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Abstract 30 

A framework for the rational selection of a minimal suite of non-degenerate developability 31 

assays (DAs) that maximise insight into candidate developability or storage stability is lacking. 32 

To address this, we subjected nine formulation:mAbs to twelve mechanistically distinct DAs 33 

together with measurement of their accelerated and long-term storage stability.  We show that 34 

it is possible to identify a reduced set of key variables from this suite of DAs using orthogonal 35 

statistical methods.  We exemplify our approach by predicting the rank formulation:mAb 36 

degradation rate at 25 °C (determined over six months) using just five DAs that can be 37 

measured in less than a day, spanning a range of physicochemical features.  Implementing such 38 

approaches focuses resources, thus increasing sustainability and decreasing development costs.       39 

 40 

Keywords 41 

Antibody; Developability Assessment; Formulation; Protein Aggregation; Kinetic stability 42 

 43 

Introduction 44 

The adoption of the Quality by Design paradigm by the biopharmaceutical industry over the 45 

past two decades1 has led to the emergence of the concept of “developability”. This can be 46 

broadly defined as the selection of molecules with desirable biochemical and biophysical 47 

attributes, which increase the chances of translation to a commercial therapeutic manufactured 48 

at large scale.2–4 Focussing on monoclonal antibodies (mAbs), many biophysical assays have 49 

been employed to probe different physicochemical characteristics of these proteins, including: 50 

solubility;5–7 liabilities in the complementarity determining regions (CDRs);8 susceptibility to 51 

thermal stress;9,10 undesired interfacial adsorption11–13 and aggregation propensity.14–18 Since 52 

the seminal work of Jain et al.,4 many groups have used Pearson7 or Spearman’s rank 53 

correlation12,19 to relate the behaviour of molecules in different assays and examine the 54 
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relationships between different in vitro and in silico methods.20–23 Nevertheless, a framework 55 

to link the outputs of these developability assessments to a chosen measurable attribute of 56 

manufacturability is lacking.  Ability to do this would decrease the time for development, de-57 

risk candidate selection and scale-up, and increase sustainability, bringing enhanced provision 58 

of medicines to patients.     59 

To address this issue, here we describe a logical framework to condense the outputs of a 60 

focussed set of Developability Assays (DAs) to a single parameter. This parameter, derived 61 

from assays employed early in development, has predictive power of a user-defined measurable 62 

attribute of manufacturability (Figure 1). To do this we obtain a dataset derived from twelve 63 

mechanistically distinct DAs (with the outputs captured by 23 variables) including in silico 64 

analyses on three IgG1s in three formulations and complement these with long-term and 65 

accelerated stability data obtained in the same buffers (captured by nine variables). As 66 

accelerated and long-term (i.e. real-time) degradation rates are universal, yet expensive-to-67 

determine quality attributes essential within the regulatory framework (for a typical mAb, this 68 

takes over two years and consumes grams of material)24 we chose the kinetic stability of the 69 

samples at 25 °C as our measurable attribute of manufacturability.  70 

Statistical analysis of the dataset shows that the DAs are grouped into four families that probe 71 

distinct biophysical features which can be used to rank formulation:mAbs holistically.  We 72 

then show that a combination of suitably scaled outputs from a focussed, non-degenerate set of 73 

DAs that probe multiple biophysical attributes can be used as an indicator of kinetic stability 74 

early in the development pipeline by predicting relative storage stability at 25 °C.  The general 75 

methodology (which could be applied to other manufacturing attributes of the user’s choosing), 76 

is rapid and resource-efficient and its ability to capture storage stability, de-risks and increases 77 

the sustainability of early-stage candidate selection.  78 
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 79 

Figure 1. Overview of the study.  Three IgG1s were placed in three different buffer conditions 80 

(histidine-arginine (green, buffer A), histidine-sucrose (blue, buffer B) and sodium citrate 81 

(brown, buffer C)), to yield nine formulation:mAb pairs. Each sample was analysed with ten 82 

in-vitro developability assays (including the Extensional Flow Device (EFD)) and two in-silico 83 

analyses, followed by accelerated and long-term storage stability over three to eighteen months. 84 

The completed dataset (comprising at least 600 measurements) was analysed and condensed to 85 

32 reported assay variables, per sample. The dataset was then scrutinised with an array of 86 

statistical tools. As a proof of concept, we examine whether our framework can predict the rank 87 

order of the kinetic stability of our samples at 25 °C, which is resource-intensive in terms of 88 

both time and material, using less resource-intensive “time equal zero” assays. 89 

 90 

 91 

 92 

 93 

 94 
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Experimental Section 95 

2.1 Antibodies and formulations 96 

All antibodies were expressed in an IgG1 format in CHO cells and purified from the culture 97 

medium using Protein A chromatography.25  Each IgG1 (mAb1, mAb2 and mAb3) was then 98 

dialysed into the following formulations: 20 mM L-His, 190 mM L-arginine, pH 6 (formulation 99 

A); 20 mM L-His, 220 mM (7.5% w/v) sucrose, pH 6 (formulation B) and 25 mM sodium 100 

citrate, pH 5.0 (formulation C) by repetitive buffer exchanges using Millipore Centricon 30,000 101 

MWCO filters, according to the manufacturer’s protocol. Briefly, the tubes were primed with 102 

15 mL of the new formulation buffer and centrifuged at 3500 ×g for 10 mins. The sample was 103 

loaded into the tubes and centrifuged as before for 30 mins. The filtrate was discarded and the 104 

retentate diluted to 15 mL with formulation buffer. This process was repeated at least 5 more 105 

times, until the final desired concentration and volume was reached.  106 

Protein concentration was determined at 280 nm using a Trinean DropSense96 UV-Vis 107 

spectrophotometer. Samples were diluted to a final concentration of 50 mg/mL, then syringe-108 

filtered through a 0.22 µm filter (Millipore) in a laminar flow hood. 10% (w/v) PS80 was added 109 

to each mAb/formulation to a final concentration of 0.02% (w/v) and then re-filtered under 110 

sterile conditions (0.22 µm), then vialed in 1.1 mL aliquots using 2R glass vials, rubber stoppers 111 

and crimp sealed. One set of vials was frozen at -80 ˚C, for use later in HIC, SMAC and EFD 112 

assays. The osmolality and pH of the samples were measured using an OsmoPro and Mettler 113 

Toledo pH meter, respectively, to confirm the formulations were within specification (see 114 

Supplementary Information).  115 

For reference, this yields three IgGs in three formulations (nine samples in total), with the code 116 

names displayed in the unshaded boxes in Table 1. 117 

 118 
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Formulation:mAb mAb1 mAb2 mAb3 

 Formulation A 

 (His-Arg) 
A1 A2 A3 

Formulation B 

(His-sucrose) 
B1 B2 B3 

Formulation C 

(Na citrate) 
C1 C2 C3 

Table 1. Nomenclature for IgGs and buffer conditions used. 119 

 120 

2.2 Developability assays 121 

Methods for the rheology of (surfactant-free) formulations, HIC, SMAC, BVP-ELISA, AC-122 

SINS, DSC, DLS, BMI, CamSol, TAP and soluble protein concentration measurements are 123 

provided in the Supplementary Methods.  124 

 125 

2.3 Extensional Flow Device (EFD) and HPLC assay 126 

Design and operation details of the EFD can be found elsewhere.16,26–28 The current work used 127 

a modified version the original device, with a 3D-printed insert allowing three pairs of 1 mL 128 

