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fatigue (Kuppuswamy et al. 2022; Doncker and Kuppus-
wamy 2022). While other brain regions/networks have been 
implicated in fatigue such as parietal, pre-frontal and sub-
cortical networks (Jaeger et al. 2019; Finke et al. 2015; Cot-
ter et al. 2021), here we specifically focus on somatosensory 
and motor networks which have been implicated in PSF; 
to test the predictions of the sensory attenuation hypoth-
esis that a dysfunction within the somatosensory networks 
underlies fatigue.

From a neuronal network functioning point of view, 
behaviour mirrors structural and functional changes in net-
works, which persist in resting state (Graziadio et al. 2010). 
Neuronal networks at rest express features that keep trace 
of their ability to perform the required behaviour (Kim and 
Kang 2018; Wahlheim et al. 2022; Doucet et al. 2012; Y. Li 
et al. 2022a, b; Liu et al. 2022). These features of networks 
at rest display alterations that reflect chronic symptoms 
(Porcaro et al. 2019). Both in post-stroke fatigue (PSF) and 
other disease where fatigue is significant, neurophysiologi-
cal (Kuppuswamy et al. 2015a, b, c; Ondobaka et al. 2021; 
De Doncker et al. 2021; Liepert et al. 2005; Morgante et al. 

Introduction

Stroke, a result of vascular insufficiency to neurons present 
with fatigue as a significant symptom. The severity of stroke 
does not explain reported levels of fatigue (Kutlubaev et al. 
2012; van der Werf et al. 1998). Previously, we have pro-
posed a sensory attenuation hypothesis of fatigue, based 
on poor suppression of anticipated sensory information –
(Kuppuswamy 2017, 2022). Poor suppression of muscle 
sensory afferents results in assigning high effort to simple 
tasks which explains a significant proportion of post-stroke 
fatigue (Doncker et al. 2020a, b) In visual and auditory per-
ception, poor distractor suppression explains post-stroke 
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Abstract
Background  Poor suppression of anticipated sensory information from muscle contractions is thought to underlie high 
fatigue. Such diminished task-related sensory attenuation is reflected in resting state connectivity. Here we test the hypoth-
esis ‘altered electroencephalography (EEG)-derived functional connectivity in somatosensory network in the beta band, is a 
signature of fatigue in post-stroke fatigue’.
Methods  In non-depressed, minimally impaired stroke survivors (n = 29), with median disease duration of 5 years, resting 
state neuronal activity was measured using 64-channel EEG. Graph theory-based network analysis measure of functional 
connectivity via small-world index (SW) was calculated focusing on right and left motor (Brodmann areas 4, 6, 8, 9, 24 and 
32) and sensory (Brodmann areas 1, 2, 3, 5, 7, 40 and 43) networks, in the beta (13–30 Hz) frequency range. Fatigue was 
measured using Fatigue Severity Scale - FSS (Stroke), with scores of > 4, defined as high fatigue.
Results  Results confirmed the working hypothesis, with high fatigue stroke survivors showing higher small-worldness in the 
somatosensory networks when compared to low fatigue.
Conclusion  High levels of small-worldness in somatosensory networks indicates altered processing of somesthetic input. 
Such altered processing would explain high effort perception within the sensory attenuation model of fatigue.
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2011; Russo et al. 2017) and behavioural (Kuppuswamy et 
al. 2015a, b, c, 2016; De Doncker et al. 2020a; Doncker et 
al. 2020b) findings support an altered resting state, specifi-
cally sensory network activity.

Ensembles of neurons that fire at specific frequencies and 
communicate with each other by synchronising their firing, 
comprise a neuronal network. To understand a network’s 
activity, the strength of synchronicity between various nodes 
is mapped using functional connectivity methods (Bullmore 
and Sporns 2009). Functional connectivity is defined as the 
temporal correlation or dependency between distinct neu-
ronal groups and areas (Fingelkurts et al. 2005; Rubinov 
and Sporns 2010). Such temporal correlation occurs in 
various frequency bands, with low frequencies associated 
with arousal, mid-range frequencies related to sensorimo-
tor activity, and high frequencies representing higher order 
functions such as error detection and learning. With PSF 
proposed to be a problem of sensorimotor control, specifi-
cally arising from processing of incoming muscle related 
sensory information, we anticipated a fatigue related modu-
lation of beta band frequency.

