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ABSTRACT: A framework for the rational selection of a minimal suite of nondegenerate developability assays
(DAs) that maximize insight into candidate developability or storage stability is lacking. To address this, we
subjected nine formulation:mAbs to 12 mechanistically distinct DAs together with measurement of their
accelerated and long-term storage stability. We show that it is possible to identify a reduced set of key variables
from this suite of DAs by using orthogonal statistical methods. We exemplify our approach by predicting the
rank formulation:mAb degradation rate at 25 °C (determined over 6 months) using just five DAs that can be
measured in less than 1 day, spanning a range of physicochemical features. Implementing such approaches
focuses on resources, thus increasing sustainability and decreasing development costs.
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1. INTRODUCTION
The adoption of the Quality by Design paradigm by the
biopharmaceutical industry over the past two decades1 has led to
the emergence of the concept of “developability”. This can be
broadly defined as the selection of molecules with desirable
biochemical and biophysical attributes, which increase the
chances of translation to a commercial therapeutic manufac-
tured at a large scale.2−4 Focusing on monoclonal antibodies
(mAbs), many biophysical assays have been employed to probe
different physicochemical characteristics of these proteins,
including solubility,5−7 liabilities in the complementarity
determining regions (CDRs),8 susceptibility to thermal
stress,9,10 undesired interfacial adsorption,11−13 and aggregation
propensity.14−18 Since the seminal work of Jain et al.,4 many
groups have used Pearson7 or Spearman’s rank correlation12,19

to relate the behavior of molecules in different assays and
examine the relationships between different in vitro and in silico
methods.20−23 Nevertheless, a framework to link the outputs of
these developability assessments to a chosen measurable
attribute of manufacturability is lacking. The ability to do this
would decrease the time for development, derisk candidate
selection and scale-up, and increase sustainability, bringing
enhanced provision of medicines to patients.

To address this issue, here we describe a logical framework to
condense the outputs of a focused set of developability assays
(DAs) to a single parameter. This parameter, derived from
assays employed early in development, has the predictive power
of a user-defined measurable attribute of manufacturability

(Figure 1). To do this, we obtain a data set derived from 12
mechanistically distinct DAs (with the outputs captured by 23
variables) including in silico analyses on three IgG1s in three
formulations and complement these with long-term and
accelerated stability data obtained in the same buffers (captured
by nine variables). As accelerated and long-term (i.e., real-time)
degradation rates are universal, yet expensive-to-determine
quality attributes essential within the regulatory framework (for
a typical mAb, this takes over two years and consumes grams of
material),24 we chose the kinetic stability of the samples at 25 °C
as our measurable attribute of manufacturability.

Statistical analysis of the data set shows that the DAs are
grouped into four families that probe distinct biophysical
features which can be used to rank formulation:mAbs
holistically. We then show that a combination of suitably scaled
outputs from a focused, nondegenerate set of DAs that probe
multiple biophysical attributes can be used as an indicator of
kinetic stability early in the development pipeline by predicting
relative storage stability at 25 °C. The general methodology
(which could be applied to other manufacturing attributes of the
user’s choosing) is rapid and resource-efficient, and its ability to
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capture storage stability derisks and increases the sustainability
of early-stage candidate selection.

2. EXPERIMENTAL SECTION
2.1. Antibodies and Formulations. All antibodies were

expressed in an IgG1 format in CHO cells and purified from the
culture medium using Protein A chromatography.25 Each IgG1
(mAb1, mAb2, and mAb3) was then dialyzed into the following
formulations: 20 mM L-His, 190 mM L-arginine, pH 6
(formulation A); 20 mM L-His, 220 mM (7.5% w/v) sucrose,
pH 6 (formulation B); and 25 mM sodium citrate, pH 5.0
(formulation C) by repetitive buffer exchanges using Millipore
Centricon 30 000 MWCO filters, according to the manufac-
turer’s protocol. Briefly, the tubes were primed with 15 mL of the
new formulation buffer and centrifuged at 3500g for 10 min. The
sample was loaded into the tubes and centrifuged as before for
30 min. The filtrate was discarded, and the retentate was diluted
to 15 mL with formulation buffer. This process was repeated at
least 5 more times until the final desired concentration and
volume were reached.

Protein concentration was determined at 280 nm by using a
Trinean DropSense96 UV−vis spectrophotometer. Samples
were diluted to a final concentration of 50 mg/mL, then syringe-
filtered through a 0.22 μm filter (Millipore) in a laminar flow
hood. 10% (w/v) PS80 was added to each mAb/formulation to a
final concentration of 0.02% (w/v) and then refiltered under
sterile conditions (0.22 μm), then vialed in 1.1 mL aliquots using
2R glass vials, rubber stoppers, and crimp sealed. One set of vials
was frozen at −80 °C, for use later in HIC, SMAC, and EFD

assays. The osmolality and pH of the samples were measured
using an OsmoPro and Mettler Toledo pH meter, respectively,
to confirm the formulations were within specification (see the
Supporting Information).

For reference, this yields three IgGs in three formulations
(nine samples in total), with the code names displayed in the
unshaded boxes in Table 1.

2.2. Developability Assays. Methods for the rheology of
(surfactant-free) formulations, HIC, SMAC, BVP-ELISA, AC-
SINS, DSC, DLS, BMI, CamSol, TAP, and soluble protein
concentration measurements, are provided in the Supporting
Methods.
2.3. Extensional Flow Device and HPLC Assay. Design

and operation details of the extensional flow device (EFD) can
be found elsewhere.16,26−28 The current work used a modified
version of the original device, with a 3D-printed insert allowing
three pairs of 1 mL Gastight Hamilton syringes to be mounted
and driven simultaneously. Each EFD experiment initially begins
with 3× buffer-rinsed syringes fitted with fresh 75 mm long, 0.3
mm i.d. borosilicate glass capillaries (Sutter Instruments) via
ferrule compression fittings (Hamilton) and Gilson P10 O-rings.