Gastight Hamilton syringes to be mounted and driven simultaneously. Each EFD experiment 129 

initially begins with 3 × buffer-rinsed syringes fitted with fresh 75 mm long, 0.3 mm i.d. 130 

borosilicate glass capillaries (Sutter Instruments) via ferrule compression fittings (Hamilton) 131 

and Gilson P10 O-rings. The mAb solutions were prepared from thawed vials of each 132 

respective formulation. The aliquot was diluted ~10 fold in its respective formulation buffer, 133 

syringe-filtered (0.22 µm, Millipore) and the concentration determined (after a further 20-fold 134 

dilution) by UV-Vis spectroscopy (Shimadzu UV-1800).  0.5 mL of protein solution (0.25-, 135 

0.5- and 1 mg/mL) was drawn into each respective sample syringe, removing visible air 136 

bubbles prior to connection to their buffer-rinsed “receiver” syringe. The syringe pairs were 137 

fixed with top-mounted 3D-printed clamps, before being driven by a linear stage using a 138 

stepper motor at velocity of 8 mm/s for a defined number of passes (10–500). The pass 139 
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conditions were controlled by a microprocessor and visual display. Once finished, syringes 140 

were disassembled, the solutions slowly placed into fresh Eppendorf tubes and kept on ice.  141 

Control samples were incubated ambiently alongside the 500 passes samples (which takes ~ 142 

50 mins to complete) at each concentration. The syringes were washed with 2% (v/v) 143 

Hellmanex-III (aq), Milli-Q water and formulation buffer prior to each new experiment. 144 

To quantify EFD-induced aggregation, samples were clarified by ultracentrifugation, spinning 145 

2 × 150 µL of each sample for 30 mins at 30,000 rpm (TLA100 rotor, Beckmann Coulter).  2 146 

× 100 µL supernatant was removed from each respective sample tube, with the supernatants 147 

then combined and loaded in a 300 µL conical insert polypropylene vial (VWR), before crimp-148 

sealing with PTFE/Aluminum lids (ThermoFisher). Samples were analysed by HP-SEC on a 149 

Shimadzu Nexera LC-40 system. 20 µL of sample was injected onto a TOSOH G3000swxl 150 

column, eluting isocratically with HP-SEC mobile phase (0.1 M sodium phosphate dibasic, 0.1 151 

M sodium sulfate pH 6.8), at a flow rate of 0.5 mL/min. Following detection at 280 nm with a 152 

PDA detector, the chromatograms were integrated in LabSolutions software, and % monomer 153 

remaining calculated by normalising the peak areas to those of the respective, quiescent control 154 

samples. The observed rate of monomer loss was computed using the SLOPE function in 155 

Microsoft Excel. 156 

 157 

2.4 Accelerated (AS) and long-term storage stability study 158 

This study commenced in January 2020. Boxes containing vials of A1–C3 were placed in 159 

incubators at the temperatures and for the durations stated in Table 2: 160 

 161 

 162 
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 163 

Incubator 

Temperature 
t=0 

Timepoint 1 

(months) 

Timepoint 2 

(months) 

Timepoint 3 

(months) 

Timepoint 4 

(months) 

40 °C t=0 0.5 1 3 - 

25 °C t=0 1 3 6 - 

5 °C t=0 3 6 12 18 

Table 2: List of samples taken for analysis form the stability study. 164 

 Due to the COVID-19 pandemic, all timepoint samples (apart from 0-, 0.5- and 1-month 165 

samples) were pooled and stored at -80 °C prior to their quantification in April 2022. To 166 

quantify the species remaining in solution at each timepoint, samples were diluted 1:4 in PBS 167 

(Sigma) into a 0.45-µm centrifugal filter unit (Millipore) and spun at 16,700 ×g for 1 minute. 168 

Alongside the formulated samples, a series of standards (PBS, HP-SEC mobile phase (0.1 M 169 

sodium phosphate dibasic, 0.1 M sodium sulfate pH 6.8), Nip228 reference standard IgG (in 170 

20 mM L-His, 240 mM sucrose pH 6.0) and BioRad column calibrants) were clarified in the 171 

same fashion.  172 

2 × 25 µL of sample was injected onto a TOSOH G3000swxl column, equipped with a guard 173 

column. The samples were eluted isocratically in the HP-SEC mobile phase at 1 mL/min on an 174 

Agilent HPLC system. Peak areas were quantified by integration using ChemStation software. 175 

The monomer peak was considered as the major peak with a retention time ~8.3 min. Any 176 

peaks detected with a shorter retention are higher molecular weight species (HMW). Any peaks 177 

that elute after the monomer are considered fragments. The area values were input into Excel, 178 

including the standards, which all passed internal validation levels. After averaging the 179 

technical replicates, the SLOPE function was used to determine the observed relative rates of 180 

% change in monomer, HMW content and % fragment over the respective time courses above. 181 

We thus highlight that all the observed rates pertaining to the kinetic stability study are relative 182 

observed rates, but we omit “relative” for brevity throughout the manuscript. 183 
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Finally, the error on the observed rate of change in % monomer at 25 °C test dataset was 184 

calculated by including the error (s.d.) from both technical replicates for each formulation. The 185 

average coefficient of variation from the SLOPE analysis (for the entire dataset = 186 

0.036%/month) was used as a default value where samples had zero error. Instrumental error 187 

weighting was used (1/CV2) and a linear fit (y = a + bx) performed in OriginPro to obtain the 188 

gradient (b) and standard error (from the fit) for each formulation (Figure 3).   This analysis 189 

was also performed on the 5°C (average SLOPE CV = 0.074%/month). 190 

 191 

2.5 Statistical analyses 192 

Data were processed in Microsoft Excel. Correlation analysis and Hierarchical Clustering of 193 

Spearman correlation coefficients were performed in OriginPro 2023b. For the clustering, 194 

Euclidean distances and group average clustering were used to draw the dendrogram. All 195 

graphs in the manuscript were plotted in this software. Details on Multiple Linear Regression 196 

(OriginPro 2023b) are detailed in the Supplementary Methods 197 

 198 

2.6 Ranking and Sensitivity Analysis  199 

 200 

Assay variables were ranked in Microsoft Excel, using the RANK.AVG function. Values were 201 

ranked from the most desirable to least desirable value, depending on the favourable direction 202 

of the assay, e.g., a high Tm,app is desirable, whilst a low Tm,app is undesirable. 203 

For the sensitivity analysis, one formulation, e.g. A1, was removed from the dataset, the data 204 

re-ranked as above and Hierarchical Clustering performed as stated in the main text. This 205 

process was repeated sequentially for each formulation. The least significant correlations are 206 

flagged in OriginPro, generally pertaining to branches within each assay group that have the 207 

largest distance from the baseline, e.g., variables 30 and 32 in Figure S19. To further evaluate 208 
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the robustness of the assay variable groupings, the approach of Lu et al. was employed.29 The 209 

total number of times a variable paired with its immediate neighbour was counted in each 210 

iteration of the analysis, then divided by the total number of iterations (10 in this case). Values 211 

(termed P) close to 1 reflected the most robustly clustered variables (Figure S21).  212 

