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Percolation processes on random networks have been the subject of intense research activity
over the last decades: the overall phenomenology of standard percolation on uncorrelated and
unclustered topologies is well known. Still some critical properties of the transition, in particular
for heterogeneous substrates, have not been fully elucidated and contradictory results appear in
the literature. In this paper we present, by means of a generating functions approach, a thorough
and complete investigation of percolation critical properties in uncorrelated locally tree-like random
networks. We determine all critical exponents, the associated critical amplitude ratios and the form
of the cluster size distribution for networks of any level of heterogeneity. We uncover, in particular for
highly heterogeneous networks, subtle crossover phenomena, nontrivial scaling forms and violations
of hyperscaling. In this way we clarify the origin of inconsistencies in the previous literature.

I. INTRODUCTION

Percolation is one of the simplest and most-studied
processes in statistical physics. It consists in damaging a
graph G = (V, &), with N = |V| nodes and E = |£| edges,
by removing some of the edges in £. This damaging is
typically pursued either by deactivating nodes and remov-
ing from £ all the edges belonging to deactivated nodes —
this is called site percolation — or by directly removing the
edges from & — this is called bond percolation. Percolation
theory studies the properties of the graph’s connected
components, or clusters — maximal subsets of V in which
there is at least one path joining each pair of nodes —
after the damage. Owing to its generality, percolation is
used to model a wide variety of phenomena, e.g., forest
fires [1], porous media [2, 3], ionic transport in composite
materials [4], epidemic spreading [5—7], network robust-
ness [8-10], and it constitutes a paradigmatic example of
systems undergoing phase transitions.

If all nodes (edges) are removed, the graph does not
contain any connected component (contains only compo-
nents of size 1). On the other hand, if the fraction of
removed nodes or edges is small, in a very large system an
extensive connected component of size S ~ N is usually
present, except for specific graphs, e.g. one-dimensional
lattices. In the thermodynamic limit N — oo, this cluster
is called giant component (GC), while all other clusters are
small, i.e., nonextensive. The shift from a phase without
a giant component (non-percolating phase) to a phase in
which a giant component exists (percolating phase) is the
percolation transition, and it typically involves the same
kind of singularities of systems undergoing continuous
phase transitions [11, 12]: the critical behavior observed
in different models can be described with a set of univer-
sal critical exponents, shared by models having different
microscopic details but the same symmetries.

Percolation on “finite-dimensional” topologies, such as
D-dimensional regular lattices, is supported by a robust
theoretical background, whose roots can be traced back to

renormalization group theory [1, 13]. The exact values of
the critical exponents are known for D = 2 [14-17], and for
D > 6 the system is described by the mean-field critical
exponents [18]. Even if exact solutions are in general
not available for arbitrary D, scaling relations among the
critical exponents and perturbative approaches provide a
full understanding and precise numerical evaluations [18].

For percolation in complex networks, the situation is
slightly different. Starting from the seminal works on
random graphs by P. Erdés and A. Rényi [19, 20], sev-
eral exact results have been obtained for percolation on
various complex topologies, from uncorrelated random
graphs [21-25] to random graphs with degree-degree cor-
relations [26], to some network models with many short
loops [27]. Other works [28-30] have provided a general
heuristic picture of the percolation phase-transition in
complex networks, that is generally believed to be com-
plete and coherent. However, a close scrutiny reveals
that several results in the literature are contradictory,
while other aspects of the phenomenology have not been
fully clarified. An example of this confusion concerns the
value of the Fisher exponent 7 (see below for a precise
definition) for strongly heterogeneous networks (with de-
gree distribution py ~ k77 and 2 < 4 < 3). In this
range of v, values 7 was claimed to be equal to 3 [29],
to 2+ 1/(va — 2) [28], to 74 [31] or even to be not de-
fined [32]. Similarly, contradictory values are claimed
for the exponent v (sometimes misleadingly indicated as
v [30, 32]) governing finite size scaling: 2/(3 — v4) [29],
(va—1)/(3—~4) [28, 30]. In addition, the scaling property
of the cluster size distribution ns has been postulated but
the explicit form of the scaling function in all the ranges
of 4 values has not been determined, although exact re-
sults for the component size distribution of uncorrelated
random graphs have recently been published [33, 34]. Fi-
nally, to the best of our knowledge, universal amplitude
ratios for percolation in networks have not been computed
so far. In this manuscript our goal is to provide a com-
plete and coherent summary of all critical properties of



the percolation phase-transition in uncorrelated locally
tree-like random networks, that can be used for reference.
To achieve this objective we fully exploit the power of
the generating functions approach, which was only partly
used before, to determine all critical exponents and scal-
ing functions. In this way we point out and clarify all
the inconsistencies present in the literature, derive all
the missing results and independently test the validity of
scaling relations.

The rest of the paper is organized as follows. Sec. II
sets the stage, by means of a very general presentation of
the percolation problem on networks: we define the model,
the observables of interest and their critical properties.
We then present the scaling ansatz for the cluster size dis-
tribution, the scaling relations among critical exponents,
the definition of the correlation length and of the finite-
size scaling properties. This content is not original but a
uniform and complete presentation is crucial to make the
more specific treatment of the other sections easy to follow.
In Section III we consider an ensemble of uncorrelated
locally tree-like random networks and determine closed
expressions for all relevant critical properties in terms of
generating functions. In Section IV we summarize the
main results of the manuscript, i.e. a quantitative descrip-
tion of the percolation critical properties for homogeneous
and for power-law degree-distributed random networks.
For the sake of readability the explicit determination of
these results, obtained by carefully applying the theory
of Section III, is deferred to an Appendix. Some of the
analytical results are tested via numerical simulations in
Section V. A summary of the main findings and a dis-
cussion of their implications concludes the manuscript in
Section VI.

II. PERCOLATION ON NETWORKS, SCALING
AND CRITICAL PROPERTIES

In this Section, we define the main quantities of interest
in percolation and we outline the differences between site
and bond percolation. We then introduce a general scaling
ansatz for critical properties and discuss its consequences.

A. Site and bond percolation

Let us consider first the case of uniform site percolation,
in which every node is active with probability ¢ — i.e.,
inactive with probability 1 —¢. The activation probability
¢ plays the role of control parameter. The order parameter
of percolation is usually defined as the relative size of the
GC, averaged over the randomness of the percolation
process, P®(¢) = limy_oo(S)/N. P>(¢) is also the
probability that a randomly chosen node belongs to the
GC. Then the percolation transition separates a phase in
which P> =0, for ¢ < ¢., from a phase with P> > 0,
for ¢ > ¢¢; ¢ is the percolation threshold.

The basic quantity in percolation theory is the cluster

size distribution, defined as the number of small clusters
of size s per active node, i.e., for site percolation,

Ns(9)

ns(¢) = N ) (1)

where N5 (¢) is the number of clusters of size s. Note that
the largest cluster is excluded from the enumeration of
clusters in ng(¢). A cluster size distribution including
also the largest cluster of size S can be defined,

~ s

Tis(9) = ns(9) + 5 (2)
where S is a random variable distributed according to
P(s = S,¢). Away from criticality, P(s = S,¢) is a
Gaussian centered in (S) with fluctuations of order v/N.
In the limit of diverging N we can thus write

05,(S) poo

S (0) 3)
In this same limit, summing Eq. (2) over s yields
Yoss(@) = D ns(4), because (S) in the denominator
diverges. The two distributions are not normalized.

The normalized distribution is instead sns(¢), which
is the probability that a randomly chosen active node
belongs to a cluster of any size s. Its normalization
simply reflects the fact that any active node must be part
of a cluster. Multiplying Eq. (2) by s, using Eq. (3) and
summing over s we obtain

1= ans(gb) +

s>1

ds,s . ds,(8)

oN 9N

P>(¢)
ra

(4)

The distribution 74(¢) = sns(¢) is normalized only
when there is no giant component, P> = 0. Otherwise

P() =0 |1- Y m(0)] . (5)

s>1

This equation connects the singular behavior observed in
the order parameter at ¢ = ¢, with m4(¢.) = sns(¢.).
The same argument developed so far holds also for
bond percolation, in which edges are kept with probabil-
ity ¢, and all nodes are considered to be active, which
implies division by N (instead of ¢N) in Egs. (1) and (3).
The theory in this paper is formally developed for site
percolation, however, the same theory applies to bond
percolation as well, provided Eq. (5) is replaced with

Pp)=1= 7" (p). (6)

s>1

It is clear that P*°(¢) = ¢ (¢) if and only if m(¢) =

wgb)((b), that is if activating a fraction ¢ of the nodes or
a fraction ¢ of the edges produces exactly the same effect
on the cluster size distribution. Throughout the paper we
will comment on relevant differences between the behavior
of site and bond percolation.



B. Observables and critical properties

The behavior of the system is characterized by consid-
ering the following observables.

F(¢)=> n(o) (7)

is the mean number (per active node) of finite clusters in
the system. When the control parameter ¢ approaches
the critical threshold, the singular part of this quantity
scales as

F(t) = Ap|g — ¢e>~ = Ap|t]*™, (8)

where « is a universal critical exponent and ¢t = ¢ — ¢,

The relative size of the giant component, or percolation
strength, is defined in Eq. (5) (for site percolation) and
in Eq. (6) (for bond percolation). This quantity is zero
in the nonpercolating phase, while it is finite above the
threshold. Close to criticality it behaves as

P>(t) ~ Bt? (9)

where £ is another critical exponent. This exponent differs
between site and bond percolation when ¢, = 0, because
of the multiplicative factor ¢ present in Eq. (5): Bsite =
1+ Brona [32]. Apart from this case the two exponents
always coincide and to avoid ambiguity we define as 3
the exponent associated to the singular behavior of the
factor 1 — )7, present in both definitions, Eq. (5) and
Eq. (6).

Another observable is the mean size of the cluster to
which a randomly chosen active node (not in the giant
component) belongs, which is

.
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At criticality this quantity has a singular behavior, with
an associated critical exponent ~y

(s) — 1~ Cylt| . (11)

The goal of a theory for percolation is the determination
of the universal critical exponents and of the universal
critical amplitude ratios. Following Ref. [18], we intro-
duce the so called “ghost field” h and generalize Eq. (7)
defining

Q¢ h) = na(@)e". (12)

Here and in the rest of the paper we use, with a slight abuse of
notation, the same symbols to denote functions of ¢ and functions
of t.

The observables defined above can be expressed in
terms of 2 and of the derivatives of 2 with respect to h.
Clearly F(¢) = Q(¢,0). We further define

U6 n) = - S S an@)et, (13)

s=1

which is related to the site percolation order parameter
P>(¢) = ¢[1 - ¥(¢,0)] (14)

and similarly for bond percolation, without the global
factor ¢, see Eq. (6). Finally, the quantity

2 o0
Xom) =T =S n@)e ™ (15)
is related to (s) since,
o = 2s5°ns(9) _ x(6,0)
B e (0) ~ w(6.0) 1o

Note that, using ns(¢) = m5(¢)/s and s7+ = [° dhe™"*,
F(¢) can be written as

o) = [ m@e = [T awen. (n

0 s>1

In the critical region near ¢., setting t = ¢ — ¢, we
can write

Q(t,h) = i an ()" 4+ {2t h) g » (18)

n=0

where {-}sng stands for “singular part”. Note that
Eq. (18) is completely general. Indeed, we can write
ns(t) = nSmall(t)4ntail(#) where ns™a! decays fast enough
for s > 1, and n%! is the large s tail of the distribution.
Using Eq. (12), expanding e =" in power series and chang-
ing the order of summation, the contribution from n3mall
gives

0 o 00 mall

sma. -5 nZs: Snni * (t) n
S nsmall(p)e h=§j[<—1> s W,
s=1 n=0

which is the first, regular, term on the r.h.s. of Eq. (18).
This procedure is not mathematically justified a priori
for nt! because the series in the square brackets may
diverge, if nt?!! decays slowly. Hence the large s tail of the
cluster size distribution is the origin of singular terms in
Eq. (18). The critical behavior is due to the singular part
of Q(t, h) when the point (¢t = 0, h = 0) is approached. In
addition to the critical exponents defined above another
exponent can be defined as

1 — (¢, h) ~ Er'/?, (19)

where in the last equation logarithmic corrections may
appear for integer 1/4.