Figure 1. Overview of the study. Three IgG1s were placed in three different buffer conditions (histidine-arginine (green, buffer A), histidine-sucrose
(blue, buffer B), and sodium citrate (brown, buffer C)), to yield nine formulation:mAb pairs. Each sample was analyzed with 10 in vitro developability
assays (including the extensional flow device (EFD)) and two in silico analyses, followed by accelerated and long-term storage stability over 3 to 18
months. The completed data set (comprising at least 600 measurements) was analyzed and condensed to 32 reported assay variables, per sample. The
data set was then scrutinized with an array of statistical tools. As a proof of concept, we examine whether our framework can predict the rank order of
the kinetic stability of our samples at 25 °C, which is resource-intensive in terms of both time and material, using less resource-intensive “time equal
zero” assays.

Table 1. Nomenclature for IgGs and Buffer Conditions Used

formulation:mAb mAb1 mAb2 mAb3

formulation A (His-Arg) A1 A2 A3
formulation B (His-sucrose) B1 B2 B3
formulation C (Na citrate) C1 C2 C3
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The mAb solutions were prepared from thawed vials of each
respective formulation. The aliquot was diluted ∼10-fold in its
respective formulation buffer, syringe-filtered (0.22 μm,
Millipore), and the concentration was determined (after a
further 20-fold dilution) by UV−vis spectroscopy (Shimadzu
UV-1800). 0.5 mL portion of protein solution (0.25-, 0.5-, and 1
mg/mL) was drawn into each respective sample syringe,
removing visible air bubbles prior to connection to their
buffer-rinsed “receiver” syringe. The syringe pairs were fixed
with top-mounted 3D-printed clamps, before being driven by a
linear stage using a stepper motor at a velocity of 8 mm/s for a
defined number of passes (10−500). The pass conditions were
controlled by a microprocessor and a visual display. Once
finished, syringes were disassembled and the solutions were
slowly placed into fresh Eppendorf tubes and kept on ice.
Control samples were incubated ambiently alongside the 500
passes samples (which takes ∼50 min to complete) at each
concentration. The syringes were washed with 2% (v/v)
Hellmanex-III (aq), Milli-Q water, and formulation buffer
prior to each new experiment.

To quantify EFD-induced aggregation, samples were clarified
by ultracentrifugation, spinning 2 × 150 μL of each sample for
30 min at 30 000 rpm (TLA100 rotor, Beckmann Coulter). 2 ×
100 μL of supernatant was removed from each respective sample
tube, with the supernatants then combined and loaded in a 300
μL conical insert polypropylene vial (VWR), before crimp-
sealing with PTFE/Aluminum lids (Thermo Fisher). Samples
were analyzed by HP-SEC on a Shimadzu Nexera LC-40 system.
20 μL of sample was injected onto a TOSOH G3000swxl
column, eluting isocratically with HP-SEC mobile phase (0.1 M
sodium phosphate dibasic, 0.1 M sodium sulfate pH 6.8), at a
flow rate of 0.5 mL/min. Following detection at 280 nm with a
PDA detector, the chromatograms were integrated in
LabSolutions software, and % monomer remaining was
calculated by normalizing the peak areas to those of the
respective, quiescent control samples. The observed rate of
monomer loss was computed by using the SLOPE function in
Microsoft Excel.
2.4. Accelerated (AS) and Long-Term Storage Stability

Study. This study commenced in January 2020. Boxes
containing vials of A1−C3 were placed in incubators at the
temperatures and for the durations stated in Table 2.

Due to the COVID-19 pandemic, all time point samples
(apart from 0-, 0.5-, and 1-month samples) were pooled and
stored at −80 °C prior to their quantification in April 2022. To
quantify the species remaining in solution at each time point,
samples were diluted 1:4 in PBS (Sigma) into a 0.45 μm
centrifugal filter unit (Millipore) and spun at 16 700g for 1 min.
Alongside the formulated samples, a series of standards (PBS,
HP-SEC mobile phase (0.1 M sodium phosphate dibasic, 0.1 M
sodium sulfate pH 6.8), Nip228 reference standard IgG (in 20
mM L-His, 240 mM sucrose pH 6.0), and BioRad column
calibrants) were clarified in the same fashion.

A 2 × 25 μL sample was injected onto a TOSOH G3000swxl
column, equipped with a guard column. The samples were
eluted isocratically in the HP-SEC mobile phase at 1 mL/min on
an Agilent HPLC system. Peak areas were quantified by
integration using ChemStation software. The monomer peak
was considered as the major peak with a retention time of ∼8.3
min. Any peaks detected with a shorter retention are higher-
molecular-weight species (HMW). Any peaks that elute after the
monomer are considered to be fragments. The area values were
input into Excel, including the standards, which passed internal
validation levels. After averaging the technical replicates, the
SLOPE function was used to determine the observed relative
rates of % change in monomer, HMW content, and % fragment
over the respective time courses above. We thus highlight that all
of the observed rates pertaining to the kinetic stability study are
relative observed rates, but we omit “relative” for brevity
throughout the manuscript.

Finally, the error on the observed rate of change in %
monomer at 25 °C test data set was calculated by including the
error (s.d.) from both technical replicates for each formulation.
The average coefficient of variation from the SLOPE analysis
(for the entire data set = 0.036%/month) was used as a default
value where samples had zero error. Instrumental error
weighting was used (1/CV2) and a linear fit (y = a + bx) was
performed in OriginPro to obtain the gradient (b) and standard
error (from the fit) for each formulation (Figure 3). This
analysis was also performed on the 5 °C (average SLOPE CV =
0.074%/month).
2.5. Statistical Analyses. Data were processed in Microsoft

Excel. Correlation analysis and Hierarchical Clustering of
Spearman correlation coefficients were performed in OriginPro
2023b. For the clustering, Euclidean distances and group
average clusters were used to draw the dendrogram. All graphs in
the manuscript were plotted in this software. Details on Multiple
Linear Regression (OriginPro 2023b) are detailed in the
Supporting Methods.
2.6. Ranking and Sensitivity Analysis. Assay variables

were ranked in Microsoft Excel using the RANK.AVG function.
Values were ranked from the most desirable to least desirable
value, depending on the favorable direction of the assay, e.g., a
high Tm,app is desirable, while a low Tm,app is undesirable.

