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1. Introduction

Process planning in metallic subtractive manufacturing is

complex. The processes rely on expert knowledge and expe-

rience of engineers backed up with many tried and tested meth-

ods of manufacture. The number of decisions during process

planning is vast, some are based on experience, some on com-

putational optimisation and some on general “rules of thumb”.

Recently, these rules have come under scrutiny due to the in-

creased challenges balancing productivity, cost, quality and sus-

tainability. Traditional rules no longer apply. Therefore, to ad-

dress this, the authors undertook research to capture these deci-

sion points and propose a digital framework to support a robust

and adaptable future process planning system for subtractive

processes.

As a subset problem of the wider digital framework, a re-

search stream focused on incorporating advanced optimisation

techniques from academia with commercial industrial software,

the results are presented herewith. This paper is written as fol-

lows, first, optimisation methods and the open-source optimi-

sation software [1] are introduced, then integration and appli-

cation of the Liger optimisation is presented, followed by the

results and concluding remarks.

2. Optimisation and Decision-Making

The study and research of optimisation and decision-making

is rooted in mathematical theories and computational tech-

niques. To give a general appreciation of the field, the main

topics are briefly described here.
http://creati /licenses/by-nc-nd/4.0/
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Abstract

Metallic subtractive process planning is challenging. It requires a blend of expert knowledge, experience, and established manufacturing meth-

ods. Decision-making in this domain is multifaceted and complex, and this includes the need to satisfy multiple conflicting demands faced by the

manufacturing sector today. However, with the evolving landscape of manufacturing, combined with increased adoptions of digital technologies,

the traditional rules of thumb are becoming obsolete. In response, this research investigated these decision-making processes within a subset of

the digital framework for subtractive process planning. In particular, it has demonstrated that an advanced open-source optimisation tool (Liger)

could be integrated with commercial industrial software and applied to a machining case study. The integrated software intelligently executed

and automated simulations using advanced optimisation techniques. The outputs are a range of optimised solutions that support manufacturing

engineers’ decision-making. One of the major benefits of the open-source software is that it provides an intuitive to use interface suitable for the

non-expert in optimisation, offers a varied range of state-of-the-art multi-objective optimisation algorithms, and is capable of incorporating many

different third-party types of software, models and simulations. In this paper, the Liger software has been applied to a simple case study to find

the best feedrate and depths of cut that simultaneously minimise the cutting force and the time it takes to complete the machining process. The

case study demonstrates proof-of-principle results that the optimisation software can be implemented in a wider process planning context with

additional digital manufacturing simulation models.
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Fig. 1: Liger graphical user interface running an optimization workflow with the subtractive process planning problem.

1. Integer and Mixed-Integer Programming. These tech-

niques are used when decision variables are required to

be integers, which is common in problems like scheduling

and allocation where fractional results don’t make practi-

cal sense. In a process planning context, this is the method

used in sequencing.

2. Linear and Non-linear Optimisation. Linear optimisa-

tion deals with problems where the objective function and

constraints are linear, meaning they can be expressed as

simple inequalities, e.g., in machining, feedrate should

never exceed a given threshold in a part program. Non-

linear optimisation, on the other hand, handles problems

where at least one constraint or the objective function is

non-linear—this could relate to expressions for toolwear

for example.

3. Multi-objective Optimisation. In problems with a single

objective there is only one optimal solution, correspond-

ing to the minimum of the objective function to be opti-

mised (assuming minimisation). When there are multiple

conflicting objectives, there is an optimal solution per ob-

jective, and there is also a set of optimal trade-off solutions

where a gain in one objective is obtained at the expense of

another objective. In many engineering contexts, there’s a

need to optimise multiple conflicting objectives simulta-

neously, like maximising performance while minimising

cost. This generally is what an experienced engineer will

do without realising, i.e., they will trade-off multiple ob-

jectives such as cost, cycle time and part quality. Pareto

optimality is a commonly used concept in this area to iden-

tify the best trade-offs. Consider two solutions u, v of a

given multi-objective optimisation problem, then u is said

to dominate v if and only if: (i) u is not worse than v in all

objectives, and (ii) u is strictly better than v in at least one

objective. In case neither solution dominates the other then

u and v are said to be non-dominated. A solution is said to

be Pareto optimal if it is not possible to find another solu-

tion in the entire decision space that dominates it. The set

of all Pareto optimal solutions is referred to as the Pareto

set and the image of this set in the objective space is the

Pareto front.

