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Abstract—In electric vehicles (EVs), a battery management
system plays a critical role in ensuring the reliable and safe
operation of batteries. One of their main tasks is to monitor the
battery’s state of charge (SoC), reflecting the battery’s current
available charge level. However, the accuracy of SoC estimation
is a formidable challenge due to the intricate nature of battery
modelling. To overcome this challenge, data-driven methods have
recently emerged as the dominant approach for SoC estimation.
Considering the SoC estimation problem as a time series problem,
we propose a hybrid deep neural network (DNN) that eliminates
the need for feature engineering or adaptive filtering. The
proposed DNN incorporates a convolutional layer, a long short
term memory layer, and a dense layer. The DNN was trained
using data collected from benchmark EV driving cycles (DST,
BJDST, and FUDS drive cycles) within a temperature range
of 0◦C to 50◦C. The performance evaluation of the trained
DNN has been carried out using another standard EV driving
cycle (US06 drive cycle) at various operating temperatures. The
results demonstrate that the trained DNN effectively captures
the dynamic behaviour of the battery under various operational
conditions, yielding a maximum percentage SoC estimation error
of approximately 3%. Furthermore, the results indicate that the
proposed DNN technique is capable of generalising the battery’s
dynamic response to unseen data. Overall, our findings show that
the proposed technique is promising for EV applications in which
battery operating conditions would exhibit significant variability.

Index Terms—Convolutional neural network, Long short term
memory, Battery management system, Electrical battery, State
of charge estimation

I. INTRODUCTION

The automotive industry has experienced a significant tech-

nological shift in recent years, particularly with the increasing

adoption of electric vehicles (EVs). This transition is driven by

a combination of factors, including increased environmental

concerns, the implementation of regulatory standards, and

technological developments. Advances in battery technology

have played a pivotal role, contributing to improved energy

density, extended range, and reduced costs. As a result, the

automotive industry is evolving towards a more eco-friendly

future, marking a crucial step toward achieving environmen-

tally conscious and sustainable transportation.

The ongoing transformation highlights the crucial role of

battery management systems (BMSs). As this transformation

accelerates, robust and reliable BMS development gains more

prominence. Therefore, researchers are paying more and more

attention to developing a robust and accurate BMS. A robust

BMS is critical to ensure the optimal performance, safety,

and longevity of the batteries that power EVs. One of the

essential duties of the BMS is to monitor the battery state

of charge (SoC), which is defined as the proportion of the

current available capacity of the battery to its nominal ca-

pacity. It serves as a critical parameter informing the driver

about the EV’s remaining range, thereby enhancing overall

confidence and satisfaction of EV ownership. However, due to

the complicated electrochemical nature of batteries and their

nonlinear behaviour, which is influenced by a range of internal

and external factors, accurately estimating the SoC poses

a considerable challenge. Consequently, there is a notable

prevalence of research inquiries focused on achieving more

precise SoC estimation among BMS researchers.

Three primary approaches to SoC estimation are available,

comprising model-free methods such as Coulomb counting

(CC) and open circuit voltage (OCV) measurement techniques,

model-based methods including electrochemical and equiva-

lent circuit model (ECM) based approaches, and data-driven

methods [1]. The CC method involves integrating the current

flowing in and out of the battery over a certain period of

time [2]. This requires an accurate initial guess of the SoC

and precise measurement of the current sensor. However, it is

not capable of capturing changes in the dynamic behaviour of

the battery as a result of the change in ambient temperature

and capacity degradation. Another model-free technique is

the OCV measurement method [3]. This method starts by

measuring the terminal voltage of the battery when it is

unloaded and allowed to rest until it reaches a steady state,

where the terminal voltage is presumed to be equivalent to

the battery’s OCV. Following this, the corresponding SoC

estimate can be determined from a predefined look-up table.

However, implementing this method faces practical challenges

for two primary reasons. Firstly, the necessity of a resting

period makes it unfeasible in dynamic operational conditions.

Secondly, the look-up table is established under controlled

laboratory conditions and their values are constant, rendering

it inaccurate over time as the battery undergoes usage [5].

Typically, model-based techniques rely on current and

voltage measurements to compute the SoC through closed-



loop structures. These approaches involve two main battery

modelling strategies to characterise battery dynamics. The first

strategy employs electrochemical modelling, utilizing a set

of partial differential equations to depict the electrochemical

processes occurring inside the battery [4]. Although effective,

this method tends to be computationally demanding and time-

consuming, making it more suitable for laboratories aiming

to optimise battery designs. The second strategy involves

replicating the battery’s dynamic behavior using an ECM.

