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11 specialists is a constant challenge for biodiversity 

12 management. In this regard, Robillard et al. devel- 

13 oped a machine learning computer vision model to 

14 identify Amazonian fish at the genus level, with an 

15 accuracy of 97.9%. Their model aimed to make it eas- 

16 ier for non-specialists to identify fish, allowing them 

17 to contribute to the collection and sharing of data 
AQ168  for biodiversity management. However, when tested 

with a different set of fish pictures, the Classifier was 19 

unable to accurately identify fish photographs, result- 20 

ing in 82% misidentification, and did not outperform 21 

what would be expected by chance, indicating that it 22 

is not suitable for the accurate identification of taxa 23 

in its current form. The results underscore the need 24 

for a balanced approach, combining automated tools 25 

with expert taxonomic input for accurate conservation 26 

decisions, emphasizing caution in relying solely on  27 
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28 Artificial Intelligence methods. While acknowledging 

29 the potential of the model, we recommend restricting 

30 its application primarily to larger fish of commercial 

31 interest or scenarios where conservation decisions are 
AQ312  less directly affected by the model’s identifications. 

(e.g., conservation measures) that better represent the  62 

stakeholders (Robillard et al. 2023). 63 

In a recent publication, Robillard et al. (2023)  64 

present computer vision models designed for Ama- 65 

zonian fish identification based solely on photo- 66 

graphs. These machine learning models, utilizing  67 

33 Keywords Amazon River basin · Automated 

34 classification · Convolutional neural networks · 

35 Neotropical ichthyology · Taxonomy 
 

 
36 Introduction 

 

37 Performing accurate taxonomical assessments of 

38 freshwater fish biodiversity is a persistent challenge 

39 for conservation scientists and practitioners alike, 

40 especially in megadiverse regions such as the Ama- 

41 zon Basin (Olden et al. 2010; Silvano et al. 2022). 

42 Identification relies on traditional methods of col- 

43 lecting and identifying freshwater fish (i.e., regional 

44 inventories), which tend to be time-consuming and 

45 expensive and require high levels of training (Robil- 

46 lard et al. 2023). Molecular methods, such as DNA- 

47 barcoding and eDNA, have increased knowledge 

48 and allowed rapid species inventories, however, both 

49 methods rely on the availability of voucher-based ref- 

50 erence libraries including accurately identified spe- 

51 cies (Zainal-Abidin et al. 2022). Additionally, these 

52 methods require technology and sample processing 

53 infrastructure, which are deficient in many institu- 

54 tions in the global south, especially in many Amazo- 

55 nian institutions (Robillard et al. 2023). Further, but 

56 not less important, is the little participation of non- 

57 specialists, such as fishermen, the general population, 

58 and citizen scientists in the role of documenting bio- 

59 diversity. Enabling these agents to participate in col- 

60 lecting and sharing data would increase the likelihood 

61 of creating policies and managing decision-making 

U-Net for image segmentation and a convolutional 

neural network (CNN) for classification at the genus 

level, offer a practical and reliable alternative for 

simplifying fish identification. The authors advocate 

for a cost-effective and efficient approach to species 

assessments, eliminating the need for specialist vali- 

dation or expensive molecular barcode techniques. 

The models aim to seamlessly integrate data from 

non-specialists, addressing current barriers in fish 

identification. In their methodology, the authors uti- 

lized a database of 3068 photographs representing 33 

fish genera from 18 families and 4 orders, collected 

in Loreto, Peru, between 2018 and 2019. Impres- 

sively, the study achieved a genus-level identification 

accuracy of 97.9%. Notably, misidentifications were 

predominantly linked to small tetras (Characiformes: 

Characidae), key components of the Amazonian ich- 

thyofauna (Oliveira et al. 2009; Van Der Sleen and 

Albert 2018). 

The authors assert that their openly accessible 

online application, the Fish Masker and Classi- 

fier (available at https://amazonian-fish-classifier. 

streamlit.app-permalink: https://archive.ph/OYq5a), 

serves as a valuable tool for non-specialists in achiev- 

ing genus-level identification. The application allows 

users to upload pictures of live or preserved speci- 

mens under various conditions. According to the 

authors, the application recognizes fish pixels in the 

image, masks non-fish elements, and provides a taxo- 

nomic identification at the order, family, and genus 

levels based on their trained model. However, it is 

crucial to note that the performance of this machine- 

learning method for genus-level identification has not 
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conservation decision-making (Campos et al. 2023). 
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111 et al. (2023) as an example of an innovative tool for River basin. The photographed specimens and their
 

154 

112 fish identification. By employing a comprehensive corresponding vouchers are deposited in the following 155 

113 approach, we seek to make a substantial contribu- ichthyological collections: CICCAA (Coleção Icti- 156 

114 tion to the field, addressing the inherent challenges ológica do Centro de Ciências Agrárias e Ambientais 157 

115 of fish identification, particularly concerning biodi- - Universidade Federal do Maranhão, Chapadinha, 158 

116 versity management in tropical ecosystems. We aim Brazil) and UMSS (Museo d’Orbigny - Universidad 159 