For the sensitivity analysis, one formulation, e.g., A1, was
removed from the data set, the data reranked as above, and
Hierarchical Clustering was performed as stated in the main text.
This process was repeated sequentially for each formulation.
The least significant correlations are flagged in OriginPro,
generally pertaining to branches within each assay group that
have the largest distance from the baseline, e.g., variables 30 and
32 in Figure S19. To further evaluate the robustness of the assay
variable groupings, the approach of Lu et al. was employed.29

The total number of times a variable paired with its immediate
neighbor was counted in each iteration of the analysis, then
divided by the total number of iterations (10 in this case). Values

Table 2. List of Samples Taken for Analysis from the Stability Study
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(termed P) close to 1 reflected the most robustly clustered
variables (Figure S21).
2.7. Averaging of Developability Output Score (ADOS)

Algorithm. The foundations for the following analysis can be
found elsewhere.4,16 First, the scores for a formulation, i, in an
assay variable, j, were scaled according to their position within
the distribution of the observed data (eq 1)

V
y Y

Y Yij
50%

80% 20%
=

(1)

where Vij = scaled value, y = reported assay value, Y50% = median,
Y80% = 80th percentile value, and Y20% = 20th percentile value.

Next, the scaled values were normalized onto a best (0) to
worst (1) scale (eq 2a)

V V

V V
NV

( min )

(max min )ij
ij ij

ij ij
=

(2a)

where NVij = normalized scaled value, min Vij = smallest scaled
value for the assay variable, and max Vij = largest scaled value for
the variable.

For assay variables where the smallest number corresponds to
the worst score, e.g., the formulation:mAb with the lowest Tmapp
has the poorest thermal stability and a very negative monomer-
loss slope reveals faster aggregation or degradation, the scores
were adjusted with eq 2b.

NV 1 NVij ij=+
(2b)

where NVij
+ = adjusted normalized scaled value.

Table 3. Summary of the Variables Output by theDAs (Developability Assays) Employed at t = 0 on the Formulation:mAbPanela

aThe colors of the variable ID number correspond to the family tree group color in Figure 4. Variables with ID numbers in bold were deemed
difficult to cluster and were removed from the final clustering data set in Figure 4 (see Figure S19).
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Next, using the groups from Figure 4b, identified by
Hierarchical Clustering, the average score for a formulation
across each group was calculated (eq 3).

( )
x

n
Grp

NV ij
x

( )

=
+

(3)

where Grpx̅ = averaged formulation score within assay group x,
(∑NVij

(+))x = sum of adjusted/normalized scaled values within
assay group, and x and n = number of assay variables in group x.
For example, Group 1 (red group, Figure 4) has nine variables,
thus n = 9 for this group.

Finally, using the approach of Jain et al.,4 a “distance from
ideal” was calculated for each formulation (eq 4), which we term
the averaged developability output score (ADOS).

x
ADOS ( Grp )

4
=

(4)

where ADOS = distance from ideal for each formulation and 4 =
number of assay groups.

By using this algorithm, and then ranking the ADOS values on
a best (lowest) to worst (highest) scale, formulations that obtain
low ADOS values across the assay groups are closer to “ideal”
than those that obtain high values. Formulations with a high
ADOS can thus be more confidently deemed suboptimal. The
values obtained from eq 3 can be weighted by Multiple Linear
Regression to obtain ADOSMLR (see Supporting Information,
including Figure S23).
2.8. LASSO Regression on Ranked Data. LASSO

regression was initially performed to identify the minimal set
of assays required to predict the observed rate of change in %
monomer at 25 °C. This was performed on the ranked data using
an XLSTAT 2023. This method is independent to and has a
different mathematical basis to the MLR approach and is ideally
suited to data sets where there are more variables than data
points.30 The 19 ranked assay variables (shown in Tables 3 and

4) were initially correlated against the ranked rate of monomer
loss at 25 °C, using cross-validation to find the regularization
parameter, λ, using the default settings (5-fold, 100 λ values)
(Figure S24). This analysis was subsequently repeated using the
19 variables above or all of the variables from Tables 3 and 4
(including those in bold) to generate a predictive algorithm. An
inherent strength of LASSO is that it identifies only those
variables that are important for the resulting model (Figure
S24).

3. RESULTS
3.1. Assessing the Developability and Kinetic Storage

Stability of a Panel of Antibody Formulations. The
formulation:mAb panel comprised three IgG1s: mAb1, mAb2,
and mAb3 in three different buffers selected to reflect typical
marketed product formulation compositions31 (20 mM L-His
+190 mM L-Arg pH 6.0 (Buffer A), 20 mM L-His +7.5% (w/v)
sucrose, pH 6.0 (Buffer B), and 25 mM sodium citrate pH 5.0
(Buffer C)). The mAbs were dialyzed into these buffers, diluted
to a final concentration of 50 mg/mL, spiked with 0.02% (w/v)
polysorbate 80 (PS80), and vialled (Methods section), yielding
nine formulation:mAb samples, A1−C3 (with the letter
identifying the buffer and the number the mAb identity, e.g.,
B2 is mAb2 in Buffer B (His-sucrose), Table 1, Methods
section).

Each of the nine formulation:mAbs were initially charac-
terized using 10 different DAs (Figure 1, Table 3, Methods
section, and Supporting Information). These were selected to
characterize a broad array of different biophysical features as
evidenced by their inclusion in different branches of hierarchical
clusters of DAs reported by Jain et al.4 or, for assays not included
in the Jain study, their published ability to provide additional
insight or prediction of mAb developability (e.g., Diffusion
interaction parameter (kD) and the EFD, see below). The
assays, grouped by the biophysical property being probed and
the number of output variables measured by each technique, are