 213 

2.7 Averaging of Developability Output Score (ADOS) algorithm 214 

The foundations for the following analysis can be found elsewhere.4,16 Firstly, the scores for a 215 

formulation, i, in an assay variable, j, were scaled according to their position within the 216 

distribution of the observed data (Equation 1) 217 

𝑉𝑖𝑗 = 𝑦 − 𝑌50%𝑌80% − 𝑌20% 218 

Equation 1. where Vij = scaled value, y = reported assay value, Y50%
 = median, Y80%

 = 80th 219 

percentile value and Y20% = 20th percentile value. 220 

Next, the scaled values were normalised onto a best (0) to worst (1) scale (Equation 2a) 221 

𝑁𝑉𝑖𝑗 = (𝑉𝑖𝑗 −𝑚𝑖𝑛𝑉𝑖𝑗)(𝑚𝑎𝑥𝑉𝑖𝑗 −𝑚𝑖𝑛𝑉𝑖𝑗) 222 

Equation 2a. where NVij = normalised scaled value, minVij = smallest scaled value for the assay 223 

variable and maxVij = largest scaled value for the variable. 224 

For assay variables where the smallest number corresponds to the worst score, e.g. the 225 

formulation:mAb with the lowest Tmapp has the poorest thermal stability and a very negative 226 

monomer-loss slope reveals faster aggregation or degradation, the scores were adjusted with 227 

Equation 2b. 228 

𝑁𝑉𝑖𝑗+ = 1 − 𝑁𝑉𝑖𝑗 229 
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Equation 2b. where 𝑁𝑉𝑖𝑗+= adjusted normalised scaled value. 230 

Next, using the groups from Figure 4b, identified by Hierarchical Clustering, the average score 231 

for a formulation across each group was calculated (Equation 3). 232 

𝐺𝑟𝑝�̅� = (∑𝑁𝑉𝑖𝑗(+))𝑥𝑛  233 

Equation 3. where 𝐺𝑟𝑝�̅� = averaged formulation score within assay group x, (∑𝑁𝑉𝑖𝑗(+))𝑥= sum 234 

of adjusted/normalized scaled values within assay group, x and n = number of assay variables 235 

in group x. E.g. Group 1 (red group, Figure 4) has nine variables, thus n = 9 for this group. 236 

 237 

Finally, using the approach of Jain et al.,4 a ‘distance from ideal’ was calculated for each 238 

formulation (Equation 4), which we term the Averaged Developability Output Score (ADOS). 239 

𝐴𝐷𝑂𝑆 = (∑𝐺𝑟𝑝�̅�)4  240 

Equation 4. where ADOS = the distance from ideal for each formulation and 4 = number of 241 

assay groups.  242 

By using this algorithm, then ranking the ADOS values on a best (lowest) to worst (highest) 243 

scale, formulations which obtain low ADOS values across the assay groups are closer to ‘ideal’ 244 

than those which obtain high values. Formulations with a high ADOS can thus be more 245 

confidently deemed sub-optimal. The values obtained from Equation 3 can be weighted by 246 

Multiple Linear Regression to obtain ADOSMLR (see Supporting Information, including Figure 247 

S23). 248 

 249 

2.8 LASSO Regression on Ranked Data 250 
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 251 

LASSO regression was initially performed to identify the minimal set of assays required to 252 

predict the observed rate of change in % monomer at 25 °C.  This was performed on the ranked 253 

data using XLSTAT 2023. This method is independent to, and has a different mathematical 254 

basis to the MLR approach and is ideally suited to datasets where there are more variables than 255 

datapoints.30 The 19 ranked assay variables (shown in Tables 3 and 4) were initially correlated 256 

against the ranked rate of monomer-loss at 25 °C, using cross-validation to find the 257 

regularisation parameter, λ, using the default settings (5 folds, 100 λ values) (Figure S24). This 258 

analysis was subsequently repeated, using the 19 variables above or all the variables from 259 

Tables 3 and 4 (including those in bold) to generate a predictive algorithm. An inherent strength 260 

of LASSO is that it identifies only those variables that are important for the resulting model 261 

(see Figure S24). 262 

 263 

Table 3: Summary of the variables output by the DAs (developability assays) employed 264 

at t=0 on the formulation:mAb panel. The colours of the variable ID number correspond to 265 

Family Tree Group colour in Figure 4. Variables with ID numbers in bold were deemed 266 

difficult to cluster and were removed from the final clustering dataset in Figure 4 (see Figure 267 

S19). 268 

Variable ID 

No. 

Assay Variable Abbreviation 

1 
Rheology of 131 

mg/mL sample 
Viscosity 

Viscosity 

2 

Hydrophobic 

Interaction 

Chromatography 

Retention time (min) 

HIC 

3 

Stand-up Monolayer 

Adsorption 

Chromatography 

Retention time (min) 

SMAC 

4 
Baculovirus Particle 

ELISA 
ELISA signal (a.u.) 

BVP 

29 (removed 

from final 

dataset) 

Affinity-Capture Self-

Interaction Nanoparticle 

Spectroscopy 

Plasmon wavelength 

shift (nm) 

AC-SINS 

5 
Differential Scanning 

Calorimetry 

1st apparent Tm 

transition (°C) 

DSC Tm1 
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6 
Apparent Tm of the 

Fab (°C) 

DSCTmFab 

7 
Dynamic Light 

Scattering 

Average 

hydrodynamic radius 

(nm) 

Rh (DLS) 

8 
Diffusion interaction 

parameter kD (mL/g) 

kD (DLS) 

30 (removed 

from final 

dataset) 

Background Membrane 

Imaging 

No of particles in t = 

0 samples 

BMI Part 

9 

High-performance size-

exclusion 

chromatography (HP-

SEC) at t=0 

% monomer 
%mono 

HPLC 

10 
Monomer retention 

time (min) 

Ret t mono 

11 
% Higher Molecular 

Weight species 

%HMW 

(HPLC) 

31 (removed 

from final 

dataset) 

% fragments 

%frag 

(HPLC) 

32 (removed 

from final 

dataset) 
HP-SEC analysis of 

samples stressed in the 

Extensional Flow 

Device (EFD) 

Observed rate of 

monomer loss at 

0.25 mg/mL 

EFDv0.25mg 

27 

Observed rate of 

monomer loss at 0.5 

mg/mL 

EFDv0.5mg 

28 

Observed rate of 

monomer loss at 1 

mg/mL 

EFDv1mg 

 269 

Table 4: Summary of the variables output by the in silico assays employed on the variable 270 

domain sequences/homology models of mAb1, mAb2 and mAb3. The colours of the 271 

variable ID number correspond to Family Tree Group colour in Figure 4. 272 

 273 

Variable No. Assay Variable Abbreviation 

12 CamSol algorithm 

Structure-

corrected CamSol 

Score 

CamSol 

13 

Therapeutic 

Antibody Profiler 

(TAP) 

Total CDR length 

(IMGT scheme) 
TAPCDRle 

14 

TAP Patches of 

Surface 

Hydrophobicity 

TAPPSH 

15 
TAP Patches of 

Positive Charge 
TAPPPC 

16 
TAP Patches of 

Negative Charge 
TAPPNC 
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17 

TAP Structural 

Fv Charge 

Symmetry 

Parameter 

TAPSFvCSP 

 274 

Table 5: Summary of the variables output from the accelerated and long-term stability 275 

study on the formulation:mAb panel. The colours of the variable ID number correspond to 276 