117 to provide novel insights and discuss critical aspects Mayor de San Simón, Cochabamba, Bolivia). The 160 

118 of the taxonomic accuracy of the model. This study photographic database includes photographs taken 161 

119 is positioned to offer valuable perspectives for both under different conditions, such as color-in-life pic- 162 

120 scientists and practitioners engaged in environmental tures taken in a photo tank and outside a tank (e.g., in 163 

121 conservation, emphasizing the relevance of accurate the hand), pictures of preserved fish over a manually 164 

122 fish identification in the context of megadiverse tropi- masked black background, and a white background. 165 

123 cal ecosystems, such as the Amazon region. (Table 1 in Supplementary file S3). Photographs of 166 

 Bujurquina spp. from the Mamoré and Beni rivers 167 

 were obtained from Careaga et al. (2023), permitted 168 

124 Methods by the authors. 
The images were submitted to the web application 

169 

170 

125 Evaluating the training dataset for the ‘Amazonian ‘Fish Masker and Classifier’, a product developed by 171 

126 Fish Masker and Classifier’ Robillard et al. (2023) (Fish Masker and Classifier- 172 

 available at https://amazonian-fish-classifier.strea 173 

127 To assess the quality of the “Images used to train mlit.app). After uploading, the application utilizes the 174 

128 Amazonian fish classification model” (Dikow 2023) masker model to determine the percentage of pixels 175 

129 used in Robillard et al. (2023), we analyzed the origi- classified as fish and to mask out the remaining pix- 176 

130 nal masked images provided. We created a custom els, rendered in black. Subsequently, we gathered this 177 

131 macro function within ImageJ software (Schneider value (henceforth referred to as ‘fish_pixels’ in the 178 

132 et al. 2012) for precise pixel counting. The masked text) and preserved both the masked image and the 179 

133 images were converted to 8-bit format, to standardize classifier model-generated prediction bar graph. 180 

134 the pixel values to a range between 0 and 255, where Since the graph lacks printed values for individual 181 

135 0=black color. A threshold was applied, and any pixel bars, we utilized the Plot Digitizer tool (accessible at 182 

136 with a value = zero was filtered, leaving only pixels https://plotdigitizer.com/app) to digitize the charts. 183 

137 with color information. Finally, we performed a parti- The scale was set from 0 to 100 probability, and 184 

138 cle analysis, counting the number of pixel aggregates points on the periphery of the bars in the graph were 185 

139 in the images (code is available in Supplementary file digitized. 186 

140 S1). Following the pixel counting, ImageJ generated The resulting graph presents four possible genera, 187 

141 two distinct sheets as a result: one presenting values each representing the probable genus of the photo- 188 

142 in a row for each particle – available in Supplemen- graphed specimen, along with the corresponding 189 

143 tary file S2.1, and a second sheet with condensed val- probability of matching the classifier-based iden- 190 

144 ues summarized by each analyzed picture (n = 3068 tification-in simpler terms, it provides a list of gen- 191 

A1Q435  images) - in Supplementary file S2.2. era that the picture is most likely to represent. These 
probabilities are organized in descending order, with 

192 

193 

146 Testing the ‘Fish Masker and Classifier’ tool the top-ranked option referred to as the ‘first option’ 194 

 and denoted as ‘Class_1’ in our dataset, and so forth 195 

147 To test the model provided by Robillard et al. (2023), for the subsequent options. While the sum of the four 196 

148 we used 100 photographs representing 21 genera, probabilities may not necessarily equal 100; however, 197 

149 which were also included in their model training, it will never exceed this value. Therefore, the proba- 198 

150 with specimens from river basins under Amazonian bilities of the four identifications are considered vari- 199 

151 influence (Guamá, Gurupi, Turiaçu, Mearim, Munim, ables with some degree of interdependence. 200 

152 Preguiças, and Parnaíba river basins), as well as from The dataset with the results of the simulation con- 201 

153 the Beni and Mamoré river drainages, in the Amazon sisted of the labels of our pictures uploaded to the 202 
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Table 1 Results of the simulation with fish pictures in the 
Fish Masker and Classifier application 

also the classification status, where we verified if the 

identification was correct and, in the case of error, 

 
206 

207 

Genera sugges- 
tion 

Count of 
sugges- 
tions 

% Cumulative % Accuracy three different categories (‘Order’, ‘Family’, and 
‘Genus’) were assigned to indicate at which taxonom- 

ical level the error was identified (Supplementary file 

208 

209 

210 

Gymnotus 43 11,14 11,14 100% S4). 211 

 

Ancistrus 

Bunocephalus 

36 

28 

9,33 

7,25 

20,47 

27,72 

75% 

– 

 

Rineloricaria 27 6,99 34,72 – 2.2.1 The black‑screen test 212 

Moenkhausia 24 6,22 40,93 40%  

Otocinclus 23 5,96 46,89 – The amount of information available to the Classi- 213 

Tetragonop‑ 17 4,40 51,30 – fier model in the learning phase is expected to influ- 214 

terus     ence the outcome of the classification. Therefore, to 215 

Bryconops 16 4,15 55,44 14% evaluate the response of the Classifier under con- 216 

Prochilodus 16 4,15 59,59 40% trolled conditions, we performed the ‘black‑screen 217 

Hyphessobry‑ 
con 

14 3,63 63,21 40% test’, which consisted of uploading the image of an 
all-black color (RGB = 0,0,0) rectangle to the web 

218 

219 

application and running the fish masker and classifier, 

collecting the outputs. 