Table 4. Summary of the Variables Output by the In Silico Assays Employed on the Variable Domain Sequences/Homology
Models of mAb1, mAb2, and mAb3a

aThe colors of the variable ID number correspond to the Family Tree Group color in Figure 4.
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briefly described below and more fully (together with an
identification number used herein) in Table 3. Group (I) probes
Colloidal stability: viscosity of the concentrated, surfactant-free
formulations (yielding 1 variable (var.) output), retention times
in size exclusion (SEC), hydrophobic interaction (HIC), and
stand-up monolayer adsorption chromatography (SMAC)
(each yielding 1 var.), affinity capture, self-interaction nano-
particle spectroscopy plasmon wavelength shift (AC-SINS) (1
var.), and dynamic light scattering (yielding 2 var., the
hydrodynamic radius and the kD). Group (II) probes thermal
stability by differential scanning calorimetry (DSC) (2 var. the
first and apparent Fab melting temperature) while Group (III)
probes miscellaneous features of the molecules: Baculovirus
particle adsorption, linked to rapid in vivo clearance32 (BVP) (1
var.), the number of subvisible particles present by background
membrane imaging (BMI) (1 var.) and, finally, the rates of

monomer loss induced by the EFD at 0.25-, 0.5-, and 1 mg/mL
(3 var.). This device, developed at Leeds,16,26−28 subjects
proteins to the potentially synergistic stresses of hydrodynamic
flow fields and interfaces that are experienced by proteins
throughout their manufacture, including depth filtration and fill-
finish steps.33 The EFD provides unique insight relative to other
assays,16,26,27 suggesting its utility as a complementary DA to
those commonly employed by the biopharmaceutical industry.16

The use of this assay is explained in detail in the Methods
section. These experimentally derived variables were augmented
with further variables (Group (IV)), derived from in silico
methods (Table 4): prediction of CDR and FV liabilities using
Therapeutic Antibody Profiler8 (5 var.) and the structure-
corrected solubility of the variable domains using CamSol5 (1
var.).

Figure 2. Using the “developability toolkit” to screen antibody formulations. (a) Average hydrodynamic radius (Rh) of the nine samples in the study,
obtained using dynamic light scattering, measured at concentrations between 2 and 20 mg/mL (Supporting Methods and Figure S5). Bars are colored
according to the formulation:mAb, error bars = s.d. (b, c) HP-SEC analysis of formulation:mAbs A2 (mAb2 in histidine-arginine) (b) and B2 (mAb2
histidine-sucrose) (c) following accelerated and long-term storage stability (Methods section). Samples were incubated at 50 mg/mL for the times and
temperatures indicated, with the relative % monomer in the HP-SEC trace quantified. Lines through the points at 5 °C (blue), 25 °C (orange), and 40
°C (red) are a guide to the eye, not fit to the data. (d, e) HP-SEC analysis for formulation:mAbs A2 (d) and B2 (e) following stress in the EFD
(Methods section). Initial [protein] in EFD experiments = 0.25 mg/mL (squares), 0.5 mg/mL (open circles), and 1 mg/mL (triangles), with %
monomer remaining quantified by HP-SEC (Methods section).
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Exemplar data, together with violin and box plots for all nine
formulation:mAbs, are shown for each DA in Figures S1−S12
together with a description of each assay (Supporting Methods).
Generally, most DAs produced non-normally distributed
populations with long tails, as observed previously4,16 and the
relationship between DA outputs is often difficult to rationalize.

For example, the viscosity of formulation:mAb B2 was four times
above the upper limit typically acceptable for prefilled syringe
administration34 (Figure S1) and showed evidence of
aggregation by DLS (Figure 2a). Despite this, in silico analyses
failed to flag liabilities in the variable domains of this and the

Table 5. Summary of the Variables Output from the Accelerated and Long-Term Stability Study on the Formulation:mAb Panela

aThe colors of the variable ID number correspond to Family Tree Group color in Figure 4.

Figure 3. Change in % monomer over 6 to 18 months at 25 and 5 °C, respectively. % monomer calculated for formulation:mAbs A1−C3, derived from
technical repeats at 5 °C (a) and 25 °C (b). Fitting a straight line to the data yields the observed rate (gradient) alongside a standard error. Red region =
95% confidence interval. Observed rates for the nine formulation:mAbs at 5 °C (c) and 25 °C (d); error bars = standard error.
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other mAbs which could lead to colloidal instability (Figures S7
and S8).

To obtain kinetic stability data for each of the characterized
formulation:mAbs, we incubated the vials under accelerated
stability (AS) conditions at 40 °C, as well as long-term storage
(LTS) conditions at 25 and 5 °C. Vials were removed from the
incubators after: 2 weeks (0.5 months), 1 month, and 3 months
at 40 °C; 1, 3, and 6 months at 25 °C; and 3, 6, 12, and 18
months at 5 °C (Methods section). While HP-SEC was used to
quantify the relative amount of monomeric, higher-order (high
molecular weight, HMW), and fragmented mAbs injected onto
the column, the total soluble protein concentration was
additionally quantified using UV−visible spectroscopy with
350 nm correction to remove scattering artifacts (Supporting
Methods, Figure S13). Together, these analyses showed that the
majority of samples formed soluble HMW species and fragments
over the course of the AS and LTS studies but formulation:mAbs
C2 and C3 formed insoluble aggregates after incubation for 3
months at 40 °C (Figure S13(biii,ciii), respectively), resulting in
the removal of these points from the observed rate of monomer-
loss analysis.

The observed rates of change in % monomer, HMW species
formation, and fragmentation (quantified by HP-SEC,35