Family Tree Group colour in Figure 4. 277 

 278 

Variable No. Assay Variable Abbreviation 

18 

HP-SEC analysis 

of accelerated 

(AS) and long-

term stability 

samples 

Observed rate of 

change in % monomer 

at 5 °C 
MonoASv5C 

19 
Observed rate change in 

% monomer at 25 °C 
MonoASv25C 

20 

Observed rate of 

change in % monomer 

at 40 °C 
MonoASv40C 

21 

Observed rate of 

change in % HMW 

species at 5 °C 
HMWASv5C 

22 

Observed rate of 

change in % HMW 

species at 25 °C 
HMWASv25C 

23 

Observed rate of 

change in % HMW 

species at 40 °C 
HMWASv40C 

24 
Observed rate of 

fragmentation at 5 °C 
FragASv5C 

25 
Observed rate of 

fragmentation at 25 °C 
FragASv25C 

26 
Observed rate of 

fragmentation at 40 °C 
FragASv40C 

 279 

 280 

 281 

 282 

 283 
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 284 

Results 285 

Assessing the developability and kinetic storage stability of a panel of antibody 286 

formulations.  287 

The formulation:mAb panel comprised three IgG1s: mAb1, mAb2 and mAb3 in three different 288 

buffers selected to reflect typical marketed product formulation compositions31 (20 mM L-His 289 

+ 190 mM L-Arg pH 6.0 (Buffer A), 20 mM L-His + 7.5% (w/v) sucrose, pH 6.0 (Buffer B) 290 

and 25 mM sodium citrate pH 5.0 (Buffer C)). The mAbs were dialysed into these buffers, 291 

diluted to a final concentration of 50 mg/mL, spiked with 0.02% (w/v) Polysorbate 80 (PS80) 292 

and vialled (Methods), yielding nine formulation:mAb samples, A1–C3 (with the letter 293 

identifying the buffer and the number the mAb identity, e.g. B2 is mAb2 in Buffer B (His-294 

sucrose), Table 1, Methods). 295 

 296 

Each of the nine formulation:mAbs were initially characterised using ten different DAs (Figure 297 

1, Table 3, Methods and Supporting Information,). These were selected to characterise a broad 298 

array of different biophysical features as evidenced by their inclusion in different branches of 299 

hierarchical clusters of DAs reported by Jain et al4 or, for assays not included in the Jain study, 300 

their published ability to provide additional insight or prediction of mAb developability (e.g. 301 

Diffusion interaction parameter (kD) and the Extensional Flow Device (EFD), see below). The 302 

assays, grouped by the biophysical property being probed and the number of output variables 303 

measured by each technique, are briefly described below and more fully (together with a 304 

identification number used herein) in Table 3. Group (I) probes Colloidal stability: viscosity of 305 

the concentrated, surfactant-free formulations (yielding 1 variable (var.) output), retention 306 

times in size exclusion- (SEC), hydrophobic interaction- (HIC), and stand-up monolayer 307 
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adsorption chromatography (SMAC) (each yielding 1 var.), affinity-capture, self-interaction 308 

nanoparticle spectroscopy plasmon wavelength shift (AC-SINS) (1 var.) and dynamic light 309 

scattering (yielding 2 var., the hydrodynamic radius and the kD). Group (II) probes thermal 310 

stability by differential scanning calorimetry (DSC) (2 var. the first and apparent Fab melting 311 

temperature) while Group (III) probes miscellaneous features of the molecules: Baculovirus 312 

particle adsorption, linked to rapid in-vivo clearance32 (BVP) (1 var.), the number of sub-visible 313 

particles present by background membrane imaging (BMI) (1 var.) and, finally, the rates of 314 

monomer loss induced by the Extensional Flow Device (EFD) at 0.25-, 0.5- and 1 mg/mL (3 315 

var.).  This device, developed at Leeds,16,26–28 subjects proteins to the potentially synergistic 316 

stresses of hydrodynamic flow fields and interfaces that are experienced by proteins throughout 317 

their manufacture, including depth filtration and fill-finish steps.33 The EFD provides unique 318 

insight relative to other assays, 16,26,27 suggesting its utility as a complementary DA to those 319 

commonly employed by the biopharmaceutical industry.16 The use of this assay is explained in 320 

detail in the Methods. These experimentally derived variables were augmented with further 321 

variables (Group (IV)), derived from in silico methods (Table 4): prediction of CDR and FV 322 

liabilities using Therapeutic Antibody Profiler8 (5 var.) and the structure-corrected solubility 323 

of the variable domains using CamSol5 (1 var.). 324 

Exemplar data, together with violin and box plots for all nine formulation:mAbs, are shown for 325 

each DA in Figures S1–12 together with a description of each assay (Supplementary Methods). 326 

Generally, most DAs produced non-normally distributed populations with long tails, as 327 
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observed previously4,16 and the relationship between DA outputs is often difficult to rationalise. 328 

For example, the viscosity of formulation:mAb B2 was four times above the upper limit 329 

typically acceptable for prefilled syringe administration34 (Figure S1) and showed evidence of 330 

aggregation by DLS (Figure 2a).  Despite this, in silico analyses failed to flag liabilities in the 331 

variable domains of this and the other mAbs which could lead to colloidal instability (Figures 332 

S7 and S8). 333 

 334 

 335 

 336 
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 337 

Figure 2. Using the ‘developability toolkit’ to screen antibody formulations. a) Average 338 

hydrodynamic radius (Rh) of the nine samples in the study, obtained using dynamic light 339 

scattering, measured at concentrations between 2–20 mg/mL (Supplementary Methods and 340 

Figure S5). Bars are coloured according to the formulation:mAb, error bars = s.d. b) and c) HP-341 

SEC analysis of formulation:mAbs A2 (mAb2 in histidine-arginine) (b) and B2 (mAb2 342 

histidine-sucrose) (c) following accelerated and long-term storage stability (Methods). Samples 343 

were incubated at 50 mg/mL for the times and temperatures indicated, with the relative % 344 

monomer in HP-SEC trace quantified. Lines through the points at 5 °C (blue), 25 °C (orange) 345 

and 40 °C (red) are guides to the eye, not fits to the data. d and e) HP-SEC analysis for 346 

formulation:mAbs A2 (d) and B2  (e) following stress in the EFD (Methods). Initial [protein] 347 

in EFD experiments = 0.25 mg/mL (squares), 0.5 mg/mL (open circles) and 1 mg/mL 348 

(triangles), with % monomer remaining quantified by HP-SEC (Methods). 349 
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To obtain kinetic stability data for each of the characterised formulation:mAbs, we incubated 350 

the vials under accelerated stability (AS) conditions at 40 °C, as well as long-term storage 351 

(LTS) conditions at 25 °C and 5 °C. Vials were removed from the incubators after: two weeks 352 

(0.5 months), 1 month and 3 months at 40 °C; 1-, 3- and 6 months at 25 °C and; 3-, 6-, 12- and 353 

18 months at 5 °C (Methods). While HP-SEC was used to quantify the relative amount of 354 

monomeric, higher order (high molecular weight, HMW) and fragmented mAbs injected onto 355 

the column, the total soluble protein concentration was additionally quantified using UV-356 

visible spectroscopy with 350 nm correction to remove scattering artefacts (Supplementary 357 