ECM-based methods mimic the battery dynamics through

circuit elements such as resistors, capacitors, and open voltage

sources. ECMs are an alternative that is computationally

more efficient and less time-consuming than electrochemical

modelling. However, ECM-based models also rely on a prede-

fined non-linear relationship between the SoC and the OCV.

This constitutes the most challenging aspect of ECM-based

methods, as the relationship is predominantly determined in

laboratories, resulting in a fixed relationship. Nevertheless, this

relationship is expected to vary with changes in operational

conditions and the aging of the battery [5]. Consequently, the

constant SoC-OCV relationship leads to an escalation in SoC

estimation errors in the long run. Furthermore, model-based

techniques have the following critical challenges:

• Implementing a battery model necessitates the accurate

parameterisation of the proposed model. Electrochemical

battery models involve a multitude of parameters. In

contrast, ECMs have fewer parameters, yet their SoC-

OCV relationship poses another challenge [6].

• Physical modelling of the battery ageing characteristic

is challenging. The Solid Electrolyte Interphase (SEI) is

a protective layer that develops on the electrodes of a

battery. Estimating the growth of SEI is vital to accurately

determining the battery state of health (SoH) related to

the SoC calculation. Yet, predicting its growth encounters

a multiscale phenomenon involving processes at various

levels, posing a challenge to model comprehensively [7].

Because of the drawbacks and constraints of the afore-

mentioned SoC estimation techniques, battery researchers are

driven to discover a more dependable and effective SoC

estimation method. The rapid advancements in artificial intelli-

gence have led to the increasing popularity of data-driven SoC

estimation methods in recent years. Deep learning techniques

are gaining prominence in BMS design techniques due to

their ability to establish end-to-end connections between input

and output without requiring an exhaustive understanding of

battery chemistry or dynamics. In [8], a deep neural network

(DNN) with 5 layers is created to predict SoC. The initial

layer of the DNN is designated as a convolutional layer, tasked

with extracting features from the input data. Subsequently, the

max-pooling layer and another convolutional layer are added

to the DNN. The fourth layer is a gated recurrent unit (GRU)

layer designed to capture sequential dependencies within the

input data. Finally, a dense layer with 5 neurones is appended

to the GRU layer. Each data sample includes current and

voltage series as input, and the output is the corresponding

SoC determined using the CC method. In [9], the researchers

introduced a long-short-term memory (LSTM) network inte-

grated with transfer learning (TL). They approached the SoC

estimation challenge as a time-series problem and opted for

the LSTM architecture to address it. Transfer learning was

subsequently employed to fine-tune the parameters of the pre-

trained DNN, enabling the model to adapt to temperature

variations and battery degradation over time. Song et al. used

a combined DNN, incorporating CNN to extract interrelations

within input data and LSTM to characterise the long-term

dependencies inherent in SoC estimation when treated as a

time series problem [10]. As input, the network takes current,

voltage, and temperature measurements, along with average

current and voltage calculations over a certain window size.

The output corresponds to the estimated SoC.

In deep learning techniques, effective data collection is of

significant importance. According to [11], the training dataset

comprises voltage and current readings obtained during battery

operations. The reference SoC is determined through the CC

method. Furthermore, achieving a precise initial SoC involves

a thorough process of fully charging and fully discharging the

battery. Subsequently, the supervised training of a DNN can

be facilitated using the current and voltage data, along with

the reference SoC.

In this work, we calculated the SoC under various operating

conditions using a trained DNN. The organisation of the

paper is as follows: Section II presents the DNN architecture

explaining the layers employed in DNN; Section III introduces

the data extraction and preparation, and DNN training; Sec-

tion IV explains the battery simulations and results; finally,

conclusions and future work are discussed in Section V.

II. DEEP NEURAL NETWORK STRUCTURE

In this study, a DNN consisting of five layers shown in Fig. 1

is built. The initial layer serves as the input layer, followed by

a convolutional layer with 16 filters, each with a kernel size of

three. The convolution operation employs a stride of one. Due

to the nature of our SoC estimation problem, a pooling layer

was deemed unnecessary for downsampling spatial dimensions

and reducing computational load. The primary goal of the

CNN layer is to extract spatial features from the input data.