In summary, the critical behavior in terms of
{Q(t, h) }sing and its derivatives is, for || < 1 and h <« 1,

Q(t,O) =~ A:|:|t|27av (20)

1 —W(t,0) ~ Bt?, (21)
x(t,0) -

—1~ i 22

¥ (t,0) Cxlt|™7, (22)

1—W(0,h) ~ ERY/S, (23)

C. The scaling ansatz for the cluster size
distribution

At its very core, the scaling hypothesis for percolation
can be reduced to the following ansatz for the tail of the
cluster size distribution [35, 36]

ns(t) ~ qos™ " f+(qits?),

for s > 1 and [t| < 1, where go,¢q1 are nonuniversal
positive constants, fi(z) are universal scaling functions,
while 7 and o are universal critical exponents. The scal-
ing functions decay to zero quickly for large values of
their argument: fi(x) < 1 for |z| > 1. This naturally
introduces the quantity

(24)

se ~ XJt| 7V, (25)

which plays the role of a correlation size, where ¥ =
q; 17 For s /se < 1, the cluster size distribution scales
as ns(t) ~ s~ 7. This implies, if o > 0 so that s¢ — oo as
t — 0, that ns exhibits a pure power-law tail for large s
with exponent 7.

Note that in the literature the scaling form Eq. (24) is
often assumed [28, 37, 45] to be s™7 exp(—s/s¢), which
corresponds to a scaling function of the form fi(z) =
e=*""7. As it will be shown below, it is instead crucial to
allow for more general functional forms.

For some particular classes of random networks, it is
possible to explicitly calculate the cluster size distribu-
tion ng(t), finding an agreement with the general form,
Eq. (24). Some examples are worked out in Appendix A.

The scaling ansatz implies the existence of some scal-
ing relations among the critical exponents. From the
scaling ansatz, Eq. (24), by writing {Q(t, h)}sing =~
qo floo dss™7 f1(qts?)e”*" and using the change of vari-
able x = ¢1]t|s?, we have

{mwmwm%f”

qit

The integral depends on t because of the lower extremum,
and through the ratio h/|t|'/?. The integral is diver-
gent for ¢t — 0. However, because of the multiplicative

factor |t|7771 this divergence is removed. It follows that
{Q(t, h) }sing takes the form

{2t 1) boing = [t 7 Fi(h/[t]/7), (26)

. _ I% /o
o5 fy (w)e 27 W/ @]

4

where Fy () are scaling functions such that Fy(z) ~ 1
for |x| < 1. This directly follows from simple assumptions
on the behavior of fy(x) for small |z|.2

Comparing Eq. (26) with Eq. (20) yields 2 —a = (7 —
1)/o. Taking derivatives of Eq. (26) with respect to h,
evaluated at h = 0 and comparing with Eqgs. (21)-(22)
gives two other scaling relations among critical exponents:
B=(r—2)/c and v = (3—7)/0. Hence all the exponents
introduced so far can be expressed as functions of only
two of them, for instance

a=2-1", (27)
=27, (28)
p=""2, (20)
‘5:712' (30)

The last of the scaling relations in Eq. (30) is derived
by means of the so-called Tauberian theorems [38]. In
particular, for a function w(h) = Zszo ase” ", we have?

as ~ E's7Y97 = w(h) ~ 1 — ER'/°, (31)
This implies that, since at criticality ¥(¢.,h) =
Y08t Te " then § = 1/(r — 2). Note that this rela-
tion holds only when ¥(¢,, h) is nonanalytical in h. As
shown below, there are cases in which ¥ (¢, h) is analyti-
cal in A = 0; in these cases the scaling relation between §
and 7 breaks down.

The framework developed here is fully general and it is
applicable provided the scaling ansatz Eq. (24) is valid.

D. The correlation length

In a finite D-dimensional lattice, the probability that
one node j in ¥, at euclidean distance r;; from an active
node ¢ in Z, is in the same connected component as ¢ is
called the pair correlation function g(¢, 7). In particular,
we can write g(4,7) = (c;j), where ¢;; = 1 if there is a
path connecting ¢ and j, and it is zero otherwise, and
the average is taken over the randomness of the perco-
lation process (and over the network ensemble, in the
case of random networks). An important sum rule for the
correlation function is

o 2 alid) = x(6,0), (32)

ijec

21t is sufficient to assume that f(x) ~ z® for < 1, a > 0, including

the standard case in which f(z < 1) is a constant, i.e., a = 0.

3There are logarithmic corrections for integer 1/8.



where C denotes the set of nodes belonging to small com-
ponents. This can be seen from

1 _ 1 2\ Ns(¢) 2
oN Z (cij) = chxsc) = Z ToN S (33)

i,j€C s>1

and Eq. (32) follows since ns(¢) = N5(¢)/(¢N) by defini-
tion.

Using g¢(4,7), one defines a (euclidean) correlation
length & via

Zi,jEC r?]g(laj)
Zi,jec 9(i,7)

Note that if ¢g(i,j) depends only on r;;, summing over
distances instead of summing over pairs implies

52 _ Zr T2ﬁ(T)
2 hlr)

where i(r) denotes the average number of nodes that
are at a distance r from a given node in the same finite
component, see [39].

In the case of percolation on networks, we can embed a
generic finite tree-like component in a infinite-dimensional
lattice by placing one node in the origin and placing each
subsequent neighboring node along a new orthogonal direc-
tion. Hence, the length [ of the shortest path connecting
two nodes, allows us to define the euclidean distance be-
tween these two nodes as 7 = /I [40]. Then a correlation
length for complex networks can be computed via

_ Zz lp(l) _ Zz Lu(l)
) x(e,0)7

where u(l) is the average number of active nodes at dis-
tance [ from a given active node in the same finite com-
ponent and Eq. (32) has been used.

In all cases, close to the critical point,

&= (34)

& (35)

£~ Ealt . (36)

This defines a new critical exponent v. To understand
how v is related to the other critical exponents finite-
size scaling must be considered, since the role of the
correlation length, and in particular of its divergence, is
strongly related with another important quantity: the
size N of the network.

E. Finite-size scaling

The percolation phase transition is strictly defined only
in infinite-size systems.

The existence, in the thermodynamic limit, of a contin-
uous phase transition is manifested in finite systems by
fluctuations of the order parameter showing, as a function
of ¢, a maximum for a size-dependent value ¢.(N). The
amplitude of this maximum increases with the system size

N. At ¢.(N) the correlation length is bounded by the
maximum size that can be reached in the system, that is,
in D dimensions, & ~ N'/P. Observing a finite system
at ¢.(IN) is equivalent to observing an infinite system
off-criticality at ¢ = ¢.(N): in both cases the correlation
length is finite and &€ ~ N'/P. This defines ¢.(N) as an
effective threshold which tends to ¢, in the large- N limit.
From Eq. (36) then, using t = ¢.(N) — ¢,

NB ~ [6o(N) = e ™ = [6e(N) — g| ~ N7

Percolation critical properties are described by an effective
field theory, see Appendix B. For such a theory the critical
behavior in a space of dimensionality D > Dyc larger
than the upper critical dimension is the same (mean-
field) behavior observed at D = Dyc 4. For standard
percolation on lattices the upper critical dimension is
Dyc = 6. Hence the scaling of the effective threshold is
in general

|¢e(N) — ¢e| ~ N7V7,

where v = vD for D < Dyc while v = vDyg for D >
Duyc, see [41, 42].

This argument is also valid for random locally tree-like
networks, where the dimension D of the space in which
a finite N network can be embedded grows with N. For
this reason, in the large N limit, D(N) > Dyc, and
the standard mean-field picture is expected to correctly
capture the critical properties of the system.

At the effective threshold a GC starts to form

(S)

(37)

$e(IN) 0
—_ V) O N, 38
$c(N) (3%)
Close to criticality [N — oo, ¢e(N) — ¢,
),
oo c(N) -1

P> =% N 39
¢c(N)N 39

This quantity must also scale as P> ~ t?; since t ~
N—1/7 this implies
B

: (40)

The exponent 6 can be seen also as the ratio between
the fractal dimension Dy of the GC and the embedding
dimension D.

Fluctuations instead scale as

2
(68 5.y R

Ge(N)N 4D

For standard percolation the mean square fluctuations
of the order parameter have the same critical singularity

4Actually there are logarithmic corrections exactly at D = Dyc.



as the mean finite cluster size, i.e., v/ = 7, see, e.g.,
Ref. [41]. (In general this need not be the case, and in
more complex percolation problems—in particular, ones
involving hybrid phase transitions—the two exponents
may be different [43, 44].)

Another scaling relation can be found as follows. Close
to criticality the largest clusters of size s; are fractals,
s¢ ~ &Pr ~ ¢t7Psv. Since by definition s¢ ~ t=1/o it
follows that Dy = ﬁ implying

0= (42)

%" -

Equating the two expressions for § above implies the
hyperscaling relation
28+~ =w. (43)
These relations allow us to determine all critical expo-
nents from numerical simulations. In particular, 7 and
~/P can be obtained by measuring the position and the
height of the peak of ((68)?), while 6 can be obtained
from the scaling of (S) at ¢.(N). Once 6, 7 and ~ are
known, 8 and o can be obtained from the scaling relations,
and all the other critical exponents from them.

The scenario just described does not strictly apply
for percolation on highly hetereogeneous power-law dis-
tributed networks. In such a case, as it will be shown
below, the hyperscaling relation is violated.

F. Critical amplitude ratios

Apart from critical exponents, also amplitudes of criti-
cal behaviors obey universal properties. It is possible to
define [18] several amplitude ratios whose values mark
the universality class of the transition. In particular we
will be interested in the quantities Cy/C_, =, /E_ and
R,=C E°B°~L

G. Summary of the definitions

We summarize in Table I definitions and physical mean-
ing of all the critical exponents introduced in this section.

TABLE I. Summary of the definitions of the various critical exponents. In the first seven lines the thermodynamic critical
exponents; all the scalings hold for ¢ < 1, h < 1. In the last two lines, critical exponents related to finite-size scaling, valid for

large N.

Exponent Definition Physical meaning
@ F o~ At Mean number of finite clusters per active node, see Eq. (7).
Ié] P>/¢~ Bt? Relative size (per active node) of the GC, see Eq. (9).
vy (s) =1~ C1|t|”” |Mean size of small components to which a randomly chosen active node belongs, see Eq. (11).
1) 1 — U(¢e, h) ~ ER'/? Singular behaviour of the h-derivative of Q(t, h) at criticality, see Eq. (19).
T ns(t) ~ qos™ 7 f(q1s7t) Scaling of the large s tail of the cluster size distribution, see Eq. (24)
o se ~ Bt~ Correlation size for finite components, see Eq. (25)
v &~ Zt|™" Average distance between nodes in the same finite component, see Eq. (36).
17 |pe — Ppe(N)| ~ N71/7 Effective finite-size threshold ¢.(N), see Eq. (38).
0 % ~ N* Average largest cluster at the effective threshold ¢.(N), see Eq. (37)

IIT. GENERATING FUNCTION APPROACH
FOR UNCORRELATED RANDOM GRAPHS

In this Section we calculate all the critical exponents
for percolation on uncorrelated random graphs, by ana-
lyzing the singular behavior of generating functions. This
strategy was already developed in part in Refs. [28, 37].
The treatment here is for an ensemble of uncorrelated
locally tree-like networks with generic degree distribu-
tion py (excess degree distribution g¢x = (k + 1)pr11/(k))
and completely random in all other respects. We denote

(

by go(z) = >, pez® and g1(2) = Y, ¢-2" the generat-
ing functions of the network’s degree and excess degree
distributions, respectively.

The application of the formulas derived in this Section
to the specific case of homogeneous or heterogeneous
random networks is presented in Appendix C and the
results are summarized in Sec. IV.

The generating function of the distribution 7s(¢) is

Hy(z) = Zﬂs((b)zs (44)




For uncorrelated locally tree-like random graphs, it is well
known [9, 33] ® that Hy(z) obeys

Hy(z) = zgo(qul(z) +1-— (;5) = zGo(Hl(z)), (45)
where we defined Go(x) = go(px + 1 — ¢), and
Hi(2) =) ps(9)z° (46)

is the generating function of ps(¢), the distribution of the
total number of nodes reachable via a randomly chosen
edge that leads to an active node. Note that the giant
component, if there is one, is excluded from H;(z), i.e.,
u = Hj(1) is the probability that a randomly chosen edge,
ending in an active node, leads to a finite component of
any size. Hi(z) is determined by the implicit equation

Hi(2) = 291 (pH1(2) + 1 — ¢) = 2G1(H1(2)),

where we defined G1(z) = g1(¢x + 1 — ¢).