Methods, Figure S13). Together, these analyses showed that the majority of samples formed 358 

soluble HMW species and fragments over the course of the AS and LTS studies but 359 

formulation:mAbs C2 and C3 formed insoluble aggregates after incubation for three months at 360 

40 °C (Figure S13 biii and ciii, respectively), resulting in the removal of these points from the 361 

observed rate of monomer-loss analysis.  362 

The observed rates of change in % monomer, HMW species formation and fragmentation 363 

(quantified by HP-SEC,35 Methods), for each formulation at each temperature, were calculated 364 

using linear regression (Methods). These data, shown in the Supporting Information (Figures 365 

S14–17) comprise Group (V) in our suite of DAs (Table 5). A decrease in the amount of 366 

monomer was accompanied by the concomitant increase in the HMW species and fragments 367 

detected within each sample (Figures S14–17). Generally, incubation at higher temperatures 368 

accelerated monomer loss for all the mAb samples (Figures 2b and c, for example), with these 369 
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rates becoming thirty and two hundred times slower at 25 °C and 5 °C, respectively (based on 370 

the median rate for all nine formulation:mAbs, Figures S18).  In accord with other studies,36–371 

38 this process cannot be described by simple Arrhenius kinetics,36,37 obviating the use of 372 

recently developed kinetic models39–41 to predict the LTS/ shelf-life for these 373 

formulation:mAbs.  Under the conditions and buffers used here, all formulation:mAbs showed 374 

minimal degradation at 5 °C (~0.01–0.09% monomer /month, Figure 3) precluding the use of 375 

these data as our metric of manufacturability, given the relative size of the experimental and 376 

fitting error compared to the datapoints (average coefficient of variation = 0.074% /month, 377 

median rate of loss = 0.015% /month, Methods Section 2.4).  By contrast, degradation rates 378 

were approximately ten times faster at 25 °C (Figure 3), and consequently these data were used 379 

to rank formulations as the error (0.036% /month) was far smaller than measured rate of loss 380 

(median rate of loss = 0.34% /month). We note here that at 25°C formulation:mAbs C2, B2 381 

and C1 exhibit statistically significant different rates to each other and also to A3 and B3 (which 382 

exhibit indistinguishable rates) and A1, B1, A2 and C3 (which display varying difference in 383 

significance to each other but are distinct to A3 and B3 and C2, B2 and C1).  For simplicity, 384 

we first describe our analyses using a ranking based on the observed rate values (i.e. left to 385 

right in Figure 3d ranks formulation:mAbs from best to worst).  We then show how changing 386 

the ranks for A1, B1, A2 and C3 has minimal effect on the resulting outputs, validating the use 387 

of this dataset as our test example for the statistical workflow presented herein.      388 
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 389 

Figure 3. Change in % monomer over 6 to 18 months at 25 °C and 5 °C, respectively. % 390 

monomer calculated for formulation:mAbs A1–C3, derived from technical repeats at 5 °C (a) 391 

and 25 °C (b). Fitting a straight line to the data yields the observed rate (gradient) alongside a 392 

standard error. Red region = 95% confidence interval. Observed rates for the nine 393 

formulation:mAbs at 5 °C (c) and 25 °C (d); error bars = standard error. 394 

 395 

Statistical analysis reveals the relationships between the developability assay variables.  396 

The first aim of this study was to determine the relationship between the outputs of each 397 

variable, obtained from the suite of DAs used, to allow the selection of a reduced set of 398 

complementary, non-degenerate DAs.  To do this, we performed Spearman’s rank analysis of 399 

the variables, followed by Hierarchical Clustering of the resulting correlation coefficients, as 400 

described in previous studies.4,12,16,19  As more than one variable can be obtained from some of 401 
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DAs used here (e.g. the hydrodynamic radius (Rh) and diffusion interaction parameter (kD) are 402 

both obtained from DLS), a total of 32 assay variables for each of the nine formulation:mAbs 403 

(referred to as samples herein) were analysed (see Tables 3–5, Figure 1), generating a 404 

Spearman’s rank correlation coefficient for each pairwise variable combination.  These values 405 

were then subjected to Hierarchical Clustering analysis, as described previously4,16 (Figure 406 

S19a), yielding six branches each containing variables that are related by the information they 407 

provide (Figure S19b). To better understand the strength of the clustering, the least significant 408 

(longest distance from baseline) assay variable in each branch was noted (Supplementary 409 

Methods). Following this, the data obtained for each formulation:mAb (A1–C3) was iteratively 410 

removed from the panel and the analyses described above repeated. Repeating this process for 411 

the remaining nine combinations of samples (i.e. the dataset comprising all formulations plus 412 

nine datasets with one formulation:mAb removed from each) allowed the identification of 413 

variables which clustered poorly with other assays. Using this approach, four variables, 414 

approximately equivalent to removing one formulation:mAb, were found to be the least 415 

significant branch assay in at least six dendrograms in the analysis, suggesting that these 416 

variables were distinct in the information they provided. As the first aim of this study was to 417 

understand degeneracy within DAs, these variables (AC-SINS (var. 29), BMI (var. 30), initial 418 

levels of fragmentation by HP-SEC (var. 31) and the observed rate of EFD-induced monomer 419 

loss at 0.25 mg/mL (var. 32)) were removed from the analysis.  420 
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Hierarchical Clustering of the pairwise Spearman’s correlation coefficients was repeated on 421 

the remaining 28 variables obtained from 10 DAs (Tables 1-3) for the nine formulation:mAbs 422 

and identified four branches of related assay variables (Figure 4a and b).  The red cluster is the 423 

largest, comprising nine variables (variables 1, 5–8, 16 and 20–22), probing several molecular 424 

features including the viscosity (variable 1), thermal stability (variables 5 and 6) and observed 425 

rate of monomer loss at 40 °C (variable 20). The relatedness of these latter two assays makes 426 

mechanistic sense: poor thermal stability may result in the promotion of unfolding and 427 

aggregation via the unfolded state at elevated temperature.42,43 The blue cluster (8 variables) 428 

comprises many of the TAP metrics (variables 13–15 and 17), as well as measures of molecular 429 

‘stickiness’44 (HIC, SMAC and BVP, variables 2–4). The smallest green cluster of five 430 

variables (9, 11,12, 24 and 26) probes miscellaneous features, including the observed rate of 431 

fragmentation at 40 ˚C (variable 26). The final purple cluster contains six variables (variables 432 

10, 18, 19, 25, 27 and 28). Notably, this includes the observed rates of monomer loss at 5 °C 433 

and 25 °C (variables 18 and 19, respectively) which stem from the same branch, as do the 434 

observed rates of monomer loss in the EFD at 0.5- and 1 mg/mL (variables 27 and 28, 435 

respectively). The robustness of these relationships was further assessed by sequentially 436 

removing the data obtained from each formulation:mAb from the dataset, which was then re-437 

ranked and re-analysed (example dendrograms in Figure S20). 438 
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 439 

Figure 4. Statistical analysis clusters assay variables in the developability “assay pool”. a) 440 