Following the CNN layer, an LSTM layer with 32 nodes is

included to capture the evolution of the temporal dynamics of

the battery. Subsequently, a dense layer with 32 nodes is intro-

duced for regression purposes, enhancing the DNN’s capacity

to accommodate the nonlinear dynamics of the battery.

Finally, the output layer is employed, using a single node

with a sigmoid activation function, to consolidate the estima-

tion results within the range of 0 to 1, where the sigmoid

function, σ(·), is given by

σ(x) =
1

1 + e−x
(1)

and x is the input.



Fig. 1. Deep Neural Network Structure

A. Convolutional layer

In image processing, 2D (2-Dimensional)-CNNs are recog-

nized as the predominant deep learning algorithms. However,

for the specific task of SoC estimation, 1D (1-Dimensional)-

CNNs are employed due to the temporal characteristics of the

input features. In contrast to 2D-CNNs, where kernels traverse

spatial dimensions both horizontally and vertically, 1D-CNNs

exclusively utilise striding along a single dimension. This

unidimensional striding facilitates the capture of temporally

relevant features by the kernels, rendering 1D-CNNs well-

suited for extracting information within the context of SoC

estimation.

The standard CNN architecture typically consists of a con-

volutional layer, followed by a pooling layer, and then a flatten

layer. On the contrary, our DNN structure is different from this

convention by excluding the pooling and flattening layers, as

shown in Fig. 2 a). The omission of the pooling layer is to

preserve the dimensionality of the input vector. Furthermore,

the flatten layer, which is traditionally employed to collapse

the output dimensions, is unnecessary for our problem because

the output of the CNN layer is the input to the LSTM layer

which accepts a three-dimensional input.

A 1D convolutional layer utilized in this work processes an

input vector, which comprises measurements represented by

[̃I1:m, Ṽ1:m, T̃1:m, Ī1:m, V̄1:m], where I is the current, V is the ter-

minal voltage, T is the ambient temperature and Ī and V̄ are the

average current and average voltage, respectively. The symbol

(̃.) represents the measurement of the corresponding variable.

(.)1:m denotes all values of the variable from the initial time

step to the m-th time step. Training a DNN using mini-batches

is used not only to improve computational and memory effi-

ciency but also to provide advantageous stochasticity during

the training process, contributing to improved generalization

and faster convergence. Consequently, the arrangement of the

input is formalised as a three-dimensional array, illustrated

in Fig. 2 a). In this representation, the height corresponds to

the batch size, the width represents the time steps in a k-th

calculation step, and the depth signifies the features including

sensor measurements and average values. The incorporation of

the 1D convolutional layer into the DNN is achieved through

the utilisation of the Keras library. The activation function

employed is the Rectified Linear Unit (ReLU). ReLU returns

zero for negative inputs and the inputs’ value for positive

inputs. It is mathematically represented as follows:

fReLU(x) = max(0, x) (2)

where fReLU is the ReLU function. ReLU accelerates the

Fig. 2. Detailed visualisation of the layers used in DNN architecture: a) 1D
convolutional layer, b) LSTM layer, c) Dense layer with one node output layer

learning process by preserving and computing the gradients

more efficiently.

B. Long short term memory layer

When the problem involves dealing with a sequence of

data over time, using a recurrent neural network (RNN) can

be more advantageous. RNNs can capture information on

historical elements in the data sequence that adopt a hidden

state. In detail, the hidden state at the current calculation step is

calculated by both the current input and the hidden state from

the previous calculation time step. This recurrent calculation

makes RNNs capture temporal patterns and suitable for time-

series problems such as the SoC estimation problem. However,

traditional RNNs suffer from a gradient vanishing problem.

To overcome this, more sophisticated variants of RNNs are

introduced.

LSTM network is categorised as a type of these RNNs, is

introduced to address issues related to gradient explosion and

gradient vanishing. The occurrence of gradient vanishing arises

when weight updates become excessively small, impeding the

training process due to the challenges in updating the model.