The percolation threshold is determined by the condi-
tion 1 = g, (1) [9], implying ge = b~ = (k}/((k?) — (k)
[21, 22]. This holds if the network has a finite branching
factor b. If the branching factor diverges in the thermo-
dynamic limit, then only the percolating phase exists for
any value of ¢, i.e., ¢. = 0.

By setting z = e™", and m = 1 — Hy(e™") Egs. (45)
and (47) can be rewritten as

U(p,h) = e "go(1 —gm),
m=1-— e_hgl(l — qu).

(47)

(48)
(49)

A. The exponents 8 and §

Solving Eq. (49) for m(¢, h) and inserting the solution
into Eq. (48) allows to determine the exponents 5 and
0. Everything depends on the behavior of the generating
functions go(2) and g¢;(2) close to z = 1. For x < 1 it is
always possible to write

go(l—z)~1— (k)x+ %(k)bxz +{90(1 = @) }sing, (50)

1
g(l—z)~1—-bx+ idx2 +{91(1 — @) }sing, (51)
where (k) is the average degree, always assumed to be
finite, and b,d are constants. Their values are b =
(k(k—1))/{k), d = (k(k—1)(k—2))/({k) if the degree dis-
tribution has finite second and third moment, respectively.

5Eq. (45) and (47) correspond to the equations in [9] via the mapping
HPY2) = 1 — ¢ + ¢Ho(2), H'(2) = 1 — ¢ + ¢H1(2). This is
because we conditioned Ho(z) and H1(z) on picking active nodes
(see Eq. (1)), while the authors in [9] did not: hence the factor ¢
and the additional term 79 = pg = 1 — ¢ expressing the probability
of picking an inactive node.

Otherwise b and d are numerical values depending on the
degree distribution, and the divergence of the moments
shows up in the singular part of the generating function.
We will always consider networks with a finite average
degree (k). Hence the singular contribution in go(1 — )
can always be neglected because the finiteness of (k)
implies that (k)z > {go(1 — ) }sing for £ — 0 [in other
words, go(z) is continuous and differentiable in z = 1, and
any singularity can appear only in the second derivative
or higher|. We can then always consider only the constant
and the linear terms in the r.h.s. of Eq. (48) so that

U(p,h) ~1— (ky¢pm(d, h) — h.

Expanding Eq. (49) for || < 1 and h < 1, we can
obtain an approximate solution for m(¢,h). Plugging
such a solution into Eq. (52) then allows us to evaluate
the exponents 8 and ¢ and the amplitudes B and FE.

(52)

B. The exponent «

From Eq. (17), using the expression for ¥(¢,h) in
Eq. (48), yields, after integrating by parts [45],

om

F6) = 0(6.0) 0 [ dne b1 - om) G (53
Then, g;(z) = (k)gi(x), and Eq. (49)
Fo) = v(6.0 =6 [ ana-mG 6

After the change of variable x = m(¢, h) at fixed ¢, and
the simple integration, we get

F(6) = w(6,0) - "2 (o0,

where m(¢, 0) is the solution of Eq. (49) for h = 0% Once
the behavior of m(t,0) for small ¢ is known, expanding
Eq. (55) for small ¢, allows to determine the exponent a.

(55)

C. The exponent vy

We are interested in the average size of the small cluster
to which a randomly chosen active node belongs, given
by Eq. (16). The numerator of this quantity, x(¢,0),
may diverge at criticality because of the power-law tail
in ns(¢.) and determine the exponent -, while ¥ (¢, h)
is always finite. From Eq. (48) and from the relation
x(¢, h) = —0¥ (¢, h)/Oh we find

om

X(¢,h) = V(g h)+ e "gh(1 — ¢m)p——

oh’ (56)

6This quantity, m(#,0), is the same used to evaluate P> (¢) and
[: it is the probability of reaching the GC following a randomly
chosen edge ending in an active node.



where m is the solution of Eq. (49), from which,

om s om
%—e g1(1—¢m) + e~ gl(l—¢m)¢6h
whose solution is
om e "gi(1—9m) 1—-m

O~ 1—e g (1—gm) 1—ecrgg(1—gm)

Using g((z) = (k)g1(x), and again Eq. (49), we finally
obtain, from Eq. (16),

¢ (k) (1 —m)?
U(¢,0) 1 — ¢gi(1 - dm)
Inserting the expression of m(#,0) into Eq. (57) and

expanding for small ¢t = ¢ — ¢, provides the singular
behavior as criticality is approached.

(s) —1= (57)

D. The exponent v

Using Eq. (35), the problem of deriving the correlation
length ¢ is reduced to the computation of u(l). If there is
no GC, all nodes are in finite components and since the
network is uncorrelated and locally tree-like, we have

p(l) = (k)e'o . (58)

l 1

Hence, using the formula 37,512~ = (1 — 2)~ 2, we get

Py(n|m) =

1
u'HL Z

MN1yeeesMm

Note the factor u™ in the denominator. It serves to
correctly count the number of u’s in the expression. In
Py (m) there is a factor u for each of the m branches, and
at the second level these factors u are replaced with the
probabilities coming from the branches encountered in the
further exploration of the tree. Multiplying Eq. (62) by
2™ and using the expression for P»(n), a straightforward
computation gives yields

La(2) = L1(G1(uz)/u) = go(¢g1(duz +1 =) +1 - ¢).
(64)
This argument can be used at any shell [, by conditioning

on the previous shell [ — 1 to have m active nodes in finite
components. We arrive at the recursive equations

Li(z) = Li—1(G1(uz) /u), (65)
Ly (2) = Go(uz). (66)

Here we generalize this argument to the case in which
a giant component is present, so that in the computation
of u(l) one must explicitly impose that the GC is not
reached. Let us define P;(n) as the probability that in
the shell at distance [ from a given active node, there
are exactly n nodes, in the same finite component to
which the original active node belongs. Then u(l) =
>, nPi(n) = Lj(1), where Li(z) = >, P;(n)z" are the
generating functions of the distributions P;(n). Writing
down an explicit expression for P;(n) is rather involved.
However, it is possible to write, proceding step by step,
a recursive expression for the generating functions L;(z).
First of all, at level 0 Py(n) = d1,,¥(¢,0), since an active
node at distance 0 from a given active node, (i.e., itself)
is in a finite component with probability ¥(¢,0). At
distance 1 it is easy to recognize that

Zpk()¢u "L-gFr, (60)

where we remind the reader that w is the probability
that following a randomly chosen edge we reach a finite
component. Multiplying Eq. (60) by z" and summing
over n we obtain

Li(2) = go(puz + 1 — ¢) = Go(uz). (61)
Let us consider now the nodes at distance 2. It is possible
to condition on the number of nodes which were reachable
at the previous step by writing

=" Py(nm)Py(m). (62)

The expression for P(n|m) is simply given by

>“.CM)@@m“4mwmu¢y1m+%”LMa(&)

Essentially, as we proceed, we replace all the factors uz
at level [ — 1 with G;(uz). Taking the derivative of these
recursive equations, and evaluating them at z = 1, leads
to, recalling that u = G1(u),

p(l) = pu(l —1)ogi(du+1—¢), (67)
(1) = p(kyu?, (68)

whose solution is simply given by

p(l) = p(k)u?[ogy (du +1 - )] (69)

Note that this expression reduces to the one shown before
if t < 0, that is for v = 1, i.e., in the absence of a
GC. Eq.(69) is formally analogous to Eq. (58), but with
an “effective” branching factor which is reduced by the
presence of the GC. Inserting Eq. (69) into x(¢,0) =



Zzzo w(l),
X(6,0) = 0 (6,0) + ¢lk)u > [bgh (pu+1— )]~

1>1

¢(k)u?
1—¢gi(¢u+1-9)
which coincides with Eq. (56) evaluated at h = 0. For &2

we have, summing again the derivative of the geometric
series,

1

— W(9,0) + (70)

SRR~ dgt(out1-0)
(,0) + ¢(k)u?[l — ¢gi (pu+1 — )]
Expanding the numerator and the denominator for ¢ close

to 0, both below (u = 1) and above (u < 1) the transition,
allows us to compute the critical exponent v.

£=c (1)

E. The exponents ¢ and 7

From the singular behavior of Hy(z) and H;(z), also
the scaling form of 75(¢) and hence the exponents T and
o can be worked out explicitly. Indeed, if the generating

function Hy(z) has a convergence radius pg,,
Ho(2) = Ao — Bo(pr, —2)™, (72)

inversion (Tauberian) theorems [38] guarantee that, for
s> 1, 7, scales as

—ao—1_—s/s¢
7s(P) ~ T(—ag s e , (73)
in agreement with Eq. (24), with 7 = 2 + ag, and
1
Sg = ———. 74
¢ IOg(pH()) ( )

Hence in order to find o and 7 it is necessary to determine
the singular behavior of Hy(z) which, from Eq. (45), is
related to the singular behavior of Hy(z), that we now
analyze.

By setting u = Hy(z), Eq. (47) can be rewritten as

z =1(Hi(2)), (75)

where ¢(u) = u/G1(u) is the inverse function of Hi(z).

Assuming G1(0) # 0 (as it is always the case for 0 <
¢ < 1) and lim,_,p- uG(u)/G1(u) > 1 [where R is the
convergence radius of Gy(u)] there exists (see Ref. [38],
Proposition IV.5, page 278) a unique solution u* € (0, R)
of the characteristic equation ' (u*) = 0, that is, of the
equation
G1(u*) —u*Gy(u*) = 0. (76)
Then, the convergence radius of the power series Hy(2)
is

(77)

In other words, the inversion of the function ¢ (u) can
be performed only up to u*, where its first derivative
vanishes. As a consequence, the function H;(z) has a
singularity at z = pg, = ¥(u*), and this is the closest
singularity to the origin.

The singular behavior of H;(z) close to pp, is

Hl(z) ~ut — Al(le - Z)ala z = :01_{1’ (78)

with A; a positive constant”. Note that H,(z = pg,) =
Hyi(Y(u*)) = u*.

If Go(H,) is analytic at H; = u*, insert Eq. (78) into
Eq. (45) and expanding Go(H1(z)) leads to

Ho(2) = pu, Go(u”) = pu, Go(u™) Ar (pu, — 2)*, (79)

that is, Eq. (72) with pg, = pu,, 4o = pu, Go(u*), By =
pm, Gh(u*) Ay and ap = ay.

The case in which Go(H;) is nonanalytic at Hy = u*
may occur when u* =1 = py,. In such a case we can
insert Eq. (78) into Eq. (45) and use now the singular
expansion for Go(H;) around u* = 1, see Eq. (50). Since
the singularity in Go(H;) has an exponent larger than 1,
the leading singularity in H(z) is still given by Eq. (79).

From now on we denote py, = pr, = p. Hi(z) is the
generating function of a probability distribution, hence its
convergence radius must be p > 1 (the coefficients cannot
diverge exponentially).

Recalling that v = Hy(z), the singular behavior of
H(2) [Eq. (78)] is found by determining how H; (z)—u* =
u —u* depends on p — z. Since p = Y (u*) and z = ¥ (u)
this implies that we have to write

p—z=9u’) —(u),

expand the r.h.s. for small ¢ = u* — v and invert to
obtain how ¢ is singular as a function of p — 2: € ~
(p — z)*. The exponent a; = ag is the one appearing in
Eq. (78) and hence it determines 7. The type of singularity
obtained by this inversion depends on the expansion of
the function 9 (u), which in turn strongly depends on
the degree distribution and whether supercritical (¢ >
0), critical (¢ = 0) or subcritical (¢ < 0) properties are
considered, as shown in detail in Appendix D.

(80)

F. The exponent v

Consider a network with finite maximum degree k. and
large N. Regardless of the degree-distribution, such a sys-
tem is effectively homogeneous. In the infinite-size limit,
this system has a critical point ¢.(k.) = b(k.)~! which
depends on the maximum degree k.. In the denominator
of Eq. (71), for ¢ close to ¢.(kc), ¥(¢,0) can be neglected,
leading to (see Appendix C) &2 ~ |1 — ¢b(k.)|. Hence

€ = bke) " 2|p — b(ke) 12, (81)

"There are logarithmic corrections to Eq. (78) if a; is an integer.