Here we investigate if a dysfunction of somatosensory 
networks underlies PSF, as demonstrated by changes in 

beta-band neuronal activity in sensory and motor networks 
at rest.

Methods

Participants

This study was approved by the London Bromley Research 
Ethics Committee (REC reference number: 16/LO/0714). 
Stroke survivors were recruited and tested at the Institute of 
Neurology, London, UK.

All stroke survivors were screened prior to the study 
based on the following criteria: first-time ischaemic or 
haemorrhagic stroke; stroke occurred at least 3 months 
prior to the study; no clinical diagnosis of any other neuro-
logical disorder; physically well recovered following their 
stroke defined as grip strength and manual dexterity of the 
affected hand being at least 60% of the unaffected hand 
assessed using a hand-held dynamometer and the nine-hole 
peg test (NHPT) respectively; not taking anti-depressants or 
any other medication that has a direct effect on the central 
nervous system; not clinically depressed with depression 
scores ≤ 11 assessed using the Hospital Anxiety and Depres-
sion Scale (HADS)(Snaith 2003).

Twenty-nine stroke survivors took part in the study 
(Table 1) and provided written informed consent in accor-
dance with the Declaration of Helsinki. A formal sample-
size calculation was not performed due to lack of pilot data. 
However, in previous studies, differences could be observed 
in the measure of resting state functional connectivity in as 
few as 10 subjects per group (Nordin et al. 2016).

Fatigue

Trait fatigue was quantified using Fatigue Severity Scale, 
FSS-7. An average score of one indicates no fatigue while 
an average score of seven indicates maximum fatigue 
(Krupp et al. 1989). High fatigue was defined as FSS-7 > 4 
(Valko et al. 2008).

Control group: Healthy humans were not recruited for 
this study as a control group, specifically as the state of the 
brain is likely to have changed after an injury or establish-
ment of a disease (Kuppuswamy 2023), therefore an ideal 
control group will be a within-disease control group. The 
stroke low (no) fatigue group was used as a control for this 
study.

EEG Recording

Whole-scalp electroencephalography (EEG) data was 
recorded using 64-channel systems, ActiCap, Herrsching, 

Table 1  This table provides the demographic and lesion information of 
the stroke survivors cohort

Fatigue Group
Variable Low Fatigue, 

N = 161
High Fatigue, 
N = 131

FSS-7 2.1 (1.4,2.4) 5.6 (5.3,6.0)
Age (years) 61.7 (55.6,64.8) 62.9 

(56.1,68.1)
Sex
Male 13 5
Female 3 8
Grip Strength (% unaffected 
hand)

98.4 
(89.9,107.3)

92.3 
(79.7,103.3)

NHPT (% unaffected hand) 94.3 (86.0,105.) 87.7 
(69.4,94.8)

SDMT 1.0 (0.8,1.2) 0.8 (0.5,1.0)
HADS - Anxiety 4.0 (2.8,7.3) 9.0 (3.0,10.0)
HADS - Depression 4.0 (3.0,5.0) 7.0 (3.0,9.0)
Hemisphere Affected
Left 10 6
Right 6 7
Type of Stroke
Ischaemic 14 12
Hemorrhagic 2 1
Vascular Territory Affected
MCA 8 8
PCA 1 1
Brainstem/Cerebellum 3 3
Time Post-Stroke (years) 5.3 (4.2,6.8) 7.4 (5.4,11.1)
1Median (25%,75%); n
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Germany, and a BrainAmp, at rest, with eyes open and 
focusing on a fixation cross. Duration of recording was 
seven minutes. The 64 electrodes were positioned on the cap 
in accordance with the 10–20 international EEG electrode 
array. During online recordings, channels FCz and AFz were 
used as reference and ground respectively. Impedances were 
kept below 10 kΩ throughout the recording. The EEG signal 
was sampled at 1 kHz and visualized online using the Bra-
inVision Recorder Software (BrainVision Recorder, Version 
1.21.0102 Brain Products GmbH, Gilching, Germany).