Methods section), for each formulation at each temperature,
were calculated using linear regression (Methods section).
These data are shown in the Supporting Information (Figures
S14−S17) comprising Group (V) in our suite of DAs (Table 5).
A decrease in the amount of monomer was accompanied by a
concomitant increase in the HMW species and fragments
detected within each sample (Figures S14−S17). Generally,
incubation at higher temperatures accelerated monomer loss for
all of the mAb samples (Figure 2b,c, for example), with these
rates becoming 30 and 200 times slower at 25 and 5 °C,
respectively (based on the median rate for all nine
formulation:mAbs, Figure S18). In accordance with other
studies,36−38 this process cannot be described by simple
Arrhenius kinetics,36,37 obviating the use of recently developed
kinetic models39−41 to predict the LTS/shelf life for these
formulation:mAbs. Under the conditions and buffers used here,
all formulation:mAbs showed minimal degradation at 5 °C (ca.
0.01−0.09% monomer/month, Figure 3) precluding the use of
these data as our metric of manufacturability, given the relative
size of the experimental and fitting error compared to the data
points (average coefficient of variation = 0.074%/month,
median rate of loss = 0.015%/month, Section 2.4). By contrast,
degradation rates were approximately 10 times faster at 25 °C
(Figure 3), and consequently, these data were used to rank
formulations as the error (0.036%/month) was far smaller than
the measured rate of loss (median rate of loss = 0.34%/month).
We note here that at 25 °C formulation:mAbs C2, B2, and C1
exhibit statistically significantly different rates to each other and
also to A3 and B3 (which exhibit indistinguishable rates) and
A1, B1, A2, and C3 (which display varying difference in
significance to each other but are distinct to A3 and B3 and C2,
B2 and C1). For simplicity, we first describe our analyses using a
ranking based on the observed rate values (i.e., left to right in
Figure 3d ranks formulation:mAbs from best to worst). We then
show how changing the ranks for A1, B1, A2, and C3 has
minimal effect on the resulting outputs, validating the use of this
data set as our test example for the statistical workflow presented
herein.
3.2. Statistical Analysis Reveals the Relationships

between the Developability Assay Variables. The first

aim of this study was to determine the relationship between the
outputs of each variable, obtained from the suite of DAs used, to
allow the selection of a reduced set of complementary,
nondegenerate DAs. To do this, we performed Spearman’s
rank analysis of the variables, followed by Hierarchical
Clustering of the resulting correlation coefficients, as described
in previous studies.4,12,16,19 As more than one variable can be
obtained from some of DAs used here (e.g., the hydrodynamic
radius (Rh) and diffusion interaction parameter (kD) are both
obtained from DLS), a total of 32 assay variables for each of the
nine formulation:mAbs (referred to as samples herein) were
analyzed (see Tables 3−5, Figure 1), generating a Spearman’s
rank correlation coefficient for each pairwise variable combina-
tion. These values were then subjected to Hierarchical
Clustering analysis, as described previously4,16 (Figure S19a),
yielding six branches each containing variables that are related
by the information they provide (Figure S19b). To better
understand the strength of the clustering, the least significant
(longest distance from baseline) assay variable in each branch
was noted (Supporting Methods). Following this, the data
obtained for each formulation:mAb (A1−C3) was iteratively
removed from the panel and the analyses described above were
repeated. Repeating this process for the remaining nine
combinations of samples (i.e., the data set comprising all
formulations plus nine data sets with one formulation:mAb
removed from each) allowed the identification of variables that
clustered poorly with other assays. Using this approach, four
variables, approximately equivalent to removing one formula-
tion:mAb, were found to be the least significant branch assay in
at least six dendrograms in the analysis, suggesting that these
variables were distinct in the information they provided. As the
first aim of this study was to understand degeneracy within DAs,
these variables (AC-SINS (var. 29), BMI (var. 30), initial levels
of fragmentation by HP-SEC (var. 31) and the observed rate of
EFD-induced monomer loss at 0.25 mg/mL (var. 32)) were
removed from the analysis.

Hierarchical Clustering of the pairwise Spearman’s correla-
tion coefficients was repeated on the remaining 28 variables
obtained from 10 DAs (Tables 1−3) for the nine formula-
tion:mAbs and identified four branches of related assay variables
(Figure 4a,b). The red cluster is the largest, comprising nine
variables (variables 1, 5−8, 16, and 20−22), probing several
molecular features including the viscosity (variable 1), thermal
stability (variables 5 and 6), and observed rate of monomer loss
at 40 °C (variable 20). The relatedness of these latter two assays
makes mechanistic sense: poor thermal stability may result in the
promotion of unfolding and aggregation via the unfolded state at
elevated temperatures.42,43 The blue cluster (8 variables)
comprises many of the TAP metrics (variables 13−15 and
17), as well as measures of molecular “stickiness”44 (HIC,
SMAC, and BVP, variables 2−4). The smallest green cluster of
five variables (9, 11, 12, 24, and 26) probes miscellaneous
features, including the observed rate of fragmentation at 40 °C
(variable 26). The final purple cluster contains six variables
(variables 10, 18, 19, 25, 27, and 28). Notably, this includes the
observed rates of monomer loss at 5 and 25 °C (variables 18 and
19, respectively) which stem from the same branch, as do the
observed rates of monomer loss in the EFD at 0.5- and 1 mg/mL
(variables 27 and 28, respectively). The robustness of these
relationships was further assessed by sequentially removing the
data obtained from each formulation:mAb from the data set,
which was then reranked and reanalyzed (example dendrograms
in Figure S20).
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To quantify the differences in the dendrograms, we used the
approach of Lu et al.29 and calculated the frequency with which
an assay variable paired with its immediate neighbors over all
iterations, with a median “P-value” of 0.9 (P-values range from 1
(no change in pairing) to 0 (all pairings changed), Figure S21).
For reference, 10 of 28 variables did not change pairing at all,
with 11 of 28 changing 1 or 2 times (Supporting Methods and
Figure S21). At a coarser level, an assay was found to be assigned
to a different group (branch) only 5 of 28 times (median P = 1).
Small changes in assay groupings for subsets of antibody samples
have been observed previously.4,16

3.3. Developability Assay Outputs Can Be Condensed
into a Single Metric. Each cluster of DAs provides an
assessment of distinct biophysical properties (and critical quality
attributes), which together determine developability. We thus
asked how one could rationally combine DAs to obtain a
consensus measure of developability to integrate the often-
conflicting results of the DAs employed (Figure 5).