On the contrary, a gradient explosion occurs when weight

updates become excessively large, leading to inconsistent

model training. LSTM effectively mitigates these problems

through its distinctive cell structure, which includes three

gates: the input gate, the forget gate, and the output gate as

shown in Fig. 2 b). At time step k, the LSTM cell processes

the following operations:

ik = σ
(

xkU
i + hk−1W

i + bi
)

fk = σ
(

xkU
f + hk−1W

f + bf
)

ok = σ (xkU
o + hk−1W

o + bo)

c̃k = tanh (xkU
c + hk−1W

c + bc)

ck = fk ∗ ck−1 + ik ∗ c̃k

hk = tanh (ck) ∗ ok

(3)



TABLE I
BATTERY SPECIFICATIONS

Battery specification Value

Battery type Lithium-ion

Upper cut-off voltage 4.2 [V]

Lower cut-off voltage 2.5 [V]

Nominal battery capacity 2.28 [Ah]

Battery ageing condition Fresh

Number of cells 1

where ’*’ is the element-wise product, xk is the input to

the LSTM cell, hk is the output of the LSTM cell. ck is

the hidden state memory of the LSTM cell and c̃k is a

hidden state calculated based on the current input and previous

hidden state. fk, ik, and ok are the activation vectors for the

forget gate, the input gate, and the output gate, respectively.

σ is a sigmoid activation function whereas tanh is a tangent

hyperbolic activation function. Finally, W and U are the

weight matrices and b is the bias vector.

C. Dense layer

A dense layer comprising 32 nodes is incorporated into

the LSTM layer to enhance the regression capability of the

suggested deep neural network to address the SoC estimation

problem. ReLU is employed as an activation function. Subse-

quently, a single node output layer with a sigmoid activation

function is introduced into the neural network architecture, as

SoC estimation typically falls within the range of 0 to 1. The

dense layer and the output layer are shown in Fig. 2 c).

III. DATA GENERATION AND NEURAL NETWORK TRAINING

The training data was extracted using the electrochemical

battery model implemented in the PyBamm library, a Python

tool designed by researchers to advance battery research [12].

The battery model is the Doyle-Fuller-Newman (DFN) lithium

ion model [14], featuring a capacity of 2.28 A.h, an upper cut-

off voltage of 4.2 V, and a lower cut-off voltage of 2.5 V. The

battery consists of a single cell whose nominal capacity is 2.28

[Ah] and is a fresh battery with 100% SoH. The summary of

simulated battery specifications is given in Table I.

In practice, a battery operating temperature below 0°C

increases the internal resistance, which could potentially dam-

age the battery while charging the battery at high voltages.

Likewise, it is equally important to avoid exceeding 50°C

to mitigate accelerated battery ageing and self-discharge due

to accelerated chemical activities in the battery cell [15].

Therefore, the temperature is chosen in the range of 0°C to

50°C in our work.

In the simulations, a fully charged battery undergoes differ-

ent standard driving cycles under various temperatures such

as dynamic stress test (DST), federal urban driving schedule

(FUDS), Beijing driving schedule test (BJDST), and supple-

mental driving cycle US06. The driving cycle profiles are given

in Fig. 3. Note that the training data is generated through

DST, FUDS, and BJDST driving cycles, while the US06

Fig. 3. Standard drive cycles for battery testing

drive cycle profile is specifically employed to test the trained

DNN performance. Prior to each simulation, the battery is

fully charged via a constant current-constant voltage (CCCV)

charging procedure. Initially, a charging current of 1 A is

applied to the battery until the terminal voltage reaches 4.2

V, after which the charging current gradually decreases to

0.05 A while the terminal voltage remains at 4.2 V. After

this procedure, the battery is considered fully charged for

subsequent discharge simulations. The data are recorded every

1s, the average current and average voltage are calculated

every 60s.

The collected battery data are then processed to create data

with sequences consisting of m successive measurements. The

process of generating data, where sequences of inputs and their

corresponding outputs are formed, is depicted in Fig. 4 where

m corresponds to a window size employed to scan the data,

N is the final time step in data. For example, m number of

consecutive measurements of I, V, T, Ī, and V̄ and the m-th

SoC value form the first sequence in the processed data.

Fig. 4. Visualization of the process of generating data with sequences



Fig. 5. SoC estimation results: a) SoC estimation result while the ambient
temperatures increase over time, b) SoC estimation result at 50

◦C, c) SoC
estimation result at 25◦C, d) SoC estimation result at 0◦C

Fig. 6. SoC estimation percentage errors: a) SoC error while the ambient
temperatures increase over time, b) SoC error at 50 oC, c) SoC error at 25
oC, d) SoC error at 0 oC

After data processing, the white noise is added to the

measurements. In [13], the standard deviations for current and

voltage measurement errors are suggested to be 0.05 mA and

0.05 mV, respectively. Similarly, white noise with the standard

deviation 1◦C is added to the temperature measurements.