EEG Analysis

EEG analyses were performed with a combination of 
EEGLAB (Delorme and Makeig 2004) and custom Matlab 
scripts. EEG data was down-sampled to 250 Hz and then 
band-pass filtered from 0.1 to 47 Hz using a finite impulse 
response filter. Noisy channels were identified and removed 
using automated procedures. EEG data was subsequently 
segmented into two second epochs, and epochs contain-
ing noisy data were identified as follows: the mean activity 
of all EEG channels was computed, and the threshold was 
set at ± 2 times the standard deviation of the mean activity. 
Epochs containing activity exceeding the threshold value 
were marked and subsequently removed. This left a total 
of 160 (± 15) two second epochs. To identify and remove 
ocular movements and blink artifacts from the EEG data, an 
independent component analysis (ICA) implemented within 
EEGLAB was used. ICA is a blind source decomposition 
algorithm that enables the separation of statistically inde-
pendent sources from multichannel data (Jung et al. 2000). 
The components were subsequently visually inspected and 
those containing ocular movements or blink artifacts were 
removed. The previously removed channels were then 
interpolated back into the dataset and finally, the EEG data 
was re-referenced against the grand average of all scalp 
electrodes.

Graph Theory Estimates

Functional Connectivity Analysis. EEG connectivity 
analysis was carried out using the exact low-resolution 
electromagnetic tomography (eLORETA) software (The 
KEY Institute of Brain-Mind Research University Hospi-
tal of Psychiatry, Zurich; http://www.uzh.ch/keyinst/New-
LORETA/LORETA01.htm). The eLORETA algorithm is 
a well-established linear inverse solution for EEG signals 
(Pascual-Marqui 2002).

Following whole brain sources reconstruction, connec-
tivity was computed using the eLORETA software on four 
brain regions, divided into motor and sensory networks of 
the left and right hemisphere based on Broadmann areas 

(BAs). Each BA is a region of interest (ROI). The BAs that 
formed the motor network for both the left and right hemi-
sphere included BA4, 6, 8, 9, 24 and 32, while the BAs that 
formed the sensory network for both the left and right hemi-
sphere included BA1, 2, 3, 5, 7, 40 and 43.

Current density time series of all BAs within each of 
the four networks was computed in eLORETA and used to 
estimate the functional connectivity using the Lagged Lin-
ear Coherence (LagR) algorithm, not affected by volume 
conductance and low spatial resolution in each of the four 
networks (Pascual-Marqui 2007). Lagged Linear Coherence 
was computed for beta (13–30 Hz) band frequency.

Graph Analysis. A network is a mathematical representa-
tion of a real-world complex system and is defined by a col-
lection of nodes (vertices) and links (edges) between pairs of 
nodes. Nodes in large-scale brain networks represent brain 
regions, while links represent anatomical or functional con-
nections. Nodes should ideally represent brain regions with 
coherent patterns of anatomical or functional connections. 
The connectivity parameters extracted between all pairs of 
ROIs for each frequency band is in the form of a square 
matrix W, with dimensions equal to the number of ROIs. 
Each row and column within matrix W represent nodes, 
while the values within the matrix represent the strength of 
connection between each pair of nodes.

Once the networks of interest were constructed, the core 
measures of graph theory that summarize the aspects of 
segregation and integration of a network were computed 
using the Brain Connectivity Toolbox (Rubinov and Sporns 
2010). Segregation refers to the degree to which network 
elements form individual and separate clusters and is mea-
sured by the clustering coefficient (C). Integration refers to 
the capacity of the network to become interconnected and 
exchange information and is measured by the parameter 
characteristic path length (L). The clustering coefficient and 
characteristic path length represent the efficiency of the net-
work with respect to local and global connectedness respec-
tively. Weighted clustering (Cw) coefficient and weighted 
characteristic path length (Lw) were computed as a measure 
of segregation and integration of the network as follows:

Cw =
Cbrain

Crandom
andLw =

Lbrain

Lrandom

Where Cbrain and Lbrain are the clustering coefficient and 
characteristic path length derived from the connectivity 
matrix of each participant. Crandom and Lrandom are the mean 
values of the clustering coefficient and characteristic path 
length of 100 surrogate random networks that have the 
same basic characteristics as the original network that were 
derived by randomly rewiring the nodes using the original 
network edge weights. The random networks preserve the 
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Results