Heatmap of Spearman’s rank correlation coefficients (ρ) for the pairwise interactions between 441 

the 28 best-clustered assay variables in the dataset. b) Hierarchical Clustering analysis of these 442 

variables generates a “Family Tree” comprising four branches of related assays. The observed 443 

rates of monomer loss after stress in the EFD at 0.5- and 1 mg/mL (variables 27 and 28, 444 

respectively) are in the same branch (purple) as the equivalent rates following storage stability 445 

at 5°C and 25 °C (observables 18 and 19, respectively). The assays from which the variables 446 

are derived, and their abbreviations are listed in Tables 3–5. 447 

 448 
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To quantify the differences in the dendrograms, we used the approach of Lu et al29 and 449 

calculated the frequency with which an assay variable paired with its immediate neighbours 450 

over all iterations, with a median “P-value” of 0.9 (P-values range from 1 (no change in pairing) 451 

to 0 (all pairings changed), Figure S21).  For reference, 10 of 28 variables did not change 452 

pairing at all, with 11 of 28 changing 1 or 2 times (Supplementary Methods and Figure S21). 453 

At a coarser level, an assay was found to be assigned to a different group (branch) only 5 of 28 454 

times (median P = 1).  Small changes in assay groupings for subsets of antibody samples have 455 

been observed previously.4,16   456 

 457 

Developability assay outputs can be condensed into a single metric. 458 

Each cluster of DAs provides assessment of distinct biophysical properties (and critical quality 459 

attributes) which together determine developability.  We thus asked how one could rationally 460 

combine DAs to obtain a consensus measure of developability to integrate the often-conflicting 461 

results of the DAs employed (Figure 5).   462 
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 463 

Figure 5. Statistical analysis of the dataset yields a Holistic Developability Parameter 464 

(HDP).  Spearman’s rank and Hierarchical Clustering identifies the best-clustered set of 28 465 

variables. One can naïvely compute an Averaged Developability Output Score (ADOS) from 466 

these assay groups to holistically rank formulations (silver arrows). This method is a poor 467 

protector of a desired feature (storage stability at 25 °C here).  Multiple Linear Regression 468 

(MLR) can be used to optimise ADOS but uses the outputs of all assays (thus we have more 469 

variables than data points). An alternative approach uses Least Absolute Selection and 470 

Shrinkage Operator (LASSO) regression to identify which variables contribute to the 471 

prediction of the desired feature, as stated above. These key variables make up the HDP. 472 

 473 

Inspired by the work of Jain et al.,4 where a ‘distance from ideal’ of each test formulation:mAb 474 

for each DA was derived, we adapted this analytical framework to generate a parameter to 475 

summarise the overall performance of a candidate during developability assessment.  For a 476 

given variable, each formulation:mAb was ranked on a best (0) to least favourable (1) scale 477 

(Methods). The average score for the assay variables in each branch is then calculated, and the 478 
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sum of the average values of each branch calculated. In this model-independent approach, 479 

formulation:mAbs with a lower score (herein termed Averaged Developability Output Score, 480 

ADOS) are expected to have more quality attributes for developability.  This approach firstly 481 

identifies mAb2 as likely to be difficult to develop, as it scores badly in most assay clusters, 482 

irrespective of buffer condition (Figure 6ai) and secondly, identifies Buffer A (histidine-483 

arginine) as the best formulation. One could thus utilise ADOS to consolidate the data from a 484 

variety of assays into one, easy-to-interpret metric, reducing the likelihood of one assay 485 

variable leading to the outright rejection of a given formulation.  486 

 487 

 488 
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 489 

 490 

Figure 6. ADOS identifies favourable mAb formulations, while the HDP identifies the 491 

“most developable”. ai) ADOS, derived using the 28 best clustered variables from Figure 4. 492 

Bars are coloured by formulation. The ADOS outputs can be put on a rank scale to aid other 493 

analyses (Supporting information) aii) Rank of observed rate of change in % monomer at 25 494 

°C vs ranked ADOS score. A linear fit to the data shows a modest correlation (r = 0.53). LASSO 495 

regression of the variable dataset excluding accelerated and storage stability (Group V) data 496 

identifies the five assay variables (bi) that together yield the Holistic Developability Parameter 497 

which correlates strongly with the ranked observed rate of change in % monomer at 25 °C (r = 498 

0.92) (bii). These five diverse assays (abbreviations defined in Tables 3–5) are colour-coded in 499 

accord with the dendrogram in Figure 4b.  500 

 501 

 502 

 503 

 504 
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ADOS cannot be used to assess storage stability 505 

While this method yields values that correlate qualitatively with empirical knowledge of the 506 

buffers and mAbs used, its ability to identify formulation:mAbs with favourable short-/long-507 

term storage stability was unknown.  The prediction of kinetic stability at 5 °C is highly 508 

desirable, as this is both expensive in terms of material and time.  However, the slow 509 

degradation kinetics for the samples studied here precludes this goal for this dataset (see 510 

Discussion). To answer this question, we thus chose the rank order of change in % monomer 511 

at 25 °C as the “measured attribute of manufacturability” to be predicted; but we note that other 512 

user-defined critical quality attributes could also be used.  As all the accelerated and storage 513 

stability data in Group V (obtained at 5 °C, 25 °C and 40 °C) are expensive in terms of protein 514 

required and time to obtain, all Group (V) data were removed from the dataset, allowing only 515 

rapid “t=0” DAs with low sample requirements to be used to predict storage stability. The 516 

remaining 19 variables in the dataset were re-analysed by Spearman’s rank and Hierarchical 517 

Clustering, yielding the same four assay clusters identified previously (Figure S22). Plotting 518 

the ranked, observed rate of change in % monomer at 25 °C versus the ADOS calculated using 519 

the clusters derived from these 19 variables, results in a weak correlation (Pearson’s r = 0.53, 520 

Figure 6aii). As each branch (and assays within branches) may not have equal importance in 521 

determining storage stability, Multiple Linear Regression (MLR, Supplementary Methods) was 522 

employed to weight each branch according to its contribution to this prediction. This made the 523 

correlation markedly better (Pearson’s r = 0.93, Figure S23), with the caveats that the 524 
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ADOSMLR is still derived from many different assays, resulting in more degrees of freedom 525 

(i.e., variables) than data points.  526 

 527 

LASSO regression can be used to identify key predictor variables 528 

Whilst the described approaches provide an understanding of the inter-relationship between 529 

assays and assay clusters, reducing the number of DAs still requires ad-hoc decisions to be 530 

made on the dataset or a large panel of DAs to be included within the regression against the 531 

chosen developability parameter. To obviate this requirement, we adopt a systematic approach 532 

which identifies the smallest set of variables to link DAs with the chosen measurable attribute 533 

of manufacturability.  Least Absolute Shrinkage and Selection Operator (LASSO) regression 534 

is a variable selection method which reduces the number of variables to the minimum set which 535 

best fit the data, with this method being useful when there are more variables than samples (our 536 

dataset comprises 19 variables and nine samples, Supplementary Methods).30 Performing 537 

LASSO regression on the dataset without Group (V) data reveals that just five assay variables 538 

can predict the ranked absolute observed rate of change in % monomer at 25 °C (r = 0.92, 539 

Figure S24, Figure 6b). These variables are the first apparent thermal transition in DSC and the 540 

kD obtained from DLS (Red group, variables 5 and 8, respectively), monomer retention times 541 

on HP-SEC (Purple group, variable 10) and HIC columns (Blue group, variable 2) and the 542 

observed rate of monomer loss induced by the EFD at 0.5 mg/mL (Purple group, variable 27). 543 