According to our finite-size scaling argument, the ef-
fective critical point is determined by this expression,
evaluated at ¢ = ¢.(N), with the left hand side pro-
portional to N'/6, since the system is homogeneous and
Dyc = 6. Neglecting for simplicity the absolute value,
this yields

6e(N ko) = b(k) ™ (14 CINT) (82)
where C is a constant. If k. does not depend on N, or
the dependence is subalgebraic, Eq. (82) leads to 7 = 3.
However, if k. ~ N, as for heterogeneous networks, a
deviation from the standard mean-field exponent may
occur.

IV. RESULTS

The application of this general approach to the specific
cases of homogeneous and power-law degree distributions

J
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(pr ~ k~74) is detailed in Appendix C. For what concerns
thermodynamic critical exponents and amplitude ratios,
results are summarized in Table II. Note that all exponents
are derived independently, scaling relations are not used
(vet they are verified by our results except for the relation
d =1/(r —2) for 2 < 74 < 3). Some of the values in
Table II (for exponents 7 and v in the case 2 < v4 <
3) disagree with some values reported previously in the
literature. In the concluding section we discuss in detail
the origin of these discrepancies and what led to the
previous incorrect claims.

TABLE II. Values of the thermodynamic critical exponents and critical amplitude ratios for uncorrelated power-law distributed
networks in the various 4 ranges, computed from the exact solution with the generating functions. Values indicated by ¢ were
first calculated in Ref. [28]. Values indicated by ® were first calculated in Ref. [39]. Values indicated by ¢ were first calculated in
Ref. [37]. See Appendix C5b for a discussion of values indicated by *.

Network type B8 ) Q@ vy | v o T Cy/C_|EL/E_| Ry
Homogeneous (and vq > 4)| 1 2 -1 1 %b 1 ¢ 1 1 1
2<ya<3 = 1 [ e 52 2+ L) NJA | NJA |0

Beyond the value of the exponents, the analysis yields
a very rich picture for the cluster size distribution ng(t),
with nontrivial preasymptotic behaviors and violations of
the scaling ansatz, as summarized here.

On homogeneous networks percolation is perfectly de-
scribed by the scaling ansatz (24) [see Fig. 1(a)]: the
cluster size distribution is a power-law with exponent
T = 5/2 cut off exponentially at the correlation size s¢.
Both for positive and negative ¢, s¢ diverges as |t\_1/ 7 as
criticality is approached, with the mean-field exponent
o=1/2.

The same scenario applies for power-law networks with
vq¢ > 4 and t > 0, but for ¢ < 0 the picture is different
[see Fig. 1(b)]: after an exponential cutoff, occurring for
s0 ~ [t|71/7, the cluster size distribution decays indefi-
nitely as s774 a legacy of the degree distribution of the
original network [33]. This violation of the scaling ansatz
Eq. (24) is a direct effect of the heterogeneity of the sub-
strate but it is not related to different critical properties
of the percolation process. Indeed, for ¢ — 0~ the asymp-
totic tail with exponent 4 > 7 is not responsible for the
divergence of the fluctuations, which are determined in-

(

stead by the preasymptotic scaling with exponent 7. The
scale sg ~ |t|~/7 plays a role similar to the correlation
size s¢ for t > 0 and scales in the same way.

For more heterogeneous networks, 3 < v4 < 4, both o
and 7 become y4-dependent, but the most relevant change
is that for ¢ > 0 the asymptotic decay of ns(t) is of the
form s—5/2¢7%/%¢ i.e., it is different from the decay s~7
occurring exactly at criticality (¢ = 0). The way these
two apparently incompatible behaviors are reconciled is
depicted in Fig. 1(c): a crossover scale s,, smaller than
s¢ but diverging with ¢ in the same way, separates the
preasymptotic decay s~ from the regime s—5/2e=5/5¢.
As criticality is approached, both s, and s¢ diverge and
the regime s™7 extends to all scales. For ¢t < 0 instead
the phenomenology is analogous to the case for v4 > 4
only with a different value of 7.

Finally, for 2 < 74 < 3 only the percolating phase ¢t > 0
exists, as ¢. = 0. In contrast to what happens for the
other types of networks discussed above, when ¢ — 0 the
system exhibits no critical behavior: (s) does not diverge
(y = —1), the cluster size distribution tends to be delta
distributed (ns(0) = d5,1), and the correlation length &
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FIG. 1. Figure with schematic log-log plots of ns(¢) in the
various regimes. (a) Homogeneous networks. The red line
corresponds to the critical scaling s~ with 7 = 5/2. For
[t| < 1, both positive and negative, an exponential cutoff
occurs for for s = s¢ with the correlation scale s¢ diverging as
criticality is approached. (b) 74 > 4. The red line corresponds
to the critical scaling s™7 with 7 = 5/2. For positive t < 1
(green line), the same picture as in (a) holds. However, for
[t] < 1 but ¢ < 0 (black line), the asymptotic scaling is given
by s~ 7¢ (blue dashed line), and the exponent 7 is visible only
up to the crossover scale so. (¢) 3 < 74 < 4. The red line
corresponds to the critical scaling s~ with 7 =2+ 1/(ya — 2).
For small positive ¢ (green line), the asymptotic scaling is
with an exponent 5/2 (orange dashed line) followed by an
exponential cutoff occurring at s¢, while in the preasymptotic
regime 1 < s < s« the scaling with exponent 7 is observed.
For small ¢t < 0 (black line) the same picture as in (b) holds.
(d) 2 < 74 < 3. Only the case t > 0 is possible. The two cases
to < t1 < 1 exhibit the same scaling behavior: a preasymptotic
scaling with exponent 74, followed (after the scale s.) by the
exponent 5/2 and then an exponential cutoff at s;. However,
as t is decreased, the amplitude of these decays decreases and
vanishes asymptotically, leaving only ns(t = 0) = ds,1.

goes to zero (v = —1/2). However, for small ¢ the cluster
size distribution exhibits a nontrivial behavior, displaying
some features of a critical transition, see Fig. 1(d). For
fixed small ¢, similarly to the case 3 < v4 < 4, ns exhibits

two power-law decays, separated by a crossover scale s,.

For 1 <« s < s, it decays as s~ 74, while for s > s,
we find ng ~ s75/2¢75/5%¢ where S¢ ~ t=1/° with o =
(3 = 7a)/(va — 2). Also the crossover scale s, diverges
as t~1/7. Hence one could be tempted to conclude that
T = 74, in agreement with some theoretical results in the
literature [31], and in contrast with others [28, 30]. Note
that with this value the scaling relations (30) would not be
satisfied. But crucially the large-s tail of ng is multiplied
by a t-dependent factor, vanishing as ¢ — 0, in agreement
with the fact that ns(¢) — 0s,1. Despite the fact that
¢. = 0 is not a veritable critical point it is still possible
to write this behavior of n,(t) in a scaling form (24),
where now 7 = 2+41/(74 —2) (in agreement with [28] and
with the scaling relations) and the scaling function f, (x)
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does not go to a constant for x — 0, vanishing instead
as 7=, This nontrivial form of the scaling function
f+(z) has the consequence that for fixed ¢ the cluster size
distribution decays with an exponent 7, different from 7
and a t-dependent prefactor vanishing as ¢t — 0.

All these results about ng(t) are in agreement with
what one can deduce from the theory for the network
component size distribution formulated by Kryven [34],
adapting the results therein by assuming that nodes are
diluted with probability ¢ (see Appendix E).

TABLE III. Values of size-related critical exponents for un-
correlated power-law distributed networks in the various 4
ranges, where the hard structural cutoff of the network is taken
as kmax ~ N'/* with w a positive parameter obeying the con-
straint w > 1 (w > 2 for 2 < 74 < 3). The homogeneous
case corresponds to a sub-algebraically growing k.(N). The
hyperscaling relation, Eq. (43), is satisfied when the values in

the last two columns coincide (see Appendix C7). Values
indicated by ¢ were first calculated in Ref. [28].
Network type v 0 é
Homogeneous 3¢ 2 2¢
4 < w<3(va—-3) 3 2 2
w > 3(ya—3) de_3 1_ "/dw*-?) 2(7?;3)
3<ya<4 w<y-1 Xzl 4= | sl
w>y4—1 'de*3 17% 'de—2
2<71<3 | 1-4 | 2

Also concerning finite-size scaling the picture is sur-
prisingly rich (see Table III for a summary of results and
Appendix C7 for a detailed discussion). Contrary to naive
expectation and to what is reported in the literature [28—
30], the exponent 7, governing how the effective threshold
approaches the asymptotic limit, does not necessarily
assume the mean-field value 7 = 3 for power-law degree-
distributed networks with 74 > 4. Indeed, v assumes its
mean-field value 3 only for small enough w, the exponent
governing how the network hard structural cutoff kyax
grows with the system size N, kmax ~ N/¢. Specifically,
for 4 > 4 we have 7 = 3 only for w < 3(y4 — 3). For
w > 3(vq4 — 3) the exponents 7 and 6 depend also on w
and hyperscaling relations do not hold. The crossover
value for 3 < 4 < 4, above which hyperscaling relations
are violated, is w = v4 — 1. For 2 < 4 < 3 the transition
occurring at ¢ = 0 is not really critical and the whole fi-
nite size scaling framework must be interpreted differently
(see Appendix CT).

V. NUMERICAL SIMULATIONS

We performed numerical simulations to test some of
the analytical results, in particular with regard to finite
size scaling. We considered networks built according to
the uncorrelated configuration model [46], with kpnax =
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FIG. 2. Effective exponents of the observables ¢c1, ¢c2, X2,
S1, and Sz measured via Eq. (83) in numerical simulations for
power-law networks, with (a),(b) va = 5, (c),(d) va = 3.5, and
(e),(f) va = 2.5. Dashed lines correspond to the theoretical
predictions of the exponent as in Table III. Note that in (b),
where the hyperscaling is expected to hold, § = 1/(o7). In
(c) and (e), we also report the scaling of the branching factor
measured over the network samples, showing the presence of
preasymptotic effects.

kmian/“’, w = 3, kmin = 3 and various 4. Site percola-
tion was simulated by means of the efficient Newman-Ziff
algorithm [47] where for each network M = 1000 realiza-
tions were run. To identify the critical point we considered
two different susceptibilities [48]: ¢.; is the position of
the peak of x1 = ((§%) — (S)?)/(¢N), while ¢ is the
position of the peak of yo = ((§%) — (S8)?)/(S). We
evaluate the scaling of the size of the largest cluster at
criticality for both determinations of the critical point,
S1(N) = (8)]4.,(N)/pe1(N) ~ NY and analogously for
S5(N). The height of the peak of x; scales as N7/7 [see
Eq. (41)], while the peak of xo diverges with an exponent
(v+B)/v =1/(ov). This latter exponent coincides with
0 if hyperscaling holds. We then average all the mea-
sured quantities over 100 to 1000 different realizations of
the network substrate. We finally evaluate the effective
exponent A of the observable O ~ N* as a function of
size by performing simulations for several sizes N; and
calculating

_ 1og(O(N;11)/O(N;))
ANi) = 1og(N:r+1/Nz‘) .

For 74 = 5, finite size scaling is the same valid for
homogeneous networks: 7 = 3, § = 2/3, and hyperscal-

(83)
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ing holds. Fig. 2(a) confirms that this picture holds for
networks with size of the order of N = 10°¢ or larger. For
vq = 2.5 instead, we do not expect hyperscaling to hold
and the predicted value of 7 is 6. While the violation of
hyperscaling is clear in Fig. 2(f), it is evident that the
effective exponents are far from the predicted asymptotic
values. Effective exponents differ from those predicted
analytically also for v4 = 3.5 [Fig. 2(d)]. Also in this
case strong preasymptotic effects dominate, as shown by
Fig. 2(c): while the scaling of A(1/b) = 1/b(N) — 1/bs
approaches the expected behavior N~/¢ for the largest
sizes considered, the effective exponents derived from the
scaling of ¢.1(N) and ¢.2(N) are close to —0.2. This in-
dicates that the term proportional to N~/3 in Eq. (C33)
cannot be safely neglected, even for the largest values
of N considered. The effective exponent close to —0.2
can be interpreted, since 1/7 = (y4 — 3)/w, as the con-
sequence of an effective value of w = 2.5 which, inserted
into # = 1 —1/w, accounts for the effective exponent of Sy
and Ss close to 0.6. The true asymptotic behavior could
be observed only for system sizes such that the blue and
red curves in Fig. 2(c),(e) reach the dashed horizontal
line. Networks of several orders of magnitude larger than
those we can consider would be needed. For the same
reason, it is impossible to verify numerically the break-
down of hyperscaling and the validity of the prediction
v=w/(yq—3) for v >4 and w > 3(y4 — 3).