4. Stochastic Optimisation. For problems with uncertainty

in input data or inherent randomness, stochastic optimisa-

tion is employed. It considers various possible scenarios,

often integrating techniques from probability and statis-

tics. The aim is to find solutions that provide robust per-

formance under the uncertainties.

5. Evolutionary and Genetic Algorithms. Inspired by bi-

ological evolution concepts like ”survival of the fittest”,

these algorithms use mechanisms like mutation, crossover,

and selection to drive the search towards the optimal solu-

tion(s).

6. Simulation-based Optimisation. Often, direct mathemat-

ical modelling is challenging. In such cases, optimisation

is achieved by combining simulation models with opti-

misation techniques, commonly seen in complex systems

or processes. For example, combining virtual machining

models or CAM software such as CATIA V5.
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Fig. 2: Process flowchart for machining case study.

Optimisation in real-world settings is complex, often in-

volves multiple conflicting objectives, and it is typically best

addressed by using multi-objective optimisation methods. This

approach offers a range of balanced solutions for decision-

makers. However, the complex nature of multi-objective opti-

misation algorithms can hinder the optimisation process. De-

termining the best algorithm for a particular problem, or select-

ing the right set of parameters, typically demands a good level

of expertise. The absence of accessible, user-friendly, and trans-

parent software can result in prolonged time it takes to complete

the design of the product and incur in higher costs. To address

these challenges, one major focus of the research in [2, 3, 4]

within the University of Sheffield’s department of Automatic

Control and Systems Engineering has been the development of

a software tool called Liger. Liger is a cross-platform open-

source integrated optimisation and decision-making environ-

ment. The next section will describe the software in more detail.

2.1. Liger Software

Liger is an open-source optimisation platform developed

with both scalability and user accessibility in mind. This makes

it ideal for industrial applications, even for those professionals

not deeply versed in optimisation. Central to Liger is a visual

programming interface, streamlining the process of setting up

optimisation workflows (see Figure 1). While the market has

various optimisation solutions, the majority addressing genuine

industrial challenges are often proprietary and not open-source.

These solutions tend to be intricate libraries, necessitating sig-

nificant time investment for effective deployment. In contrast,

Liger aims to reduce this time overhead, offering engineers a

straightforward and efficient optimisation tool.

To demonstrate the feasibility of using the Liger software

in process planning a simple framework was established. This

framework enables the automation of Computer Aided Man-

ufacture (CAM) parameter selection with subsequent virtual

machining processes. In this initial framework, the Liger soft-

ware connected the commercial CAM package CATIA V5 with

VERICUT via a set of macros. The system was able to auto-

mate changing machining parameters such as axial and radial

depth of cut, feedrate and spindle speed. The updated part pro-

gram was then automatically sent to the VERICUT software to

utilise the VERICUT Force plugin for the cutting force predic-

tion. The output of the VERICUT Force simulations was sent

back to the Liger software.

Figure 1 shows the Liger interface and the setup of the Liger

workflow. The workflow is formed by different components as

shown in the figure, described as follows:

1. The optimisation problem is defined inside the Prob com-

ponent. This is where the decision variables, objectives or

even constraints (if any) are defined. This is also where the

integration with CATIA and VERICUT happens.

2. LHS stands for Latin Hypercube Sampling, a popular

space filling approach. This component is responsible for

creating the initial population (a set of candidate solu-

tions), which forms the starting point for the optimisation

algorithm.

3. The Eval component is responsible for evaluating the solu-

tions, and in this case the solutions are evaluated one after

the other in a sequence. There are other more advanced

components in Liger that can evaluate the solutions in par-

allel, thus saving time.

4. NSGA-II [5] is the multi-objective evolutionary optimisa-

tion algorithm (MOEA) used for this case study. This is a

widely used MOEA for dealing with real-world problems,

including for process planning optimisation.

5. The components in the second row of the workflow are

state-of-the-art visualisation plots, suitable for visualising

the solutions of problems containing many variables and

objectives. Examples of such visualisation plots are scatter

plot, parallel coordinate plots and glyphs plots.
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3. Method

3.1. Machining Case Study

The case study was a closed pocket milling operation of a

7075-T6 aluminium aerostructure part using a 3 fluted 16 mm

solid carbide end mill (SGS S-Carb APR tool EDP No. 44688),

as shown in Figure 4.