Participant Demographics

Twenty-nine stroke survivors completed the study (11 
females and 18 males). The median FSS-7 score was 5.29 
(IQR = 2.57) in females and 2.50 (IQR = 2.46) in males. The 
Wilcoxon test showed that the difference in FSS-7 score 
was marginally non-significant (p = 0.05, effect size = 0.37). 
Spearman rank correlations between trait fatigue (FSS-
7) and all continuous demographic measures revealed a 
significant positive association between trait fatigue and 
HADS-Depression (Spearman ρ = 0.41, p = 0.03), while 
no other variable correlated with trait fatigue (Age: Spear-
man ρ = 0.02, p = 0.91; Grip strength: Spearman ρ = -0.23, 
p = 0.24; NHPT: Spearman ρ = -0.25, p = 0.19; HADS-Anx-
iety: Spearman ρ = 0.35, p = 0.06).

Clinical Characteristics

There were no confirmed MRI lesions in any of the stroke 
survivors in the study. The association between trait fatigue 
(FSS-7) and the clinical characteristics of the stroke was 
assessed across all stroke survivors. The median FSS-7 
score in those with right hemisphere strokes was 4.43 
(IQR = 3.00) and 2.71 (IQR = 3.75) in those with left hemi-
sphere strokes (Wilcoxon test: p = 0.50, effect size r = 0.13). 
The median FSS-7 score in those with ischemic strokes 
was 2.93 (IQR = 3.46) and 3.86 (IQR = 2.29) in those with 
hemorrhagic strokes (Wilcoxon test: p = 0.51, effect size 
r = 0.13). Regarding the vascular territory affected, the data 
from five stroke survivors was missing as the clinical notes 
could not be retrieved. The median FSS-7 score in those 
where the MCA was affected was 3.36 (IQR = 3.25), the 
median FSS-7 score in those where the PCA was affected 
was 3.07 (IQR = 2.07), while the median FSS-7 score in 
those where the Brainstem/Cerebellum was affected was 
4.21 (IQR = 2.68) (Kruskal-Wallis test: p = 0.57, effect size 
η2=-0.04). A spearman rank correlation between FSS-7 and 
the Time Post-Stroke at which the participants took part 
in the study showed no significant association (spearman 
ρ = 0.08, p = 0.67). Any meaningful interpretation of the 
effect of the type of stroke and vascular territory affected on 
FSS-7 in the current cohort of stroke survivors is difficult 
given the skewed numbers.

Small Worldness

Across the two networks (sensory/motor) and hemi-
spheres (left/right) there were two extreme outliers (both 
in the motor network of the right hemisphere). After 
exclusion of outliers, the data was normally distributed, 

same basic characteristics as the original network such as the 
number of nodes and edge weights. The random networks 
were constructed by Brain Connectivity Toolbox29. A mea-
sure of network small-worldness (Sw) was therefore defined 
as the ratio between Cw and Lw; the ratio between local 
connectedness and the global integration of the network.

Sw =
Cw

Lw

When Sw has a value of approximately 1, a network is said 
to have “small-world properties” meaning a good combi-
nation of high levels of local clustering among nodes and 
proper paths that globally link all network nodes (all nodes 
of a large system are linked through relatively few inter-
mediate steps). Sw values greater than 1 suggest high lev-
els of local clustering among nodes and many short paths 
that globally link all nodes of the network, while Sw val-
ues less than 1 suggest poor local connectivity and stunted 
connections.

Statistical Analysis

All statistical analysis was performed using R (RStudio 
Version 1.2.5033). Spearman rank correlations identified 
associations between trait fatigue (FSS-7) and demographic 
variables (age, grip strength, NHPT, HADS – Depression, 
HADS – Anxiety and Time Post-Stroke). Wilcoxon rank 
sum tests identified association between trait fatigue (FSS-7 
scores) and categorical measures (sex, hemisphere affected 
and type of stroke). The effect of vascular territory on FSS 
was not analysed as there were too few in each group. Sha-
piro-Wilk’s test of normality assessed distribution of depen-
dent variable and Levene’s test assessed homogeneity of 
variances.