31 
 

Though the regression coefficient for the kD is small, removing it from the dataset results in 544 

no correlation being obtained from LASSO, reinforcing the importance of the kD as a 545 

developability parameter.23  As no information derived from Hierarchical Clustering is used in 546 

LASSO regression we repeated this procedure on the full DA dataset (not including the AS or 547 

LTS (Group V) data) as the four difficult to cluster variables (29–32) may still provide 548 

important information through their unique insight. LASSO regression once again showed high 549 

correlation with change in % monomer at 25 °C (Pearson’s r = 0.95, Figure S24c) but required 550 

six variables: the same five as above and one of the difficult to cluster variables omitted in 551 

previous analyses: the number of particles observed in the formulation:mAbs at t=0 by BMI, 552 

variable 30).  Intriguingly, repeating this process to predict the rank order of accelerated 553 

stability (% monomer at 40 °C), yielded a lower Pearson’s r (0.86) with LASSO regression 554 

only selecting the 1st transition by DSC as an important variable for this (Figure S24c). This 555 

together with non-Arrhenius degradation kinetics, suggests that monomer loss may occur by 556 

different mechanisms at 25 °C and 40 °C. As noted above, error analysis of the linear regression 557 

of the 25 °C degradation rate (Supplementary Methods and Figure 3) showed that A3 and B3 558 

have very similar rates of monomer loss at 25 °C and A1, with B1, A2 and C3 displaying 559 

varying degrees of significant difference between the observed rates (Figure 3d). To investigate 560 

the effect of fitting error on formulation:mAb ranking, the ranks of A3 and B3 were assigned 561 

tied 1st (i.e., most stable), with C2, B2 and C1 (all significantly different to every other 562 

formulation:mAb) assigned fixed ranks of 6th, 7th and 8th
, respectively.  The remaining four 563 
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formulation:mAbs were systematically re-assigned ranks 2–5 using every combination of each 564 

of their maximal (high, H) and minimal (low, L) degradation rates, calculated from  the fit 565 

error, yielding 16 different (24) ranks from LLLL to HHHH.  Generally, irrespective of whether 566 

the full or focussed variable dataset was used for LASSO regression, the predictive power 567 

(Figures S25 and S26) and identified keystone variables (Figure 7) are preserved.    As a median 568 

of six keystone variables, which probe diverse physicochemical features of the molecules, are 569 

selected from these analyses, (Figure 7), this suggests our approach, which generates a Holistic 570 

Developability Parameter (HDP) could work as general strategy for mAb developability. 571 
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 572 

Figure 7. Robustness analysis of the 25 °C storage stability dataset and its impact on the 573 

LASSO regression. a) Pie chart showing the selection frequency of the 19 best-clustered 574 

variables, which were selected by LASSO regression over the 17 (absolute plus 16 575 

combinations of ranks for A1, B1, A2 and C3) 25 °C data ranks. The five most frequently 576 

selected variables are the same as those in Figure 6bi. b) Pie chart showing the selection 577 

frequency of variables in a) grouped and coloured according to the dendrogram in Figure 4. 578 

Each LASSO iteration mainly selects variables from the red, blue and purple assay groups. 5 579 

to 6 core “t=0”developability assays, spanning an array of physicochemical features, are 580 

sufficient to predict 25 °C storage stability. 581 

 582 



34 
 

Discussion 583 

An ever-expanding toolkit of developability assays has been established by the field to 584 

interrogate various physicochemical features of antibodies, with a view to identifying lead 585 

candidates with favourable drug-like properties.2,4,45 Studies have subjected panels of IgG 586 

antibodies4,7,12,20,46–48 and other modalities 19,49 to various established9,50,51 and novel DAs13,17 587 

and analysed the resulting datasets by a variety of statistical methods including Pearson’s12,19 588 

and Spearman’s correlation.4,16,49 The majority of these studies have investigated the 589 

relationship (and potential redundancies) between different DAs including a wide array of well 590 

used assays4 or the relationship between these established DAs and novel assays that report on 591 

hydrodynamic and interfacial stability12,13,16 or in silico-derived parameters.47  Other groups 592 

have examined the ability of DAs to predict the behaviour of proteins during downstream 593 

processing.20,23  Interestingly, and in agreement with our results, both of these latter studies 594 

identified parameters that measure self-association such as kD, to be the strongest predictors.  595 

Despite these successes, a framework for the integration of the diverse outputs of DAs was 596 

lacking.  This challenge is non-trivial, based on the array of mAb sequences available,45 the 597 

orthogonal set of assays one can use to interrogate these molecules2,47 and the impact that 598 

different formulation components (namely buffers, co-solutes and excipients) can have on the 599 

above.31 600 

We subjected a panel of three mAbs in three different formulations, to an array of DAs and 601 

measured their accelerated and long-term stability over a three to 18-month period. Spearman’s 602 
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rank was chosen to assess correlations between the resulting assay variables, as this avoids the 603 

potential bias from assuming linear correlations between different variables and reduces the 604 

influence of measurement noise on the analysis.52  By employing Hierarchical Clustering on 605 

the Spearman correlation coefficients, we were able to identify DAs which group readily into 606 

families (e.g. HIC and BVP), as well as four DAs which were hard to cluster (AC-SINS, BMI, 607 

initial levels of fragmentation by HP-SEC and the observed rate of EFD-induced monomer loss 608 

at 0.25 mg/mL). For AC-SINS, poor clustering may be due to the atypical blue-shifts observed 609 

in Buffer B (Figure S4, possibly caused by a change in the stability of the nanoparticles 610 

themselves).53  For the EFD data, we postulate that surface-dominated aggregation occurs at 611 

low protein concentrations with a second bulk aggregation pathway occurring at higher 612 

concentrations (Figure S11).28 It is important to note that “difficult to cluster” may instead 613 

indicate that these assays probe unique features of the molecules as shown when the outputs of 614 

the EFD assay applied to subset of the “Jain” panel of mAbs were compared to the other DAs,16 615 

as well as outputs derived from charge-stabilised self-interaction nanoparticle spectroscopy and 616 

poly-specificity particle assays performed on a set of 80 clinical-stage sequences.46  617 

We utilised 12 DAs at t=0, as well as performing a stability study at three temperatures (5-, 25- 618 

and 40 °C) for 18-, 6- and 3 months respectively. While we did monitor the change in the 619 

macroscopic properties of the samples using visual inspection standards,54 the non-continuous 620 

nature of the data generated precluded their inclusion in our final workflow. Furthermore, the 621 

particulate matter was tracked over the course of the stability study using background 622 
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membrane imaging. Many 40 °C samples exceeded the recently derived 55 measurement limits 623 

for the technique after just 1 month (data not shown), hence only the t=0 data were used in the 624 

final dataset. Transforming the outputs of the 28 best-clustered variables from these assays to 625 

a single scale allowed us to understand how best to utilise these data.  Firstly, by assuming all 626 

assays are equally important, we condensed the complex and sometimes conflicting DA outputs 627 

to a single measure of biophysical behaviour (the ADOS), in a similar fashion to the ‘distance 628 

from ideal’ measurement derived by Jain et al. 2017, though other normalisation methods have 629 

been developed recently.51 The distance from ideal values were used by Jain et al. to then 630 

cluster the 137 IgG molecules in their study into groups of well-behaved (i.e., developable) 631 

sequences, as well as those with less favourable properties, without explicitly ranking these 632 

from best to worst or investigating the consequences of ‘non-developability’ on kinetic 633 

stability, for example. Rattray and colleagues condensed their DAs using a normalisation 634 

method, summing these scores but attributing no weighting to e.g. different families of assays, 635 

as hierarchical clustering was not employed on their ranked data. They showed that a lower 636 

normalised score correlated with reduced viscosity for a panel of high concentration mAbs.51 637 