VI. CONCLUSIONS

In this paper we have provided a complete and co-
herent analysis of the critical behavior of standard site
and bond percolation models on uncorrelated locally tree-
like random networks with generic degree distribution
pr. Even if recent exact results about anomalous expo-
nents on finite-N scale-free networks [49-51] suggest that
a full mathematical theory is still lacking, percolation on
random graphs has been the subject of intense research
activity for decades and a general understanding of many
nontrivial features had already been reached a long time
ago. In particular the vanishing threshold for strongly
heterogeneous networks and the dependence of some crit-
ical exponents on the exponent -4 have been recognized
over 20 years ago [8, 28]. However, results about critical
properties are scattered in a large body of literature and
often interspersed with imprecise or incorrect statements.

Moreover a complete theory for all exponents and the
scaling functions was lacking. In this work we have filled
these gaps. Exploiting the locally tree-like nature of the
networks considered, by means of the generating functions
approach we have derived all critical properties for both
infinite and finite systems.

In this way we have clarified the true value of some expo-
nents for scale-free networks, over which confusion existed
in the literature. In particular: the Fisher exponent 7,
that was claimed to be equal to 3 [29], to 24+1/(y4—2) [28],
to 4 [31] or even to be not defined [32] is found to be



24 1/(vq4 — 2). The exponent +, claimed to be not de-
fined [32] turns out to be equal to —1. The exponent 7,
governing finite size scaling, has an anomalous behavior
(see Table IIT) at odds with the previously claimed values
of 2/(3 —~v4) [32] and (yq4 — 1)/(3 — 7a) [28]. We have
derived the value of other exponents («, d) not explicity
calculated before, and we have determined for the first
time critical amplitude ratios.

A crucial finding is the detailed understanding of how
the cluster size distribution n4(t) behaves in the various
ranges of 4 values. It turns out that the usual scaling as-
sumption ng(t) ~ 577 f(s/s¢(t)) with f(z) = exp(—z'/?)
is never fully correct for power-law distributed networks.
For v4 > 4 in the subcritical case the exponential cutoff
is followed by an asymptotic decay s~ 7. For 3 < 74 < 4
this subcritical feature is accompanied, above the thresh-
old, by a crossover such that the asymptotic decay occurs
with an exponent that differs from the critical value 7. For
strongly heterogeneous networks (2 < v4 < 3) the van-
ishing threshold implies that ¢, = 0 is not a true critical
point. It is still possible to write n4(t) in a scaling form
but f(x) vanishes for £ — 0. One of the consequences of
this nontrivial scaling is that the decay of n,(t) for fixed
t is governed by an exponent v, differing from the Fisher
exponent 7 = 2+ 1/(y4 — 2) and is multiplied by a factor
which vanishes as t — 0. The claims in the literature
that 7 is equal to 74 or not even well defined reflect a
partial understanding of the scaling properties, that we
have fully elucidated here.

We have also presented a consistent theory for finite-
size scaling properties, showing that the exponent 7 may
depend on how the maximum degree k. diverges with the
system size. At odds with all previous literature, we find
that this may happen even for 74 > 4, (when all thermo-
dynamic exponents are equal to those for homogeneous
systems) provided k. diverges sufficiently slowly. This
dependence on the network maximum degree implies that
hyperscaling relations, usually assumed to be valid, are
violated in this case.

Our work may stimulate further in depth investigation
(or reinvestigation) of critical properties for other types of
percolation processes on networks. What happens when
nodes are removed in a non fully random way, for exam-
ple targeting first highly [52] or poorly [53, 54] connected
nodes? Or if connected components are defined allow-
ing for gaps in paths connecting nodes (extended-range
percolation [55, 56])? What can be said about critical ex-
ponents and scaling relations when the system undergoes
a discontinuous or hybrid transition?

Our results may have implications for epidemic models
and spreading processes in general, due to well-established
links between such models and percolation theory [57].
Our generating functions approach may also be useful in
the analysis of critical properties in other models of inter-
acting systems on networks exhibiting continuous phase
transitions, e.g., spin systems, models of synchronization
and opinions dynamics [29].

Finally, an interesting question is to understand how

13

our results, obtained within the assumption of locally tree-
like networks, are affected by the presence of clustering
and short loops.

The exploration and understanding of universal be-
haviors in models defined on complex networks — often
qualitatively different from those observed on regular
topologies — offer a pathway to deeper theoretical insights
into the physics of complex systems, remaining an intrigu-
ing challenge for future research.
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Appendix A: Cluster size distribution of some graph
models close to criticality

It is interesting to show the correctness of the scaling
ansatz Eq. (24) in cases for which the form of n4(t) can
be exactly derived.

1. 1-d chain

For the 1d chain ns(¢) = ¢?(1 — ¢) [13]. In this case
¢. =1, so that ¢ =1+ ¢, hence

ns(t) = (—=t)*(1 +t)* = (—t)? exp(sIn(1 + 1))
=5 f(s7), (A1)
where s¢ = —1/In(1 +¢) ~ —t ' and 7 = 2, 0 = 1.

Note that in this case f(x) = z2e~%, hence f(x) ~ 22 for
|z] < 1.

2. Erdsés-Rényi graphs

Unfortunately, there are no other finite dimensional
systems for which an exact expression for n(t) is avail-
able. However, in Ref. [33], Newman brilliantly derived a
general formula for the cluster size distribution in random
graphs, where he showed that

0) = sn0) = LB L o]

(s—1)! |dz5—2 Z:17¢'
(A2)
For ER graphs with p;, = e~¢c¥/k! this implies
efcs¢ cs s—1
mo(9) = O (A3

s!

from which it follows, using Stirling’s formula s! =~
s*e™%y/2ms for s > 1, working close to ¢. = 1/¢, hence



cp=ct—1,
5—5/2 1
ng(t) >~ € —slct —In(1 + ¢t
(t) N xp(—s| ( )])
5—5/2

Nors exp(—(es'/?t)2/2]) = s77 f(esTt), (A4)

which is exactly in the form of Eq. (24), with f(z) Gaus-
sian, and 7 =5/2, 0 = 1/2.
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3. Random regular graphs

For random regular networks with degree ¢ > 2% (c-
RRN), the generating functions are go(z) = 2° and
g1(2) = 271, hence from Eq. (A2)

Tls(c—1)+1]
(s — DIT[s(c —2) + 3]

7s(¢) = ¢° (k) (1 — g)sle=2+2,

Using T'(x +3) >~ 2%T'(z + 1), and again Stirling’s formula
for s > 1, we find, after some tedious but straightforward
computations,

Tls(c—1)+1] . Pls(c=1)+1] sls(c — 2)]-2 [s(c — 1)]*cDes(c=D) /27r5(c — 1)
(s—1)T[s(c—2)+3]  “sll[s(c—2)+3] s5e=5\/2ms[s(c — 2)]5(e=e=s(c=2) | [2ms(c — 2)
_3/9 c—1 _9
=53/ m(c —2)""expls(c—1)In(c—1) — s(c — 2) In(c — 2)]

from which it follows that

8_5/2 c— —
na(é) = (k) ! (1 i

2
) 2n(c—2) \c— 2) exp [=s/s¢]
where

(=11 -9¢)
(c—2)

Since ¢. = 1/(c — 1), we can write ¢ — 2 = (1 — ¢.)/be,
(c—1)/(c—2) = 1/(1 - o), and (e~ 1)(1 - §)/(c~ 9) —
1—1t/(1 — ¢.). Therefore, expanding In(1 + ) for small
x and keeping the lowest orders in ¢

s¢'=—(c—2)In { } —In[p(c — 1)].

e (i o) e
¢\ 20:(1—0c)  202)  202(1— )

from which ¢ = 1/2. For ¢t < 1, we then have

2,

(1 + ¢C)2 575/2675/557

S ey

(A5)

Hence the scaling ansatz Eq. (24) holds, with a Gaussian
scaling function, 7 = 5/2 and o = 1/2.

8The requirement ¢ > 2 is needed to avoid the case in which the net-
work is originally made up entirely of loops. In this case, Newman’s
results, which are exact only for tree-like networks, fail. However,
for any ¢ < 1 almost all loops break up into trees, and Eq. (A2)
can be used, even though it is not well defined in the limit ¢ — 1.

a. FExplicit solution for ¢ =3

For ¢ = 3 it is possible to solve explicitly for Hy(z),
since the generating functions Go(z) and G1(z) are simple
monomials of third and second order, respectively. Indeed,
the equation for Hy,

Hy = z(¢pH; + 1 — ¢)?,

can be explicitly solved

Hy(z) = Lo 2200 =8) = V1= 126(1 - 9)

2z¢? ’

which substituted in the equation
Ho(2) = 2 ($H1(2) + 1 — ),

gives

pqutzgatzﬂ3
82203

The convergence radius of Hy(z) is z* = 1/(4¢(1 — ¢)).
Note that its singular behavior close to z* is determined
by the singular behavior of Hi(z). The singularity is
always outsite the unitary circle apart from the critical
point ¢ = ¢. = 1/2. Expanding Hy(z) close to z*, and
z* for ¢ close to ¢, yields 7 =5/2, 0 =1/2.

Hoy(z) =

Appendix B: Mean-field theory for percolation and
upper critical dimension

A standard procedure in statistical physics to study the
critical behavior in finite-dimensional systems is to find



an equivalent, coarse-grained, description of the system of
interest in terms of a field theory, i.e. a partition function

Z = / Dype =S¥l (B1)

where S[y] is

Stel= [ as |gete+via). @2
A is the Laplacian operator, and V() is in general a
function of the ordering field ¢, whose average defines
the order parameter. The potential V' can be determined
on the basis of symmetry considerations, and it strongly
depends on the values of the control parameters. If one
finds a proper functional form for S[g], then the study of
the critical behavior of the effective field-theory described
by Eq. (B1) is equivalent to the study of the critical
behavior of the finite-dimensional system of interest. For
standard percolation, the effective potential contains a
cubic term, [18, 58, 59]

1

1 .
V(p) = 59’ + Sresg’

5 (B3)

where co ~ ¢ — ¢, and c3 is constant. Since in general
it is not possible to solve the integral in Eq. (B1), many
approximations, perturbative and non-perturbative meth-
ods have been developed in the last decades. The starting
point remains, however, the so-called Landau approxi-
mation. In this zero-th order approximation, one simply
neglects spatial fluctuations. This can be physically in-
terpreted as a coarse-graining procedure performed over
length scales larger than the correlation length £. Writing
w(x) = po + dp(z), in practice one solves the integral in
Eq. (B1) ignoring the contributions in dp(z). The spatial
integral over d”z gives a volume factor, hence one can
compute Z using the saddle-point method, which is to
find the minimum of V(¢), ¢o such that

V'(¢o) = 0. (B4)

Within this approximation, we can study the critical
behavior and compute the critical exponents. However, we
must always question whether or not the approximation
is justified. We can find the answer in the Ginzburg
criterion [11]°, which tells us that for a system whose
Landau theory is described by a set of critical exponents
B,7,V,..., the validity of the description provided by the
Landau approximation is conditioned on

[ (B5)

Given D, this criterion provides an argument to under-
stand whether or not we are “close but not too close” to

9See, for instance, Ref. [60] for a generalization of the Ginzburg
criterion to Ising model in spatial complex networks.
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t = 0 in order to see the mean-field Landau exponents
rather than the D-dependent ones. On the other hand,
this criterion tells us what is the minimum dimension D
of the space above which we are safe in describing our
system using the Landau approximation. This dimension
is called upper critical dimension and is given by

42
Dye = 1128
14

(B6)

In particular, the Landau theory for standard percolation
using Eq. (B3) gives 8 =1, vy = 1, v = 1/2, hence we
recover the well-known result Dyc = 6 [58]. Since Landau
theory correctly describes the critical behavior for D >
Dyc, we can conclude that the mean-field Landau theory
for percolation, from Eq. (B3), is equivalent to percolation
on (infinite-dimensional) homogeneous networks. Hence
to introduce the idea of space in the infinite-dimensional
world of networks we can use standard finite-dimensional
results replacing D with Dyc.