In normally distributed variables, a three-way mixed 
ANOVA was performed to evaluate the effects of fatigue 
(between subject factor: StrokeLow, StrokeHigh) and sex 
(between subject factor: Male, Female) on small world-
ness within the beta frequency band (dependent variable), 
for two networks (sensory and motor) and two hemispheres 
(left and right). Greenhouse-Geisser epsilon adjustment 
corrected any deviations from sphericity. Post-hoc pairwise 
comparisons (t-tests) with Bonferroni adjustment was per-
formed to identify main effects.
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Discussion

In twenty-nine patients with stroke, we show that those with 
high levels of trait fatigue exhibited significantly higher lev-
els of small worldness in the sensory networks and signifi-
cantly lower levels of small worldness in the motor networks 
in the beta band frequency (13-30 Hz). There was no asso-
ciation between clinical features of stroke, and trait fatigue 
which confirms previous findings (Kutlubaev et al. 2012). 
As investigated by small worldness, functional brain con-
nectivity simultaneously reconciles the opposing demands 
of functional integration and segregation. The small-world 
index reflects the balance of functionally specialized (segre-
gated) modules with a robust number of intermodular (inte-
grating) links. Here we observed that fatigue is paralleled 
by the alteration of small-world organization in sensory and 
motor networks.

The observed changes in sensory networks are later-
alised. A possible trivial explanation could be that the small 
numbers have resulted in one side reaching significance 
and not the other. If the observed lateralisation is not due to 
limited numbers, ‘hyper-connectivity’ in right sensory net-
works is in keeping with recent findings of a shift towards 
right hemispheric dominance in sensorimotor networks in 

(p > 0.05) and variances were homogenous (p > 0.05). 
The three-way-ANOVA revealed a main effect of net-
work type (F(1,23) = 15.59, p < 0.01, η2 = 0.13) and a sig-
nificant interaction between network type and fatigue level 
(F(1,23) = 16.79, p < 0.01, η2 = 0.14) on small worldness 
in beta frequency band. There was also a significant three 
way interaction between network type, fatigue level and 
sex (F(1,23) = 5.09, p = 0.03, η2 = 0.05), however there was 
no significant two way interaction between sex and network 
type (F(1,23) = 0.65, p = 0.43, η2 = 0.006) nor between sex 
and fatigue (F(1,23) = 1.05, p = 0.32, η2 = 0.009). Post-hoc 
multiple pairwise comparisons revealed a significant dif-
ference in small worldness within the beta frequency band 
(Fig. 1) between the StrokeLow and StrokeHigh groups in the 
sensory network of the right hemisphere (p = 0.01), driven 
by the difference in female participants (P = 0.0127). There 
was also a significant difference between StrokeLow and 
StrokeHigh in left and right motor networks (p = 0.02 and 
p = 0.03 respectively), with females driving the difference 
in the right hemisphere (P = 0.0138).

Fig. 1  Functional Connectivity of the Sensory and Motor Networks 
in the beta band frequency. The value of Small Worldness across the 
two fatigue groups both in males and females (StrokeMale in blue and 
StrokeFemale in yellow) is displayed using boxplots for the sensory 
network in the left (A) and right (B) hemispheres and for motor net-

works in the left (C) and right (D) hemispheres. Significant differences 
between fatigue groups are indicated using asterisks (* = p < 0.05). 
In the right motor and sensory networks, the difference is driven by 
females
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(Bisecco et al. 2018) have all been implicated in develop-
ment of fatigue. While several brain regions have been 
implicated in both diseases as the core regions involved in 
fatigue, very few of the studies performed hypothesis driven 
analysis on resting state activity. In the present study, we 
hypothesised that attention to somatosensory input in not 
suppressed as normal [indicated by high perceived effort 
during muscle contraction (Doncker et al. 2020a, b)] which 
will be reflected in the resting state both in sensory and 
motor networks. Hyper-connectivity in sensory networks, 
commonly seen as a marker of tendency to maintain sen-
sory states quo, and resultant hypoconnectivity in motor 
networks that indicate lower M1 excitability (Kuppuswamy 
et al. 2015a, b, c) supports the premise that poor somatosen-
sory attenuation underpins high PSF. In summary, increased 
small world-ness in somatosensory networks suggests a 
propensity to maintain the status quo i.e. rest; an increased 
propensity to inaction (rest) translates into an increase in the 
effort needed to initiate an action; increased effort results in 
fatigue.