Inspired by the work of Jain et al.,4 where a “distance from
ideal” of each test formulation:mAb for each DA was derived, we
adapted this analytical framework to generate a parameter to
summarize the overall performance of a candidate during
developability assessment. For a given variable, each formula-
tion:mAb was ranked on a best (0) to least favorable (1) scale
(Methods section). The average score for the assay variables in
each branch is then calculated, and the sum of the average values
of each branch is calculated. In this model-independent
approach, formulation:mAbs with a lower score (herein termed
Averaged Developability Output Score, ADOS) are expected to
have more quality attributes for developability. This approach
first identifies mAb2 as likely to be difficult to develop, as it
scores badly in most assay clusters, irrespective of buffer
condition (Figure 6ai), and second, identifies Buffer A
(histidine-arginine) as the best formulation. One could thus
utilize ADOS to consolidate the data from a variety of assays into
one, easy-to-interpret metric, reducing the likelihood of one
assay variable leading to the outright rejection of a given
formulation.
3.4. ADOS Cannot Be Used to Assess Storage Stability.

While this method yields values that correlate qualitatively with
empirical knowledge of the buffers and mAbs used, its ability to
identify formulation:mAbs with favorable short-/long-term
storage stability was unknown. The prediction of kinetic stability
at 5 °C is highly desirable, as this is expensive in terms of both
material and time. However, the slow degradation kinetics for
the samples studied here precludes this goal for this data set (see
the Discussion section). To answer this question, we thus chose
the rank order of change in % monomer at 25 °C as the
“measured attribute of manufacturability” to be predicted, but
we note that other user-defined critical quality attributes could
also be used. As all of the accelerated and storage stability data in
Group V (obtained at 5, 25, and 40 °C) are expensive in terms of
protein required and time to obtain, all Group (V) data were
removed from the data set, allowing only rapid “t = 0” DAs with
low sample requirements to be used to predict storage stability.
The remaining 19 variables in the data set were reanalyzed by
Spearman’s rank and Hierarchical Clustering, yielding the same
four assay clusters identified previously (Figure S22). Plotting
the ranked, observed rate of change in % monomer at 25 °C
versus the ADOS calculated using the clusters derived from
these 19 variables results in a weak correlation (Pearson’s r =
0.53, Figure 6aii). As each branch (and assays within branches)
may not have equal importance in determining storage stability,
Multiple Linear Regression (MLR, Supporting Methods) was
employed to weight each branch according to its contribution to
this prediction. This made the correlation markedly better
(Pearson’s r = 0.93, Figure S23), with the caveat that the
ADOSMLR is still derived from many different assays, resulting in
more degrees of freedom (i.e., variables) than data points.
3.5. LASSO Regression Can Be Used to Identify Key

Predictor Variables. While the described approaches provide
an understanding of the inter-relationship between assays and
assay clusters, reducing the number of DAs still requires ad-hoc
decisions to be made on the data set or a large panel of DAs to be
included within the regression against the chosen developability
parameter. To obviate this requirement, we adopt a systematic
approach that identifies the smallest set of variables to link DAs
with the chosen measurable attribute of manufacturability.
LASSO regression is a variable selection method that reduces
the number of variables to the minimum set that best fit the data,
with this method being useful when there are more variables

Figure 4. Statistical analysis clusters assay variables in the developability
“assay pool”. (a) Heatmap of Spearman’s rank correlation coefficients
(ρ) for the pairwise interactions between the 28 best-clustered assay
variables in the data set. (b) Hierarchical clustering analysis of these
variables generates a “Family Tree” comprising four branches of related
assays. The observed rates of monomer loss after stress in the EFD at
0.5 and 1 mg/mL (variables 27 and 28, respectively) are in the same
branch (purple) as the equivalent rates following storage stability at 5
and 25 °C (observables 18 and 19, respectively). The assays from which
the variables are derived and their abbreviations are listed in Tables
3−5.
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than samples (our data set comprises 19 variables and nine
samples, Supporting Methods).30 Performing LASSO regres-
sion on the data set without Group (V) data reveals that just five
assay variables can predict the ranked absolute observed rate of
change in % monomer at 25 °C (r = 0.92, Figures S24 and 6b).
These variables are the first apparent thermal transition in DSC
and the kD obtained from DLS (Red group, variables 5 and 8,
respectively), monomer retention times on HP-SEC (Purple
group, variable 10), and HIC columns (Blue group, variable 2)
and the observed rate of monomer loss induced by the EFD at
0.5 mg/mL (Purple group, variable 27). Though the regression
coefficient for the kD is small, removing it from the data set
results in no correlation being obtained from LASSO,
reinforcing the importance of the kD as a developability
parameter.23 As no information derived from Hierarchical
Clustering is used in LASSO regression, we repeated this
procedure on the full DA data set (not including the AS or LTS
(Group V) data) as the four difficult-to-cluster variables (29 and
32) may still provide important information through their
unique insight. LASSO regression once again showed a high
correlation with change in % monomer at 25 °C (Pearson’s r =
0.95, Figure S24c) but required six variables: the same five as
above and one of the difficult-to-cluster variables omitted in
previous analyses: the number of particles observed in the
formulation:mAbs at t = 0 by BMI, (variable 30). Intriguingly,
repeating this process to predict the rank order of accelerated
stability (% monomer at 40 °C), yielded a lower Pearson’s r
(0.86) with LASSO regression only selecting the first transition
by DSC as an important variable for this (Figure S24c). This
together with non-Arrhenius degradation kinetics suggests that
monomer loss may occur by different mechanisms at 25 and 40
°C. As noted above, error analysis of the linear regression of the

25 °C degradation rate (Supporting Methods and Figure 3)
showed that A3 and B3 have very similar rates of monomer loss
at 25 °C and A1, with B1, A2, and C3 displaying varying degrees
of significant difference between the observed rates (Figure 3d).
To investigate the effect of fitting error on formulation:mAb
ranking, the ranks of A3 and B3 were assigned tied first (i.e.,
most stable), with C2, B2, and C1 (all significantly different to
every other formulation:mAb) assigned fixed ranks of sixth,
seventh and eighth, respectively. The remaining four for-
mulation:mAbs were systematically reassigned ranks 2−5 using
every combination of each of their maximal (high, H) and
minimal (low, L) degradation rates, calculated from the fit error,
yielding 16 different (24) ranks from LLLL to HHHH.
Generally, irrespective of whether the full or focused variable
data set was used for LASSO regression, the predictive power
(Figures S25 and S26) and identified keystone variables (Figure
7) are preserved. As a median of six keystone variables, which
probe diverse physicochemical features of the molecules, are
selected from these analyses (Figure 7), this suggests our
approach, which generates a Holistic Developability Parameter
(HDP) could work as a general strategy for mAb developability.