The first task in the optimisation process is to determine

the objectives. In this multi-objective case study, the objectives

were to minimise the cycle time ( f1) and minimise the maxi-

mum cutting force ( f2). The decision variables were chosen as

axial depth of cut (x1), radial depth of cut (x2), feedrate (x3)

and spindle speed (x4). The ranges are given below:

Discrete decision variables:

• x1: Axial depth of cut: 1,2,...,15 (1 mm increments)

• x2: Radial depth of cut: 5,10,...,65 (% of cutter diameter)

Continuous decision variables:

• x3: Feed rate: [100, 12000] (mm/min)

• x4: Spindle speed: [800, 20000] (RPM)

The first two decision variables are discrete, implying that their

allowed values are restricted to a set of integer values as shown.

The last two decision variables are continuous, meaning that

they can take any values from within the interval shown.

Figure 2 shows the evaluation of a solution by Liger, which

requires calling each software in the given sequence:

1. Initially, Liger decides the decision variable values for the

candidate solution that needs to be evaluated.

2. The new decision variable values are sent to CATIA V5

software, where the model parameters are updated, and

new machining paths are generated accordingly.

3. These new machining paths are translated into APT source

format by using CATIA V5. This APT file contains a set

of instructions used by the machine to machine the part.

4. The APT file needs to be converted to a controller spe-

cific format that is compatible with the CNC machine. In

this case the code is converted to G-code, which is stored

in an NC (numerical control) file with extension MPF.

The conversion process is conducted by the in-house post-

processing software Post Master.

5. The MPF file created by the Post Master is then sent to

the VERICUT software (screenshot shown in Figure 3),

which simulates the machining operation (cutting forces),

and as an output calculates the cycle time ( f1) and maxi-

mum forces ( f2) involved in the given operation.

6. These two outputs are sent to Liger and this completes the

solution evaluation process. This sequence of events is re-

peated for each solution that needs to be evaluated.

The CAD model of the workpiece and the machined part from

this study is shown in Figure 4. The optimization conducted in

this study focused on only one part program, namely the closed

pocket F3 in Figure 4 and the parameters of the remaining pro-

grams were kept constant.

Fig. 3: VERICUT screenshot showing the case study machining operation.

3.2. Experimental Settings

In this study a comparison is conducted between an optimi-

sation algorithm and a Design of Experiments (DoE) technique

known as Latin Hypercube Sampling (LHS). It is common to

use a DoE to study the behaviour of a computer simulation

model or metamodel, allowing us to see the effect of changing

the parameters on the model performance. There are different

DoE techniques in the literature and some examples are: fac-

torial experiments, D-optimal or I-optimal designs, and LHS.

The latter is suitable for computer experiments when no prior

knowledge exists about the form of the model, and that interest-

ing phenomena are likely to be found in different regions of the

experimental space. This is a type of space-filling design that

does not contain any replicated runs and it is therefore suitable

for a deterministic computer model. The optimisation algorithm

used is known as NSGA-II. This is by far the most well-known

multi-objective optimisation algorithm and has been applied to

a large range of manufacturing problems in the literature. For

the algorithm to handle this specific case study, the authors

have enhanced NSGA-II with mixed-integer capabilities. This

implies that depending on the type of decision variable (either

continuous or discrete), different types of genetic operators (in

this case variation operators) are used. For all cases the same

probability of crossover and mutation was used which is set to

90% and 10%, respectively. Specifically for each case:

• Continuous variables: the crossover and mutation oper-

ators are simulated binary crossover (SBX) [6] and poly-
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Fig. 4: Machined workpiece (left) and CATIA model (right). For scale the part

is approx 400x150 mm.

nomial mutation [7]. The distribution index for SBX and

polynomial mutation is set to 15 and 20, respectively.

• Discrete variables: The crossover operator creates new

offsprings by swapping the values of the parents. The in-

teger mutation operator is taken from [8], where the step

size parameter is set to 10% of the length defined by the

upper and lower bound of each decision variable.

For a fair comparison, both approaches have been given the

same computational budget, that is, N = 2000 function evalua-

tions. NSGA-II initially uses a DoE technique for creating the

initial population. This population has been initialised by using

the LHS technique with a total of Ni = 100 solutions. The size

of the parent and offspring populations in NSGA-II have been

set to N p = Ni/2 = 50 each, and this implies that NSGA-II

conducts a total of (N−Ni)/N p = 38 generations (or iterations)

in order to use the entire computational budget.