Homogeneous networks are effectively infinite-
dimensional systems and mean-field theory describes
well the critical properties of percolation on top of
them. However, the effective field theory associated with
standard percolation fails to describe the critical behavior
of systems with strong heterogeneity in the connectivities
and a different theory is necessary [61]. In other words,
while it is true that percolation on homogeneous networks
is equivalent to the mean-field regime of percolation on
finite-dimensional systems with D > 6, percolation on
heterogeneous networks obeys the mean-field theory of a
different system, in which a singular v4-dependent term
appears in the effective Hamiltonian [61]. In particular,
it has been shown [61] that the correct mean-field theory
associated to percolation on heterogeneous networks with
power-law degree distribution py ~ k=7 for large k is
given by

L o5 1 3 -1

Vip) = SC2¢" ey £ Crap™*

We can interpret Eq. (B7) as the effective potential of a

finite D-dimensional system with heterogeneous connec-

tivity of each site. Therefore we can insert the critical

exponents of the Landau theory associated to Eq. (B7),

i.e., the exponents computed in this paper for heteroge-

neous networks, see Table II, into the Ginzburg criterion,

(B6), to determine the upper critical dimension Dy¢. Us-
ing the values of 8, v and v in Table II, we find

(B7)

’7d247

(B8)
3 < yq < 4.

6,
Duc =9 2(u-1)
(va—3)

These values are in agreement with previous results
in the literature [39] obtained via different arguments.
For 2 < 74 < 3 Eq. (B8) would predict Dyc < 0. This
reflects the fact that in no finite-dimensional space, of
any arbitrary large dimension D, is the critical behavior
described by the Landau theory of Eq. (B1) and Eq. (B7)
equivalent to percolation on heterogeneous networks.



Appendix C: Calculations of the critical exponents
for random graphs

In this section we develop in detail the computation
of all critical exponents for random graphs with homo-
geneous or power-law degree distributions, following the
general recipe described in Sec.III.

For homogeneous degree distributions, such as Erdés-
Rényi (ER) or random regular networks, go(z) and g1(z)
are analytic functions, hence they don’t have any singular
part. In this case b = (k?)/(k) — 1 is the branching factor
and d = (k(k —1)(k — 2))/(k). The case of heterogeneous
networks is provided by random graphs with a power-law
degree distribution pg ~ k=74, asymptotically for large k.
In this case it is always possible to write!?

go(1 —x) ~1— (k)x + %(k}be + O (yg — 1)zt
(C1)

1
gn(l—2)~1—bx+ ide +C(yq—2)x772,  (C2)

where b, d and C(-) depend on the value of 4. For the ex-
plicit values of these non-universal coefficients for graphs
with p(k) = (74 — 1)k24- k=7, within the continuous
degree approximation, see Appendix G in [55].

1. The exponents § and 0

a. Homogeneous degree distributions

From Egs. (49) and (51) it follows, using 1 — bg. = 0,
that

1
—btm + §d¢2m2 ~ h, (C3)

which can be solved for m. In particular, at criticality

the linear term vanishes and m ~ h'/2, hence § = 2 and
E = ¢.(k)[2/(62d)]Y/?. At h = 0 instead, m = 0 for t < 0

and
2
m = @ t,

for t > 0, hence 1 — W(¢,0) = 2(k)t/(d¢?), i.e., B =1 and
B = 2(k)/(d¢z).

(C4)

b. PL degree distributions
For 74 > 4, d = (k(k — 1)(k — 2)) is finite and the

singular part in g;(1 — z) does not modify Eq. (C3),
which is still valid. Hence g =1, § = 2. In this case, the

10There are logarithmic corrections for integer 4.
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degree heterogeneity is not strong enough to produce a
scenario different from the homogeneous case.

For 3 < 74 < 4 instead, the singularity 742 in g; (1—x)
(Eq. (C2)) is dominant with respect to the term z? for
small z. Eq. (49) becomes, using again 1 — b¢. = 0,

C(yq —2)¢" 2m¥ =2 — btm = h, (C5)
from which it follows that m ~ h'/(%=2) at criticality,
hence § = g — 2, while E = (k)/[¢.C(ya — 2)]*/(1a=2),
For h = 0 instead, m = 0 for ¢t < 0, while

e~ 11/ (a=3),

1 1/(va—3)
} (C6)

{C(’Yd —2)¢¢ !

for t > 0, hence 8 = 1/(yq — 3) and B = (k)[C(ya4 —
2)%]1/(3—7(1).

The case 2 < 74 < 3 requires more care. From Eq. (C2),
the equation for m is, (t = ¢ since ¢. = 0),

m(1 4+ |blt) + C(ya — 2)t7"*2m¥~2 =h,  (C7)
where now b is a negative constant and it is no longer the
branching factor of the network (which is infinite). Setting
t =0, we get m = h, and from Eq. (52) § = 1. Note
that in this case W(0,h) = e~ ~ 1 — h is analytical and
no information about the coefficients of its power series
for large s can be extracted from its behavior around the
origin. Hence formally we have § = 1, E = 1, but these
values are not associated to a singular behaviour, and it
is no longer true that § = 1/(7 — 2), as it will be shown
below when 7 is evaluated.

For h = 0 instead

m =[O - 2)] 7= ¢/, (C)
from which, using Eq. (52) with ¢ = ¢, we get 5 = 14+ (va—
2)/(3=74) = 1/(3—7a) and B = (k)[~C(ya—2)]"/ 7).
For 2 < 4 < 3 this exponent describes the critical prop-
erties of the percolation strength for bond percolation:
Brona = B. As explained in the main text, for site perco-
lation the presence of an additional multiplicative factor
¢ in the equation for P>, Eq. (5), implies instead [32]
ﬂsite =1+ /Bbond =1+ 1/(3 — "}/d) = (4 — ’}/d)/(g — 'Yd)

2. The exponent «
a. Homogeneous degree distributions

From Eq. (55), expanding ¥(¢,0) for small ¢, using
m =m(t,0) as in Eq. (C4) and b — 1 = bt we get

<k>¢c _ @t“r @th _ l

F(t)~1-—
(*) 2 2 2 3!

(k)dpim®. (C9)

Eq. (C9) shows that F(t) approaches a constant value
linearly in ¢ as ¢ — 0. However, the exponent « accounts
for the behavior of the singular part of F'(¢), which is given
by the terms involving m. For homogeneous distributions,



since m ~ t for t > 0 [see Eq. (C4)] we get F(t) ~ t3,
hence a = —1, in agreement with the scaling relations.
In this case, the exponent governing the behavior of the
singular part is, by chance, an integer. As shown below,
this is not the case for PL degree distributions.

Note also that, for any ¢ < 0, m is identically zero. This
means that there is no singular contribution in F(t) for
t < 0. Hence the exponent a and the associated amplitude
A_ are not defined in the nonpercolating phase. For this
reason, we did not consider in our analysis two additional
amplitude ratios containing A_ defined in [18].

b. PL degree distributions

From Eq. (55), expanding ¥(¢,0) for small ¢ and using
m = m(t,0) we find, neglecting the non-singular term

1—o(k)/2,

p(k)

F(t):T

3!
(C10)

For 4 > 4, the singular term proportional to mY¢ !
can be neglected. Since m ~ t and bp — 1 = bt, as for
homogeneous degree distributions we get @ = —1.

For 3 < 74 < 4, the only difference is that m ~ t1/(v¢=3)
[see Eq. (C6)], hence at leading singular order

F(t) ~ ta=1)/(a=3), (C11)
from which oo = (yq — 5)/(va — 3).

For 2 < 74 < 3, ¢ = t, and m ~ t(7¢=2/B=7a) [see
Eq. (C8)]. Now the leading singular term is the one
proportional to t74~1mY=1 (since 74 — 1 < 2), so that

F(t) ~ t(va=1)/B=a) (C12)
from which oo = (7 — 3v4)/(3 — va)-

Again the exponent o and the associated amplitude
A_ are not defined in the nonpercolating phase.

3. The exponent v
a. Homogeneous degree distributions

For t < 0, at h = 0 we have m = 0. Hence from
Eq. (57)

Gelk) o1
-1~ = k)|t
(5) 1~ 2 — g2y,
giving v = 1 and C_ = ¢?(k). As expected, C_ is a
nonuniversal constant, since it depends on the details of
the model. For ¢t > 0 instead, m is given by Eq. (C4), and

e (k)

(s) =1 = om = delhit™,

from which again v = 1 and the (universal) amplitude
ratio is C}. /C_ = 1.

(61 ym>~ M oy 051y,
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b. PL degree distributions

For 74 > 4, the results obtained for homogeneous dis-
tributions hold.

For 3 < 4 < 4, still m = 0 for ¢ < 0, from which we
get again the same behavior approaching the threshold
from below. For ¢ > 0 instead, inserting Eq. (C6) into
Eq. (57) we have at leading order

(s) — 1~ 9e(k)
1= ¢[b— (4 —2)C(ya — 2)p2*~*mra=3]
_ Pe(k) AL 1
bt + (ya —2)bt  (va—3)

In this case the exponent is v = 1 and the critical ampli-
tude ratio is C /C_ = 1/(vq4 — 3).

For 2 < 74 < 3, inserting Eq. (C8) into Eq. (57) at
leading order we get

~ t{k)
T 1=t — bl = (va — 2)C(yq — 2)t7a—3mra—3]

(k)
S

(sy —1

This implies v = —1 and Cy = (k)/(3 — 74).

4. The exponent v
a. Homogeneous degree distributions

Close to criticality, taking ¢ < ¢, since v = 1 and
gy(1) = b, from Eq. (71) it follows & ~ (1 — ¢b)~1/2 =
b=1/2(—t)=Y2 If t > 0, we have u = 1—m and g} (1—¢m)
can be expanded using Eq. (C4) obtaining { ~ (¢b —
1)~Y/2 = p=1/2¢=1/2_ In both cases the prefactor is the
same so that the amplitude ratio £, /=_ = 1.

b. PL degree distributions

For any 4 > 3, since b is finite an analogous argument
also applies yielding v = 1/2 and =, /Z_ = 1. When
2 < ¢ < 3, instead, since ¢ = t, the denominator in
Eq. (71) goes to a constant, while the numerator is of
order t. As a consequence, ¢ ~ t'/2 and hence v = —1/2.

5. The amplitude ratio R,
a. Homogeneous degree distributions
Inserting in the definition

R,=C,E°B°! (C13)



the value § = 2 and the expressions for Cy, E and B
derived above for homogeneous distributions yields

R, =1, (C14)

the same universal value obtained on lattices above the
upper critical dimension [18].

b. PL degree distributions

For v4 > 4 the amplitudes are the same of the homo-
geneous case so that R, = 1. For 3 < 74 < 4 instead,
0 = 74 — 2 and the expressions of the amplitudes Cy,
B and E are different (see Sec. C1b). Inserting them
into the definition yields R, = 1/(yq — 3), which has
the same level of universality of the exponents, i.e., it
depends only on 74 but not on details of the degree dis-
tribution. For 2 < 74 < 3, since d =1 and £ = 1 we
find R, = Cy = (k)/(3 —v4). Note that this value is
not universal (it depends on (k)), as it should be. How-
ever, we already pointed out that the point ¢ = 0 for
2 < 74 < 3 is not a true critical point, and the exponent
0 = 1, together with the amplitude £ = 1, coming from
the analytic part of W are not associated to a critical
behavior. However, a nonrigorous argument can be de-
veloped to restore criticality and define a universal R,
even in this case. The argument is as follows. The sin-
gular part of ¥(¢,h) can be written, from Eq. (26), as
{U(t,h) }sing = |t| 7 F(x), where F, is a scaling func-
tion of the variable = = h/|t|'/?. The critical behavior —
the exponents 3, d and the associated critical amplitudes
— can be recovered from the cases r < 1,i.e. h — 0 and ¢
small, and = > 1, i.e. t — 0 and h small. For 4 > 3 as
well as for homogeneous degree distributions, F/ (z) ~ 1
for # < 1 and F/ (z) ~ 272 for z >> 1. However, for
2 < 4 < 3, as no singular part of ¥ remains when ¢ — 0,
the scaling behavior of F/ (x) for z > 1 must be different,
and must correspond to {¥(¢ — 0, h) }sing ~ 0. Working
instead at z = O(1), i.e., small but finite h and ¢, from
Eq. (C7) it follows, using the value of ¢ in Table II, at
lowest order m ~ [—C/(vyq—2)]"/ 374z~ h. Plugged into
Eq. (52), with ¢ = ¢ = 277h7, we finally get

W(p,h) = 1 — (k)[~C(ya — 2)] T o7 h1/ (=2,
from which ¢’ = 1/(v4 —2) and E' = (k)[-C(ya —
1 1
2)]®=7a) z2=7a. Using these values, from Eq. (C13), we
get
1

Ry = 3= —[-Clu -2,

Fixing » = [-C(ya — 2)]ﬁ we then find the universal
value R, = 1/(3 —7q). Thus for 2 < 74 < 3 we can
formally study the singular behavior of ¥ in the limit
t — 0, h — 0 but keeping z fixed as above. Note that ¢’
is also in agreement with the scaling relation 7 = 2+1/4’.
The physical motivation for the choice of x remains to be
understood.
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6. The exponents o and 7
a. Homogeneous degree distributions

Using Eq. (D3) and (D4) in Appendix D, the solution
of the characteristic equation is = t/(d¢?). Hence, since
u*=1-n

L
dog

from which, using the definition of s¢ in Eq. (74), 0 = 1/2.
For t > 0, p is far away from the unitary disk: the
presence of the GC strongly hinders the formation of other
large clusters, introducing an exponential cutoff [33]. At
criticality ¢ = ¢, t = 0, the singularity p touches the
unitary disk p = 1, and s¢ diverges. For ¢ < 0, in the
phase without a GC, the singularity p is again pushed
away from the unitary circle since, also in this case, only
finite clusters can form.