4. DISCUSSION
An ever-expanding toolkit of developability assays has been
established by the field to interrogate various physicochemical
features of antibodies, with a view to identifying lead candidates
with favorable drug-like properties.2,4,45 Studies have subjected
panels of IgG antibodies4,7,12,20,46−48 and other modalities19,49

to various established9,50,51 and novel DAs13,17 and analyzed the
resulting data sets by a variety of statistical methods including
Pearson’s12,19 and Spearman’s correlation.4,16,49 The majority of
these studies have investigated the relationship (and potential

Figure 5. Statistical analysis of the data set yields a Holistic Developability Parameter (HDP). Spearman’s rank and hierarchical clustering identifies the
best-clustered set of 28 variables. One can naiv̈ely compute an ADOS from these assay groups to holistically rank formulations (silver arrows). This
method is a poor protector of a desired feature (storage stability of 25 °C here). Multiple linear regression (MLR) can be used to optimize ADOS but
uses the outputs of all assays (thus we have more variables than data points). An alternative approach uses least-absolute selection and Shrinkage
Operator (LASSO) regression to identify which variables contribute to the prediction of the desired feature, as stated above. These key variables make
up the HDP.
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redundancies) between different DAs including a wide array of
well-used assays4 or the relationship between these established
DAs and novel assays that report on hydrodynamic and
interfacial stability12,13,16 or in silico-derived parameters.47

Other groups have examined the ability of DAs to predict the
behavior of proteins during downstream processing.20,23

Interestingly, and in agreement with our results, both of these
latter studies identified parameters that measure self-association,
such as kD, to be the strongest predictors. Despite these
successes, a framework for the integration of the diverse outputs
of DAs was lacking. This challenge is nontrivial, based on the
array of mAb sequences available,45 the orthogonal set of assays
one can use to interrogate these molecules2,47 and the impact
that different formulation components (namely, buffers,
cosolutes, and excipients) can have on the above.31

We subjected a panel of three mAbs in three different
formulations to an array of DAs and measured their accelerated
and long-term stability over a three to 18-month period.
Spearman’s rank was chosen to assess correlations between the
resulting assay variables, as this avoids the potential bias from
assuming linear correlations between different variables and
reduces the influence of measurement noise on the analysis.52 By
employing Hierarchical Clustering on the Spearman correlation
coefficients, we were able to identify DAs that group readily into
families (e.g., HIC and BVP), as well as four DAs that were hard

to cluster (AC-SINS, BMI, initial levels of fragmentation by HP-
SEC and the observed rate of EFD-induced monomer loss at
0.25 mg/mL). For AC-SINS, poor clustering may be due to the
atypical blue shifts observed in Buffer B (Figure S4, possibly
caused by a change in the stability of the nanoparticles
themselves).53 For the EFD data, we postulate that surface-
dominated aggregation occurs at low protein concentrations
with a second bulk aggregation pathway occurring at higher
concentrations (Figure S11).28 It is important to note that
“difficult to cluster” may instead indicate that these assays probe
unique features of the molecules as shown when the outputs of
the EFD assay applied to subset of the “Jain” panel of mAbs were
compared to the other DAs,16 as well as outputs derived from
charge-stabilized self-interaction nanoparticle spectroscopy and
poly specificity particle assays performed on a set of 80 clinical-
stage sequences.46

We utilized 12 DAs at t = 0, as well as performing a stability
study at three temperatures (5, 25, and 40 °C) for 18, 6, and 3
months, respectively. While we did monitor the change in the
macroscopic properties of the samples using visual inspection
standards,54 the noncontinuous nature of the data generated
precluded their inclusion in our final workflow. Furthermore, the
particulate matter was tracked over the course of the stability
study using background membrane imaging. Many 40 °C
samples exceeded the recently derived55 measurement limits for

Figure 6. ADOS identifies favorable mAb formulations, while the HDP identifies the “most developable”. (ai) ADOS, derived using the 28 best-
clustered variables from Figure 4. Bars are colored by formulation. The ADOS outputs can be put on a rank scale to aid other analyses (Supporting
Information) (aii) Rank of observed rate of change in % monomer at 25 °C vs ranked ADOS score. A linear fit to the data shows a modest correlation (r
= 0.53). LASSO regression of the variable data set excluding accelerated and storage stability (Group V) data identifies the five assay variables (bi) that
together yield the HDP which correlates strongly with the ranked observed rate of change in % monomer at 25 °C (r = 0.92) (bii). These five diverse
assays (abbreviations defined in Tables 3−5) are color-coded in accordance with the dendrogram in Figure 4b.
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the technique after just 1 month (data not shown); hence, only
the t = 0 data were used in the final data set. Transforming the
outputs of the 28 best-clustered variables from these assays to a
single scale allowed us to understand how best to utilize these
data. First, by assuming all assays are equally important, we
condensed the complex and sometimes conflicting DA outputs
to a single measure of biophysical behavior (the ADOS), in a
similar fashion to the “distance from ideal” measurement derived
by Jain et al. 2017, though other normalization methods have
been developed recently.51 The distance from ideal values was
used by Jain et al. to then cluster the 137 IgG molecules in their
study into groups of well-behaved (i.e., developable) sequences,

as well as those with less favorable properties, without explicitly
ranking these from best to worst or investigating the
consequences of “nondevelopability” on kinetic stability, for
example. Rattray and colleagues condensed their DAs using a
normalization method, summing these scores but attributing no
weighting to, e.g., different families of assays, as hierarchical
clustering was not employed on their ranked data. They showed
that a lower normalized score correlated with reduced viscosity
for a panel of high-concentration mAbs.51