The high fatigue group had a disproportionately high 
number of females when compared to the low fatigue 
group. Previous studies have reported greater incidence of 
fatigue in female stroke survivors (Cumming et al. 2016) 
and sex significantly influences measures of resting state 
connectivity (Stumme et al. 2020). While difference in inci-
dence of fatigue was previously attributed to factors such 
as reporting biases influenced by sociocultural factors, the 
difference in resting state connectivity between males and 
females with high fatigue seen in this study opens up the 
possibility of a biological basis for differences in incidence 
of PSF. The influence of sex on resting state connectivity 
regardless of fatigue or stroke is unlikely to be the driver 
of the differences seen here, as sensorimotor networks are 
less likely to be influenced by sex (L. Li et al. 2022), unlike 
other brain networks. While further speculation on differ-
ences in biological mechanisms driving fatigue in males and 
females is beyond the scope of this paper, future mechanis-
tic studies in fatigue must consider the possibility of sex 
being a confounding factor in interpretation of findings, and 
also directly study differences between males and females 
in PSF.

Limitations: While the hypothesis-driven approach of this 
study is a strength, it could also be a limitation. No neural 
network in the brain operates in isolation and the influences 
of other networks on sensorimotor areas of the brain are also 
likely influenced by the differences seen in this study, which 
needs further investigation. The relatively small numbers of 
participants in this study is further highlighted by the dif-
ferences seen between sexes in this study. Lesion location 
does not influence PSF incidence or severity, however, to 
definitively exclude influence of lesion location on neural 

those with high post-stroke fatigue (Ondobaka et al. 2021). 
Healthy brains exhibit left-hemispheric dominance (Netz et 
al. 1995; Giovannelli et al. 2009) and a shift towards right 
dominance has been observed in several psychiatric dis-
eases including depression (Lefaucheur et al. 2008). A third 
possible non-trivial explanation could be the small differ-
ence in the number of left hemispheric strokes in the low 
fatigue group, however, this is unlikely as previous studies 
show shift in hemispheric dominance regardless of the side 
of stroke (Ondobaka et al. 2021).

Beta band activity is commonly known as the senso-
rimotor ‘idling’ rhythm seen in all cortical and sub-cortical 
motor areas at rest. Movement desynchronises beta band 
oscillations which lead to the idea that beta frequency is the 
rhythm of rest for sensorimotor areas. Recent proposals sug-
gest that beta band activity may not simply reflect a lack of 
movement but is rather an indicator for maintenance of sen-
sorimotor status quo (Engel and Fries 2010). During periods 
of spontaneous enhancement in resting beta band activity, 
movements are slower, than when resting beta activity is 
lower (Gilbertson et al. 2005). In light of such findings, 
the current results indicate that those with high fatigue are 
likely to have slowed movements. In post-stroke fatigue, 
while there is no difference in reaction times, there is slow-
ing of movements (Kuppuswamy et al. 2015a, b, c), perhaps 
because there is a resistance to change sensorimotor status 
quo as reflected by enhanced beta rhythm small-worldness 
shown in this study.

It is well-established that fatigue is only marginally asso-
ciated with motor and cognitive deficits (Ingles et al. 1999; 
Winward et al. 2009). However, despite good functional 
ability, markers of poor behavioural flexibility is associ-
ated with high fatigue (De Doncker et al. 2021; Morgante 
et al. 2011). Enhanced sensory, and diminished motor net-
work functional connectivity that seeks to maintain a sen-
sory state, thereby making new sensory states less desirable, 
lends further support to the idea of poor behavioural flex-
ibility underpinning high fatigue.

In this study we provide evidence for alteration in 
somatosensory processing, which may indicate a possible 
mechanism that drives fatigue is poor somatosensory pro-
cessing. Both in post-stroke fatigue and other neurological 
conditions such as MS, there are several reports of altered 
resting state connectivity (Ondobaka et al. 2021; Woodward 
et al. 2019; Bisecco et al. 2018; Jaeger et al. 2019; Stefancin 
et al. 2019; Cotter et al. 2021). In stroke, suggestions of 
parietal hypoconnectivity and frontal hyper connectivity 
(Cotter et al. 2021) with reversed inter-hemispheric balance 
of connectivity (Ondobaka et al. 2021), are implicated in 
manifestation of fatigue. In MS, changes in default mode 
network (Jaeger et al. 2019) and involvement of striatal 
circuits involved in movement, sensation and motivation 
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