IV. SIMULATIONS AND RESULTS

In our work, m is set to 60. Training and testing data are then

generated, consisting of the consecutive 60 data points along

with their associated SoC value at the end of the data sequence.

The corresponding SoC value is calculated using the Coulomb

counting method. The DNN is trained with data extracted as

explained above. The optimiser used in the training is the

ADAM optimiser. The loss function of MSE is adopted and

the DNN is trained with 1000 epochs. The batch size is set

to 2048. The initial learning rate is set to 0.0001. The decay

rates are set to 0.9 and 0.999, respectively.

MSE =
1

K

K
∑

k=1

( yk − ŷk)
2

(4)

where yk is the reference SoC value whereas ŷk is the

estimated SoC value at calculation step k.

SoC estimation results are given in Fig. 5, where Fig. 5a)

shows the SoC estimation result when the operating tempera-

ture changes during the simulation. The ambient temperature

is increased from 0◦C to 50◦C by 5◦C. Fig. 5b), Fig. 5c),

and Fig. 5d) shows the SoC estimation results at constant but

different temperatures, 50◦C, 25◦C, and 0◦C, respectively. The

SoC is estimated based on the data through the US06 drive

cycle. Note that the US06 drive cycle is not used to extract the

training data. The estimation results show that the trained DNN

can capture the dynamic response of the battery at different

temperatures and current profiles with high accuracy. Although

the training data does not include the data at 5◦C, 15◦C,

25◦C, 35◦C, 45◦C, the trained DNN performs a promising

accuracy in SoC estimation results. These results indicate that

the model has learned to generalise underlying patterns and

features, resulting in accurate predictions on unseen data.

The percentage error is relatively greater in middle-low SoC

regions, i.e., 40% and 10%, compared to the rest of the SoC

regions when the temperature is 25◦C and below as shown in

Fig. 6. In this region, the maximum percentage error reaches

around 3% at 0◦C whereas it is around 1% at 50◦C. This

is due to the battery’s SoC-OCV curve characteristic whose

slope approaches zero in this region at low temperatures.

The loss evolution is plotted in Fig. 7. The loss exhibits a

rapid decline and reaches a stable state after approximately

200 epochs. Nevertheless, fluctuations in the loss exist even

after stabilisation, indicating that the optimisation algorithm

transitions between one local optima to another.

Fig. 7. MSEs of the training and validation performance

V. CONCLUSION AND FUTURE WORK

The SoC estimation problem is assumed as time series prob-

lem. Therefore, the CNN-LSTM DNN is proposed to capture

the dynamic behaviour of the battery under various operating

conditions. The CNN is to capture the spatial features and



LSTM is to capture the time series dependencies. A dense

hidden layer is also employed to increase the ability of the

DNN to better fit the non-linear behaviour of the battery. The

training and testing data are generated based on the DFN elec-

trochemical battery model. The DST, BJDST and FUDS drive

cycles are used to generate the training data at various ambient

temperatures ranging from 0◦C to 50◦C, whereas the US06

drive cycle is used to test the performance of the trained DNN

at different temperatures. In the simulations, the maximum

percentage SoC estimation error is around 3%. The maximum

error is observed at 0◦C, which is due to a significant increase

in the capacity loss as the operating temperature decreases.

Overall, a hybrid neural network consisting of LSTM, CNN,

and dense layers shows a promising SoC estimation accuracy

for batteries in practice, where the operational conditions vary

with time.

Our future work will focus on real-time fine-tuning the

DNN weights that were initially trained using synthetic data.

This fine-tuning process will involve incorporating sensor data

obtained during actual battery operation. The objective is

not only to eliminate the time-consuming and labor-intensive

tasks associated with laboratory work and experimental costs

but also to ensure that the DNN can effectively adjust to

variations in battery dynamics over time. Fine-tuning process

would require another SoC estimator so we will integrate

the current DNN with another SoC estimation algorithm,

leading to a hybrid estimator. Accurate SoC estimates would

provide information about the change in the battery SoH,

which is another challenging problem to be addressed in

EV applications. Finally, we will propose a SoH estimation

approach that relies on the accurate estimation of the SoC.
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