The ADOS method identified the arginine-containing Buffer
A as the formulation that yields the best-behaved molecules (in
terms of biophysical properties), but it is a poor predictor of the
exemplar used to test our manufacturability prediction, that of
kinetic stability at 25 °C. This is probably because inherent
within the ADOS methodology is the assumption that all assays
within a branch and all branches are equally important. Using a
similar approach Wolfgang Freiss and colleagues showed that a
modest correlation was observed between aggregation after six
months at 4 and 25 °C (the data for both temperatures and all
formulations was averaged) and a “Stability Risk Score By High
Analytical Effort” derived from 16 variables.19 Similarly to the
ADOS approach, this work also suggested that the formulation
largely determined the output score.19 By essentially removing
unimportant variables (in terms of predictive power), LASSO
regression is a powerful method to identify the subset of assay
variables and optimize the weightings necessary to predict
kinetic stability at 25 °C. In contrast to the multiple studies to
delineate the relationship between DAs, studies investigating the
relationship between DAs and kinetic stability at 5, 25, and 40
°C are less common. Goldberg et al. assessed DAs such as
Tm,app, aggregation onset temperature, and 40 °C aggregation
and monomer-loss rates for a panel of mAbs in different
formulations. They found the strength of the correlation was
dependent on the formulation condition and that the correlation
with 40 and 4 °C data was poor.38 Others have also shown that it
is difficult to correlate the behavior of different DAs with real-
time stability, based on the molecules and formulations in
question and the temperature dependence of their underlying
degradation mechanism.19,21,49

Comparing the outputs from the independent approaches of
hierarchical clustering and LASSO regression shows that HDP
integrates variables from different branches of the “family tree”
of clustered assays, which report on a range of biophysical
properties: thermal and colloidal stability (Tm1 by DSC and kD
by DLS), stickiness (HIC and SEC retention time), and
sensitivity to interfacial and hydrodynamic stresses (EFD). The
emergence of colloidal stability accords with a wealth of previous
studies that link this property to downstream processing and
solution behavior.20,23,51 The non-Arrhenius kinetics exhibited
by our formulation:mAbs and reported in other studies,36−38

prevents the use of recently established kinetic models to
directly predict long-term stability from our accelerated stability
data.39−41,56,57 and also suggests that aggregation (or any other
process that drives the monomer loss used as a metric of
manufacturability used here) may be driven by transient partial
unfolding of the native state. This accords with monomer loss
increasing with decreased Tm1, increased HIC and SEC
retention time, and increased sensitivity to interfacial and
hydrodynamic stresses. Given this broad sampling of biophysical
characteristics and its strong correlation with the ranked stability
data obtained at 25 °C, we have termed this the Holistic
Developability Parameter or HDP. The fact that our
developability framework, which utilizes many diverse assays,

Figure 7. Robustness analysis of the 25 °C storage stability data set and
its impact on the LASSO regression. (a) Pie chart showing the selection
frequency of the 19 best-clustered variables, which were selected by
LASSO regression over the 17 (absolute plus 16 combinations of ranks
for A1, B1, A2, and C3) 25 °C data ranks. The five most frequently
selected variables are the same as those in Figure 6bi. (b) Pie chart
showing the selection frequency of variables in (a) grouped and colored
according to the dendrogram in Figure 4. Each LASSO iteration mainly
selects variables from the red, blue, and purple assay groups. 5−6 core “t
= 0” developability assays, spanning an array of physicochemical
features, are sufficient to predict 25 °C storage stability.
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was able to describe this correlation suggests that monomer loss
occurs by distinct pathways that do not simply involve global
unfolding and that the generality of our approach removes the
need for the user to have a detailed knowledge of the aggregation
mechanism underpinning a given protein’s degradation path-
way.42 Similarly, as the HDP is determined by diverse assays
(i.e., four of the five families of related assays, Figure 6), these
assays may be sufficient to broadly define the biophysical and
chemical behavior of proteins. Consequently, the same core
assays may be sufficient to predict a variety of critical quality
attributes but using an HDP comprising different weightings for
each assay. The prediction of 5 °C long-term storage stability
using LASSO was precluded by the stability of the
formulation:mAbs in our test set at this temperature. This
may be because the mAbs used in our study (and others21) had
all reached later stages of development. Accordingly, we suggest
that the method we describe is employed as a rapid screen during
candidate selection to ensure identification of mAbs with
suitable long-term stability after sequence-based features which
are linked to inherently poor developability, e.g., charge and
hydrophobicity,58 or low chemical stability are removed using
online tools such as LAP.59 Here, we have focused on predicting
kinetic stability at 25 °C, as this parameter is onerous to measure
in terms of time (six months) and material (>200 mg per
molecule). We reiterate that our approach provides a general
framework to define the key assays that predict any measure of
manufacturability of the user’s interest, provided a test data set of
the outputs of a variety of DAs, together with the parameter of
interest to be predicted, has been measured for a panel of mAbs.
Here, in contrast to more complex machine-learning methods
(which may nonetheless employ LASSO regression), we have
used a relatively small data set and LASSO regression to generate
a simple and sparse predictive model containing five or six key
variables, using assays that consume milligram quantities of
material and take less than a day to complete. Furthermore,
these variables stem from different branches of the “family tree”
of assays, thus encompassing a range of biophysical features of
each formulation:mAb. Of course, more molecules, covering
number, sequence, topology, protein concentration, and
formulation diversity, will be needed to test this further in the
future, with some data sets already emerging to this aim,49

providing the groundwork needed to test our general frame-
work’s broad applicability.

5. CONCLUSIONS
Herein, we subjected nine different formulation:mAbs to an
array of diverse lab- and computer-based developability assays,
alongside the rate of relative monomer loss at 5, 25, and 40 °C to
obtain a test data set with which to develop a rational framework
for DA selection. Through adopting a robust statistical
approach, we demonstrate that it is possible to identify a
minimal set of DAs capable of predicting a specific critical
quality attribute of the development pipeline. Combining these
variables using the LASSO approach yields a quantifiable HDP
by which candidates can be ranked by a user-determined
measure of manufacturability irrespective of often-conflicting
results from multiple, separate DAs. Here we demonstrate the
approach by using day zero DAs to predict the storage stability at
25 °C, since the latter is expensive (in terms of both time and
material) yet essential within the regulatory framework. The
streamlining of development in this way supports intensification
within the drug pipeline, reducing costs and increasing
sustainability.
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