)

1 10 100 1000

# f-eval

0.0

0.2

0.4

0.6

0.8

1.0

F
ra
ct
io
n
of

fu
n
ct
io
n
,t
ar
ge
t
p
ai
rs bbob-biobj f50, 20-D

31 targets: 0.5..50
15 instances

50 Schaffer F7/Schaffer F7

ParEGO

MParEGO

Sobol

Random

TPB b50

DoE

(c)

Fig. 6: Empirical runtime distributions for the algorithms ParEGO, MParEGO,
Sobol, Random, and TPB on single functions from the bbob-biobj suite that
form part of the multimodal with global structure group in dimension 20.

In terms of how the optimization algorithm’s performance scale with the num-
ber of dimensions, Fig, 7 shows the ECDF aggregated over all bbob-biobj func-
tions, and indicates that the performance of TPB is less affected by an increase
in the number of dimensions when compared with ParEGO and MParEGO.
Moreover, MParEGO is the most affected algorithm by the increase in the num-
ber of dimensions, and in comparison ParEGO seems to do particularly well
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Fig. 7: Empirical runtime distributions aggregated over all bbob-biobj functions
showing how the algorithms ParEGO, MParEGO, and TPB scale with the num-
ber of dimensions.

on high-dimensional problems (i.e. n = 20). The results shown above are a
subset of the total conducted runs. A supplementary file with all the experimen-
tal results, and also the source code to reproduce these results, is available in
https://github.com/jaduro/ssmbo_emo2025.

4.3 Discussion

The single-surrogate and multi-surrogate approaches were previously compared
in [5] by using DTLZ problems (2, 3 and 7) with the number of decision vari-
ables being 4 and 5, and the number of objectives being 2 and 3. The budget
to run the optimization algorithms was set to n × 30 in addition to the initial
data set of n×10 solutions. The experimental results in [5] show that the multi-
surrogate approach outperformed the single-surrogate approach on DTLZ2 and
DTLZ3, and that the multi-surrogate approach did not perform well on DLTZ7,
which is a problem with a disconnected PF. These findings are in agreement
with the results presented here, where for low-dimensional problems (i.e. up to
n = 5) MParEGO outperforms ParEGO in most cases, but MParEGO was out-
performed by ParEGO in disconnected problems (e.g. the double Rastrigin func-
tion F46, see Fig. 3a). In addition, our results suggest that the multi-surrogate
approach does not scale well with the number of dimensions when compared with
the single-surrogate approach. However, if the exact EI calculation for ParEGO is
replaced by Monte Carlo estimation then ParEGO also suffers this failure mode
(see supplementary materials for these experiments). This issue could be arising
from an interaction between the quality of the estimated EI and the quality of
the GP model in higher dimensions, and warrants further investigation.

A potential reason why TPB shows better performance relative to both
ParEGO and MParEGO for the BBOB problems is its ability to find solutions
inside the region defined by the nadir and ideal vectors. For this, TPB initially
uses some of its budget to estimate the nadir and ideal vectors, by conduct-
ing single-objective optimization of each objective function. This is particular
advantageous when using the performance indicator ICOCO, because a solution
set will always have better performance when at least one solution is inside the
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region of interest [zideal, znadir], as opposed to a solution set where no solution
is able to dominate znadir. Note that the ICOCO relies on the distance between
the closest solution to the region of interest when there are no solutions that
dominate znadir, and only applies the hypervolume indicator to those solutions
that are found inside the region of interest. There could be other reasons that
give an advantage to TPB over ParEGO, for instance, the use of the Bézier
simplex-based interpolation method might be a better approach when compared
with the more classic simplex designs.

5 Conclusion

This paper has studied a fundamental question in scalarisation-based multi-
objective Bayesian optimization, that is, whether it is better to rely on a single
surrogate model or multiple surrogate models. For this, the performance of two
algorithms (ParEGO and MParEGO) that are representative of each case have
been applied to a wide range of bi-objective BBOB problems (55 in total), where
each problem had the number of dimensions scaled up-to 20. The experimental
results have revealed that on low-dimensional problems (up to 5), it is better to
rely on multiple surrogate models (MParEGO), but as the number of dimensions
increases up to 20, then an approach with a single surrogate model (ParEGO)
performs better. In addition, we have also conducted a comparative analysis
with a state-of-the-art optimization algorithm for expensive problems, called
TPB. It has been revealed that TPB is capable of outperforming both ParEGO
and MParEGO, but that ParEGO attain better performance on some problems
with multimodality. Future work should study the scalability of these approaches
with the number of objectives, compare with other optimization algorithms for
expensive problem (in particular that are known perform well on problems with
multimodality), consider other acquisition function besides EI (as in [4]), and
apply these algorithms to real-world problems.
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