Initially 10 evaluations were conducted with different candi-

date solutions and on average it took 3 minutes and 33 seconds

for each evaluation to complete. This implies that it is estimated

for the optimization algorithm to take approximately 22 hours

and 10 minutes to complete an optimization run.

4. Experimental Results

First, the results obtained by NSGA-II are discussed, and

these are shown by the Liger visualisation tools in Figures 5

and 6. Figure 5 shows the non-dominated solutions in a scat-

ter plot obtained at the end of the optimization run forming the

Pareto front. Figure 6a shows the same non-dominated solu-

tions on a parallel coordinates plot. This non-dominated set is

comprised of 501 solutions taken from the total of 2000 func-

tion evaluations obtained during this run. In this type of plots

each solution is represented by a line formed by connecting the

points across all the dimensions. The slides on each vertical bar

Fig. 5: Non-dominated solutions obtained by NSGA-II that show the effect of

feed rate on the objectives.

can set the parameter range and highlight the solutions inside

that range. The solutions have been colour coded with respect

to the cycle time, where red and blue colour correspond to low

and high cycle time across all dimensions, respectively. In this

problem the two objectives are in conflict as shown in Figure 5,

since an improvement to one objective leads to a loss of perfor-

mance in the other objective. This conflict between the objec-

tives is also captured by the parallel coordinates plot, which is

shown by the crossing lines between cycle time and maximum

force in Figure 6a. The selection of the most appropriate solu-

tion from amongst the available options across the Pareto front

will be determined by the manufacturing priority. The results

shown in Figure 6a indicate that for Pareto optimality the ra-

dial depth of cut should be kept constant at 65% while the axial

depth of cut can vary between 1 and 10 levels.

It is also possible to visualise all solutions that have been

evaluated, and not just those that are non-dominated in case this

is desirable, this is a useful feature for defining a region of in-

terest, both in objective and decision space. This is likely to aid

the decision-maker in selecting the most desirable solution, for

example, by restricting the results to a particular radial depth of

cut or feedrate.

Another useful feature in Liger is the ability to use the scat-

ter plot to visualise multiple dimensions at once as shown in

Figure 5. In this case the third dimension is represented by the

colour of the markers. In Figure 5 the two objectives are shown

alongside the feedrate, visually it shows that decreasing the feed

rate implies a reduction in the maximum force whilst the cycle

time increases.

In Figure 6b, comparison is shown between the non-

dominated solutions obtained by NSGA-II and the non-

dominated solutions obtained by LHS. The set obtained by

NSGA-II offers better convergence across most of the Pareto-

front. There is only one solution found by the LHS (top solution

in Figure 10), which is non-dominated with respect to the solu-

tions obtained by NSGA-II. A quarter of solutions (501) found
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(a) Parallel coordinates plot showing the NSGA-II non-dominated solutions colour coded

with respect to cycle time

(b) Comparison between the non-dominated solutions obtained by

NSGA-II and the Latin Hypercube Sampling (LHS) technique

Fig. 6: Non-dominated solutions obtained by the Liger software.

by NSGA-II of the available are non-dominated, and from those

found by LHS only 60 are non-dominated. This is expected

given that NSGA-II relies on the dominance relation to decide

which solutions are worth evaluating next, while LHS only re-

lies on a space filling metric.

5. Conclusions

The main benefit of the Liger software is the ability to gen-

erate solutions for the manufacturing engineer to use as part

of their toolbox alongside their experience to support machin-

ing strategy and parameter selection. The optimisation engine in

Liger identifies a richer set of trade-off options to choose from

(over 8 times as many as the DoE) and also offers performance

improvements within those trade-offs. For example, for a cy-

cle time of less than 1 minute, the maximum force for Liger’s

solution is 50% less than for the DoE. The Liger software is es-

sentially an adaptive design of experiments software such that

it chooses the next set of parameters to sample (and run simula-

tions) based on the previous set of results. This optimisation of

the sample space reduces the required computations exponen-

tially saving significant time compared to standard brute force

methods.

The project successfully demonstrated that the open-source

Liger optimisation software can be applied to subtractive pro-

cess problems. It was demonstrated that it can form a subset

of a larger digital framework for subtractive processes. It is en-

visaged that the software and future research will play a key

part in the strategy to form the wider digital framework for au-

tonomous subtractive manufacturing.
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