In order to derive 7 we must invert Eq. (80). From
the expansion of 1(u) around u*, setting ¢ = u* — u, see
Eq. (D1), we obtain

p=vu")~1+ t2, (C15)

Pz = ()~ lu) = " ()

1/2

which can be inverted!! to give € ~ (p — 2)1/2, yielding

Hi(2) ~u* — Ai(p— 2)Y2, (C16)

with A; a positive constant. This result implies

Ts(9) = qos 3/ 2e™/% = qos T2 f(qus'/?t),  (C17)

from which we find that 7 = 5/2 and the universal scaling
function is Gaussian f(z) = e=*". As noted in [34], this

behavior is a consequence of the central limit theorem.
Note that Eq. (C17) holds for any [t| < 1 (see Fig. 1(a)).

b. PL degree distributions

For power-law degree-distributed networks it is neces-
sary to analyze separately what happens above and below
the threshold and consider various ranges of v values.

a. yg>4

t > 0: For positive t <« 1, the expansions of
P(u*) and ¥’ (u*) in Egs. (D5), (D6) are equivalent to
Eqgs. (D3),(D4), hence we recover again Eq. (C15), and
o = 1/2. Furthermore, from Eq. (D1) we get for s > 1

ng(t) ~ s~/ 2e75/%, (C18)

11 The inversion produces an ambiguity in the determination of the
sign. The sign is taken in order to have an increasing Hi(z) for
zZ—p .



t = 0: At criticality ¢ (u) is singular for v = 1 and
its expansion is now given by Eq. (D7). However, since
€772 < €2, we get the same asymptotic behavior as in
Eq. (C18), even though ~4-dependent subleading correc-
tions are present. We can conclude that 7 = 5/2.

t < 0: In this case the convergence radius of H;(z)
remains p = 1, since the characteristic equation ¢’ (u*) =
0 admits a solution only for ¢ > 0. Hence s¢ = co. In the
expansion of ¢(u) around 1 (see Eq. (D8)) if the condition

—t<e€ (C19)
holds, then the term proportional to € can be neglected
compared to the term €2. In such a case the inversion of
Eq. (D9) yields

e~ (1—2)Y2 (C20)
Inserting this into Eq. (C19) consistency is found as long
as 1 —z > (—t)2 = (=t)/°. Hence n, decays with
exponent 7 = 5/2 for s < sg ~ (—t)~/?. When this con-
dition is not fulfilled, then at leading order from Eq. (D9)
€ ~ (1 — z) which, replaced back into Eq. (D9), gives

1—H,(z) = € = c1(1—2)+other reg. terms+cy(1—2)7"2,

(C21)

Since the first term in the r.h.s. is regular, this expression
implies, via Eq. (73), that

ng(t) ~ s (C22)

In summary, we find the critical decay ng ~ s~%/2 for
1 < 5 < 89, with sg ~ |t|71/7; for s ~ s¢, ns(t) exhibits
an exponential cutoff and then, for s > s, a tail s~
(see Fig. 1(b)).

Hence, even though the correlation size s¢ is formally
infinite for ¢ < 0, there is another characteristic size sg
such that the cluster size distribution can be written as

ns(t) = qos™ " f-(q187t) + qas™ ™, (C23)
with f_(z) < 1 for || < 1, showing that the scaling
ansatz Eq. (24) must be modified.

Two distinct mechanisms contribute to the cluster size
distribution tail in Eq. (C23). The first is the collective
phenomenon of percolation, where finite clusters merge
into larger and larger clusters as ¢t — 0~. This mech-
anism is responsible for the critical properties such as
the divergence of (s). The second is the presence for any
finite ¢ > 0 of a small but finite fraction of nodes with
arbitrarily high degree, surrounded by active neighbors,
as already noticed in [33]. The contribution of the first
mechanism is larger than the second, all the more so when
criticality is approached, because 4 > 7, so that only
the first tail remains as sg diverges. Therefore, even if
Eq. (24) is not strictly obeyed, the correction in Eq. (C23)
can be neglected if we are interested in critical properties.
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b. 3<yi<4

t > 0: For positive t < 1, in Eq. (D6) the subleading
term proportional to n can be neglected. Inserting the
solution of the characteristic equation into Eq. (D5) we
obtain

¢C_(7d_2)/(7d_3)
[(va —2)C(va —

from which o = (yq — 2)/(ya — 3). Since ¢ > 0, Eq. (D1)
can be used again, from which we find again the scaling in
Eq. (C18). However, now Eq. (D1) is valid conditioned on
€ < 1 —u* =7, because of the presence of the singularity
of G1(u) in u = 1'2. If we consider the inverse function
H,(z) (see Fig. 5) the inversion works only far from the
singularity in z = 1, which implies p — 2 < p—1 =
Y(u*) — 1 < 1. Hence the asymptotic behavior obtained
from Eq. (D1) holds provided s > s., where

p~1+ t('Yd—Q)/(’Yd—3)’ (C24)

2)]1/(%—3)

(C25)

In the opposite regime ¥ (u*) — 1 < p — z < 1, that is
for 1 € s < s,, it is not possible to distinguish u* from
1, hence p from 1, and the validity of the Taylor expan-
sion breaks down. We can use instead the asymptotic
expansion close to 1 — see Eq. (D7) — rather than the
Taylor expansion close to u*. In this regime, we observe
the critical behavior, see the case ¢ = 0 below. Note
that since s¢ = 1/log(p) = 1/log(1 + ¢ (u*) — 1), and
log(1+ z) < z, we have s, < s¢. In particular, s, ~ s¢
for t <« 1.

t =0: In this case Eq. (D7) must be used, where now
€2 < €~2, Inverting Eq. (80) implies € ~ (p — z)1/(7a=2)
which leads to

ns(0) ~ s~ R/ (va=2)] (C26)

e, 7=2+1/(y4—2).

There is an apparent contradiction: the asymptotic
scaling with exponent 5/2 for any ¢ > 0 is different from
what occurs for ¢ = 0, where 7 = 24+1/(y4—2) > 5/2. This
is at odds with what happens for homogeneous systems
(and for 4 > 4) where the value of the exponent is the
same and only the cutoff scale s¢ changes as criticality is
approached. The conundrum is solved by the presence
of the crossover scale s, (discussed above for ¢ > 0),
which separates a decay as s™7 for 1 < s < s, from the
asymptotic decay s~%/2e~%/%. When t — 0 the crossover

12Note that such a singularity is present also for v4 > 4, but in that
case the leading term produced by the inversion is still given by
a square root singularity, as already noted above. The singular
behaviour close to and at criticality are the same and no crossover
is observed.



size diverges, s, ~ t~/7, while still remaining smaller
than the correlation size s, < s¢ This does not imply
a violation of the scaling ansatz. Eq. (24) is still valid
but, analogously to what happens in the case 2 < v4 < 3
(see below), the scaling function f4 () has a nonstandard
form: it is constant for x < x* = s./s¢; it vanishes
exponentially for z > 1; it behaves as z(4=74)/[2(0a=3)] jp
the interval between z* and 1.

t < 0: The phenomenology is perfectly analogous to
the case vq4 > 4: ny(t) decays as s 7 for 1 < s < sp,
where so diverges as \t|’1/ 7 as criticality is approached.
For s > s instead ns(t) ~ s~ 74. The only difference with
respect to the case y4 > 4 is that now 7 =2+ 1/(v4 —
2), because the term competing with the linear term in
Eq. (D8) is €72 instead of €.

c. 2< <3

In this range of 4 values, only the phase ¢ > 0
exists and ¢ = t. We can solve again the characteristic
equation using the expansion Eq. (D6) for small 7, and
from Eq. (D5) obtain

p = 1-C(7a—2)[~(7a—2)C(yq—2)]"/ E710)(a=2)/(3=0a),

(C21)
from which o = (3 —~v4)/(v4 — 2). This result implies the
existence of a diverging correlation size s¢ ~ t=1/7 even
if for ¢ = 0 no critical behavior occurs.

The asymptotic decay of ns(t) is again determined by
the singularity produced by the inversion of ¥ (u) close to
u*

Hi(2) =’ — el ()] 2(p— 2)V% (C28)
Hence n, exhibits a tail s~°/2 with an exponential cutoff
at s¢. Asin the case 3 < 74 < 4, this expression holds pro-
vided that u is close enough to u*, hence the asymptotic
behavior extracted from it holds only for s > s, ~ ¢t~ /7.
For 1 < s < s4, we can use the expansion in Eq. (D2),
in perfect analogy to the cases of PL networks for ¢ < 0
considered above, which gives

Hy(2) =1 — o 2(1 — 2)7472 (C29)
corresponding to a power law scaling of ngs with exponent
~4. Following the analogy with the case 3 < v4 < 4, we
may be tempted to identify 7 = v4: as t — 0, only the
decay with exponent 4 survives. However it has to be
noted that there are multiplicative factors depending on
¢. While they do not play any essential role for 4 > 3,
as for t < 1 they are simply ¢, > 0 at leading order,
the situation now requires a more careful analysis. From
Eq. (D2), and the expression of n = 1—u* in terms of ¢, we
see that |1 (u*)| ~ t(7a=3)/(va=2) = t=1/7 The concavity
of ¥(u) in u* diverges as t — 0. This means that the
peak around u* gets not only smaller, but also narrower,
as t — 0. This reflects the fact that ¥ (u) = u is analytic
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for ¢ = 0 and there is no peak at all. Hence a prefactor
proportional to '/ multiplies the decay of n, for large
s. Similarly, the preasymptotic scaling for 1 < s < s
contains a prefactor t7¢~2. Finally, an additional factor
t in ny(t) comes from the mapping between the singular
behavior of Hy and the singular behavior of Hy, Eq. (72),
since By = pGy(u*)A; ~ t. Putting all these results
together

catts™e, 1K s <K sy,

ng(t) ~ - C30

®) {cbtbsges/sﬁ, s> Sy, ( )

where s¢ ~ 5, ~ t~Yeo o= B—71)/(ya—2), a="s—1,

b=1/(20) + 1, and ¢,, ¢, are constants independent of ¢.

The expression in Eq. (C30) can be cast in a scaling form

like Eq. (24), in which the dependence on ¢ is absorbed
in the scaling function. Hence

no(t) = 5 fo(q17D), (C31)

where 7 =2+ 1/(y4 — 2) and the scaling function f4 (z)
behaves now as

(C32)

t

a a

fila) = {(C“/ DI e T

(co/qr)a’e™ ", x> s,
with z, = ¢1¢. Note that if x, > 1, only the first scaling,
followed by the exponential cutoff for x ~ 1, is observable.
This form of the scaling function with fi(z) — 0 as
x — 0 is unusual, but note that a similar behavior of
the scaling function appears also for the linear chain (see
Appendix A), where n, can be put in a scaling form like
Eq. (24) with 7 =2 and f_(z) ~ 2% — 0 for z — 0.

In conclusion, the analysis developed here shows that
for 2 < v4 < 3 the cluster size distribution obeys the
scaling form in Eq. (24) with 0 = (3 —y4)/(va — 2), 7 =
2+ 1/(va — 2) but with a scaling function f(z) ~ z7¢~!
for  — 0. This implies that if the decay of n4(t) with s is
studied at fixed ¢ (as it is usually the case) the exponent
measured is not 7 but 4 with a prefactor decreasing as
t— 0.