The ADOS method identified the arginine-containing Buffer A as the formulation that yields 638 

the best-behaved molecules (in terms of biophysical properties), but it is a poor predictor of the 639 

exemplar used to test our manufacturability prediction, that of kinetic stability at 25 °C.  This 640 

is probably because inherent within the ADOS methodology is the assumption that all assays 641 

within a branch and all branches are equally important.  Using a similar approach Wolfgang 642 
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Freiss and colleagues showed that a modest correlation was observed between aggregation after 643 

six months at 4 °C and 25 °C (the data for both temperatures and all formulations was averaged) 644 

and a “Stability Risk Score By High Analytical Effort” derived from 16 variables.19 Similarly 645 

to the ADOS approach, this work also suggested that the formulation largely determined the 646 

output score.19  By essentially removing unimportant variables (in terms of predictive power), 647 

LASSO regression, is a powerful method to identify the subset of assay variables and optimise 648 

the weightings necessary to predict kinetic stability at 25 °C.  In contrast to the multiple studies 649 

to delineate the relationship between DAs, studies investigating the relationship between DAs 650 

and kinetic stability at 5-, 25- and 40 °C are less common. Goldberg et al., assessed DAs such 651 

as Tm,app and aggregation onset temperature and 40 °C aggregation and monomer-loss rates 652 

for a panel of mAbs in different formulations. They found the strength of the correlation was 653 

dependent on the formulation condition and that the correlation with 40 °C and 4 °C data was 654 

poor.38 Others have also shown it is difficult to correlate behaviour of different DAs with real-655 

time stability, based on the molecules and formulations in questions and the temperature-656 

dependence of their underlying degradation mechanism.19,21,49 657 

Comparing the outputs from the independent approaches of hierarchical clustering and LASSO 658 

regression shows that HDP integrates variables from different branches of the “family tree” of 659 

clustered assays, which report on a range of biophysical properties: thermal and colloidal 660 

stability (Tm1 by DSC and kD by DLS), stickiness (HIC and SEC retention time) and sensitivity 661 

to interfacial and hydrodynamic stresses (EFD).  The emergence of colloidal stability accords 662 
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with a wealth of previous studies that links this property to downstream processing and solution 663 

behaviour.20,23,51.  The non-Arrhenius kinetics exhibited by our formulation:mAbs and reported 664 

in other studies,36–38 prevents the use of recently established kinetic models to directly predict 665 

long term stability from our accelerated stability data.39–41,56,57 and also suggests that 666 

aggregation (or any other process that drives the monomer loss used as metric of 667 

manufacturability used here) may be driven by transient partial unfolding of the native state.  668 

This accords with monomer loss increasing with decreased Tm1, increased HIC and SEC 669 

retention time and increased sensitivity to interfacial and hydrodynamic stresses.  Given this 670 

broad sampling of biophysical characteristics and its strong correlation with the ranked stability 671 

data obtained at 25 °C we have termed this the Holistic Developability Parameter or HDP.  The 672 

fact that our developability framework, which utilises many diverse assays, was able to 673 

describe this correlation suggests that monomer loss occurs by distinct pathways that do not 674 

simply involve global unfolding and that the generality of our approach removes the need for 675 

the user to have a detailed knowledge of the aggregation mechanism underpinning a given 676 

protein’s degradation pathway.42 Similarly, as the HDP is determined by diverse assays (i.e. 677 

four of the five families of related assays, Figure 6), these assays may be sufficient to broadly 678 

define the biophysical and chemical behaviour of proteins. Consequently, the same core assays 679 

may be sufficient to predict a variety of critical quality attributes but using a HDP comprising 680 

different weightings for each assay.  The prediction of 5 °C long-term storage stability using 681 

LASSO was precluded by the stability of the formulation:mAbs in our test set at  this 682 
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temperature. This may be because the mAbs used in our study (and others21) had all reached 683 

later stages of development.  Accordingly, we suggest that the method we describe is employed 684 

as a rapid screen during candidate selection to ensure identification of mAbs with suitable long-685 

term stability after sequence-based features which are linked to inherently poor developability, 686 

e.g. charge and hydrophobicity58, or low chemical stability are removed using online tools such 687 

as LAP.59 Here, we have focussed on predicting kinetic stability at 25 °C, as this parameter is 688 

onerous to measure in terms of time (six months) and material (>200 mg per molecule). We 689 

reiterate that our approach provides a general framework to define the key assays which predict 690 

any measure of manufacturability of the user’s interest, provided a test dataset of the outputs 691 

of a variety of DAs, together with the parameter of interest to be predicted, has been measured 692 

for a panel of mAbs.  Here, in contrast to more complex machine-learning methods (which may 693 

nonetheless employ LASSO regression), we have used a relatively small dataset and LASSO 694 

regression to generate a simple and sparse predictive model containing five or six key variables, 695 

using assays which consume milligram quantities of material and take less than a day to 696 

complete. Furthermore, these variables stem from different branches of the “family tree” of 697 

assays, thus encompassing a range of biophysical features of each formulation:mAb. Of course, 698 

more molecules, covering number, sequence, topology, protein concentration and formulation 699 

diversity, will be needed to test this further in the future, with some datasets already emerging 700 

to this aim,49 providing the groundwork needed to test our general framework’s broad 701 

applicability. 702 
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Conclusion 703 

Herein, we subjected nine different formulation:mAbs to an array of diverse lab- and computer-704 

based developability assays, alongside rate of relative monomer loss at 5-, 25- and 40 ˚C to 705 

obtain a test dataset with which to develop a rational framework for DA selection. Through 706 

adopting a robust statistical approach, we demonstrate it is possible to identify a minimal set 707 

of DAs capable of predicting a specific critical quality attribute of the development pipeline. 708 

Combining these variables using the LASSO approach yields a quantifiable “Holistic 709 

Developability Parameter” (HDP) by which candidates can be ranked by user-determined 710 

measure of manufacturability irrespective of often conflicting results from multiple, separate 711 

DAs. Here we demonstrate the approach by using day zero DAs to predict the storage stability 712 

at 25 °C, since the latter is expensive (in terms of both time and material), yet essential within 713 

the regulatory framework. The streamlining of development in this way supports intensification 714 

within the drug pipeline, reducing costs and increasing sustainability.   715 

 716 

 717 

 718 

 719 

 720 

 721 
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Supporting Information 722 

Further information on the developability assays, data distributions for each assay variable, raw 723 

data for the AS and EFD studies, as well as statistical analysis, are available in the Supporting 724 

Information. 725 

The main analysed data, including the ranked data, are available via the University of Leeds 726 

repository (https://doi.org/10.5518/1470). Other data are available from the corresponding 727 

authors upon reasonable request. 728 
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