7. The exponent v

For power-law degree-distributed networks with 4 > 3,
b(ke) ~ boo — Coke ™% where by, = b(ke = o0) and
Cs is a positive constant. Inserting this expression into
Eq. (82) we obtain, at lowest order,

Ge(N, ko) ~ bt + l%‘k;“d*f*) +b O NT3. (C33)

If degrees are sampled from a distribution with a hard
(structural) cutoff kmay(N) ~ N/ the actual cutoff in a
realization of the network is the minimum between the
structural cutoff and the natural one, N/ (a=1)  Thig



implies that in full generality k.(N) ~ N 1% with @ =
max|w, v — 1] 3.

Then, considering Eq. (C33), the scaling of the effective
threshold depends on whether (v4 — 3)/w is larger or
smaller than 1/3.

For @ < 3(y4 — 3) the second to last term in Eq. (C33)
decays faster than the last one; as a consequence v = 3
as in the fully homogeneous case: the scaling of the
effective threshold ¢.(IN) is governed by bona fide critical
fluctuations. This occurs for 74 > 4 and w < 3(y4 — 3).

If instead & > 3(y4—3) the role of the two contributions
is reversed: in this case, for asymptotically large N the
second to last contribution in Eq. (C33) dictates the
scaling of ¢.(N), yielding 7 = @ /(4 —3). For 3 < v4 <4
and w < 4 — 1 (so that @ = 4 — 1) this implies 7 =
(va —1)/(va — 3). Otherwise @ = w and 7 = w/(vq4 — 3),
see Fig. 3. The fact that 7 depends on the parameter w,
which governs how the thermodynamic limit is reached,
immediately implies that the hyperscaling relation (43) is
violated as the left hand side cannot depend on w. The
violation of (43) can be traced back to the breakdown of
Eq. (42). In its turn this is interpreted as follows: the
slow growth of the maximum degree k. with N introduces
an additional cutoff smaller than s¢ in the cluster size
distribution.

For 2 < 74 < 3 the picture is completely different.
The argument based on the mapping to an appropriate
field-theory puzzlingly yields a negative upper critical
dimension. It is more useful to observe that the nega-
tive value of the exponent v = —1/2 indicates that the
correlation length does not diverge for ¢ — ¢. = 0. The
threshold ¢. = 0 is not a true critical point. If one insists
on determining numerically the behavior of the correla-
tion length ¢ as a function of ¢, one finds a peak in a
position ¢.(N) ~ b(k.(N))~! but with an amplitude that
decreases with the system size (v = —1). In principle it is
possible to define in this way an exponent 7 = w/(3 —v4),
but with this value hyperscaling relation (43) is violated.

The rich finite size scaling phenomenology just de-
scribed is summarized in Fig. 3.

The exponent 6 is readily obtained from Eq. (40). In
the region where hyperscaling holds 6 = 2/3 for 4 > 4
and 0 = (yqg — 2)/(yq4 — 1) for 3 < 4 < 4. These values
coincide with those obtained using Eq. (42). Instead,
when hyperscaling is violated, we find: § = 1— (v4—3)/w
for v4 > 4; 0 =1 — 1/w for 74 < 4. These values do not
coincide with those obtained from Eq. (42): 1/(ov) =
2(yq4 — 3)/w for vq > 4; 1/(o0) = (ya — 2)/w for 74 < 4.
Table III presents all these results as a function of w for
the different ranges of ~4.

13The exponent & must be larger than or equal to 2, otherwise the
network is necessarily correlated [46]
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FIG. 3. Finite size scaling behavior as a function of v4 and w.

Appendix D: Asymptotic expansions of 1)(u) and ’(u)

In this Appendix we write the asymptotic expansions of
Y(u*) and ¥’ (u*) [see Eq.(75)] for u* close to 1 and also
the expansion of ¢'(u) for u close to u*. We remind that
P(u) = u/G1(u), where G1(u) = g1(du+ 1 — ¢) and that
u* is the solution of the characteristic equation ¢’(u*) = 0.
These expansions are needed in Appendix C to determine
the form of the cluster size distribution ng(¢). Indeed, in
order to determine o we need s¢ for |t| < 1, which can be
evaluated, via Eq. (74), using the expression of p = ¥ (u*).
The condition |¢| < 1 implies u* =1 —n(t) with n < 1.
Moreover, to evaluate 7 we must invert Eq. (80) to find
€ = u* —u as a function of p — z and hence the exponent
ay = agp, to be inserted in Eq. (73). In some cases this
inversion process is far from trivial and is characterized
by crossovers between competing behaviors, giving rise
to preasymptotic effects in the shape of ns(¢), see Fig. 1.
The main formulas we are going to use are the Taylor
expansion of ¥ (u) close to u*, setting € = u* — u,

Y(w) = g() — @RS, (D)

where we assume [¢”(u*)| # 0, and the asymptotic ex-
pansion for u close to 1, setting e = 1 — u,

Y(u) = 1~ (1~ gh)e — 3" — Ol — 2)g 272,
(D2)

1. Homogeneous degree distributions

For homogeneous distributions G(z) is analytic and
both 9 (u*) and ¥’ (u*) can be Taylor expanded [see Fig. 4].
In practice this amounts to use Eq. (D2) without the
singular term on the r.h.s.. Evaluating it in u* = 1 —n(t),
that is € = n(t), we have for [t| < 1, n < 1, keeping only
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FIG. 4. Various plots of the functions ¢ (u) (purple) and
its inversion Hi(u) (blue). The yellow dashed line is the
non-physical part produced by the inversion of ¥ (u). In the
different rows the cases t > 0, t = 0 and ¢t < 0, respectively,
are considered. In the left column results are for homogeneous
networks, in particular ER graphs, in the right column for
power-law network with v = 3.5. The asymptotic scaling of H
for p—u < 1is reported. Dashed lines serve as guide to the eye
to indicate when the derivative of ¢)(u) vanishes (green dashed),
in u* (black dotted), and the corresponding convergence radius
p of Hy (black dashed). The red dot signals the presence of
a singularity at v = 1 in ®¥(u), but not necessarily in Hi,
see panel (b). While for homogeneous networks the inversion
always produces a square-root singularity, i.e. fort > 0 (a),t =
0 (c), t < 0 (e), for power-law networks the inversion produces
three different exponents in (b), (d), and (f) corresponding to
different scaling asymptotes for ns(t). Note that the exponents
in (d) and (f) look similar, but they are different, as explained
in detail in Fig. 5.

the lowest orders in 7

P(u”) ~ 1+ bin,
Y (u*) =~ —bt + dg?n.

(D3)
(D4)
The behavior of ¥ (u) for u close to u*, setting € = u* —u,

is instead given by Eq. (D1). Note that these expansions
are valid for any ¢, both positive and negative.

2. Power-law degree distributions

For power-law degree distributions more care must be
taken. The main problem is that ¥ (u) is no longer analytic

in u = 1, because of the singularity of G;(u) in u = 1.
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FIG. 5. The origin of the crossovers in the cluster size dis-
tributions for power-law networks. In this case, y4 = 3.5 is
considered. In (a), the functions ¥ (u) and its inverse Hi(u)
are plotted for ¢ > 0 but t < 1. In particular, on the scale
in (a) it is impossible to detect the difference between p, u*
and 1, and the system seems to be at criticality ¢t = 0 and
p = 1, with a singular behaviour associated with the criti-
cal exponent 7. On a closer look (b), however — hence on a
smaller scale — we can distinguish u* from 1 and a square-root
singularity determines the behaviour close to the singularity
at p > 1. The asymptotic scaling of n, for large s > s, is
then determined by the inversion in (b), but for 1 < s < s«
the picture in (a) is valid and determines the preasymptotic
scaling with exponent 7. Similarly, in (c) the situation ¢ < 0
but |¢| < 1 is considered. At first sight, the system seems to
be at criticality ¢ = 0 in (c), where 1'(1) = 0. However, on a
closer look (d) we realize that ¢ < 0 since ¢’(1) # 0. Again,
the picture in (c) determines the scaling of ns for 1 < s < so,
while asymptotically we must look closer (d) to find the scaling
ns ~ s ' for s > sg.

Let us discuss separately the three cases t > 0, t = 0,
and ¢ < 0. In the first case, u* < 1 and ¥(u) can still be
Taylor expanded around u*, using Eq. (D1). However, as
it will be shown, the validity of such expansion breaks
down as t gets small. For ¢t < 0 instead, the singular
behavior of G1(u) around 1 must be considered and hence
Eq. (D2) must be used.

a. Ezpansions for t > 0

In this case, setting u* = 1 — n(t) we can write, at
lowest order in 7, using Eq. (D2)

Y(u*) =1 —(1—¢b)n— C(ya—2)¢" 472, (D5)
=~ (

P (u*) = (1= ¢b) + dd*n + (yq4 — 2)C(ya — 2)¢™ *n)¢ 2,
(D6)

Note that these expansions are defined only for > 0,
hence for ¢ > 0, in contrast to the case of homogeneous
degree distributions, where n < 0 for ¢ < 0.

Expanding ¢ (u) for u close to u* we get again Eq. (D1)



since, provided that u* < 1, we can Taylor expand G (u)
in a neighborhood of u*.

However, Eq. (D1) is valid conditioned on ¢ < 1—u* =
7, because of the presence of the singularity of G (u) in
u = 1 (see Fig. 4(b)). As shown in Appendix C, this
feature leads to preasymptotic effects in the behavior of
ng(t).

b. Expansions fort =0

At criticality v* = 1 and the local behavior of ¥(u)
for u close to u* now strongly depends on the value of
~a. We can no longer Taylor expand ¢ (u) (see Fig. 4(d))
and the asymptotic expansion in Eq. (D2) must be used
instead, obtaining

P(u) ~1— %d¢262 — C(yq — 2)¢pra—2era=2, (D7)

where d = (k(k — 1)(k — 2))/(k) > 0 for 74 > 4, while
d is a negative constant for 74 < 4 when (k%) = oc.
As explicitly discussed in Appendix C, the value of the
exponent 7 depends on which of the two terms depending
on € in Eq. (D7) is the leading order.

c. Ezxpansion fort <0

In this case, the maximum of ¢(u) is now reached in
u* = 1, not because the first derivative vanishes but
because 1 (u) is defined only for u < 1 (see Fig. 4(f)).

Hence, setting 1 — bp = —bt,
Y(u) = 1+ bte — Sd? — Cloa — )62, (DS)
that can be rewritten as
1 — 2z~ —bte + %d¢262 + C(ya —2)¢7 272 (DY)

The effect of the competition between the different
contributions in these expressions on the behavior of n(t)
is nontrivial, as reported in Appendix C
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Appendix E: Connection with Kryven’s results

In Ref. [34] Kryven presented a general theory to de-
termine the size distribution of connected components in
an infinite network built according to the configuration
model and specified by an arbitrary degree distribution.
The expressions presented there can be used to determine
asymptotic properties of the cluster size distribution for
a percolation process on the same network by considering
that, under dilution, the tail of the degree distribution re-
mains a power-law with the same exponent. In particular,
if g, = Ak~(¢=1 is the excess degree distribution of the
network with ¢ = 1, after the dilution g (¢) ~ A¢k’(“’d’1)
for large k, where A, = A¢74~2. In other words, dilution
affects the small k part of the degree distribution, while
the tail remains with the same exponent, only with a dif-
ferent prefactor. All the nontrivial behaviors derived by
means of the generating function approach and in partic-
ular in Fig. 1, can be worked out from the expressions in
Table II in [34]. In particular, it is interesting to see this
connection for the case 2 < 74 < 3. From Table II in [34]
and the preasymptotic scaling of the cluster size distri-
bution (see the unnumbered equation below Table II) we
find, using the crucial observations that skryven ~ tra—2
and M1 Kryven = t<k>»

W% —(va—1) 1 .
ww{qs AR

qbti’s_%e_s/s&, 5> Sy,

Where 85 ~ t_l/a’ g = (3 - ’yd)/(ryd - 2)7 a’ = Yd — 17
b= 1/(20) + 1, and q,, q» are constants independent of
t. This is in perfect agreement with Eq. (C30). Similar
arguments can be developed for 4 > 3, recovering the
rich picture of crossover phenomena described here.
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