 

 
Data analysis 

 
To determine whether the Classifier was able to cor- 

rectly identify the genus (that is, ‘Class_1_prob’), 
we used a beta regression, via the ‘betareg’ R pack- 

age (Cribari-Neto and Zeileis 2010), whereupon 

‘Class_1_prob’ was the independent variable and 
‘fish_pixels’ as the predictor variable. This allows us 
to assess how variations in pixel composition relate 

to the probability of correct genus identification. 

We created a concordance matrix that compares the 

genus of the specimen depicted in each photo (pre- 

viously identified by specialists) with the genus sug- 

gested by the Classifier as the primary possibility, 

referred to as ‘Class_1’. To evaluate the agreement in 
identifying fish genera using the classification model 

from the Robillard et al. (2023) web application, we 

calculated Fleiss’ Kappa (Fleiss 1971). The analysis 

220 

221 

 

 

 

222 

 

 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

The genera in the first column are those suggested by the was carried out in R, using version 0.84.1. of the ‘irr’ 239 

model for all options (‘Class_1’, ‘Class_2’, ‘Class_3’, and package (Gamer et al. 2019). 240 

‘Class_4’). The percentage is calculated by counting against The datasets for the quality assessment of the 241 
the total of genera (32). Accuracy is the percentage of correct 

training images (Supplementary file S2) and from 242 classifications for each genus. Empty cells in the accuracy col- 

umn are zeros the classification simulation (Supplementary file S4) 243 

 were analyzed in Tableau Desktop Professional 2023 244 

 .2 (under Freemium Student License), to calculate 245 

203 web application, taxonomic information of Order, the descriptive statistics and generate the plots for 246 

204 Family, Genus, and the genus suggested as a result the masked area (%) and distribution of classification 247 

Corydoras 13 3,37 66,58 – 

Erythrinus 13 3,37 69,95 – 

Tatia 13 3,37 73,32 – 

Astyanax 10 2,59 75,91 – 

Phenacogaster 10 2,59 78,50 – 

Bujurquina 9 2,33 80,83 – 

Doras 9 2,33 83,16 – 

Pygocentrus 9 2,33 85,49 – 

Characidium 8 2,07 87,56 38% 

Copella 8 2,07 89,64 – 

Hemigrammus 6 1,55 91,19 25% 

Oxyropsis 5 1,30 92,49 – 

Pimelodella 5 1,30 93,78 – 

Sorubim 5 1,30 95,08 – 

Bario 4 1,04 96,11 – 

Pyrrhulina 4 1,04 97,15 – 

Charax 3 0,78 97,93 – 

Apistogramma 2 0,52 98,45 – 

Curimata 2 0,52 98,96 – 

Gasteropelecus 2 0,52 99,48 – 

Knodus 1 0,26 99,74 – 

Tyttocharax 1 0,26 100,00 – 



205 of the Classifier, including the respective probability error by Genus, Family, and Order. 248 
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Results 

 
Quality of training dataset 

 
The distribution of masked area percentage values 

in the input images of the training dataset displayed a 

large amount of variation concerning image qual- 

ity (Dikow 2023). We believe that this discrepancy 

may have directly influenced the outcome in iden- 

tifications by their model. The overall average of 

the masked area for all pictures in the “Images used 

 

 
to train Amazonian fish classification model” data- 

set (Dikow 2023) was 93.99% (Fig. 1). For certain 

genera (22 of 33), specific averages surpassed the 

overall average, which can be interpreted as a sig- 

nal that the majority of the training was done with 

a relatively low amount of information (Fig. 1). In 

particular, Tyttocharax Fowler 1913, was the genus 

with the most masked area average, reaching 99.7% 

which means that almost the entire pictures for this 

genus in the training for the Classifier were com- 

posed of black pixels (non-fish). 
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Fig. 1 Percentage of masked area values for 33 fish genera used as training dataset for the ‘Amazon fish masker and classifier’ mode l 
developed in Robillard et al. (2023). Genera names are sorted by average in ascending order. CI = Confidence interval 95% 
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Simulated identification 

 
Using fish photographs from our dataset (n = 100) 

with representatives of 21 genera, we tested the 

accuracy of the Classifier. Considering all four sug- 

gested genus identifications (‘Class_1’, ‘Class_2’, 
‘Class_3’, and ‘Class_4’), The assigned probability 

values are higher for the first option, but this pattern 

does not differ when we look at whether the model 

got the identification right or wrong. Thus, there was 

no difference in the deviations that would justify stat- 

ing that the Classifier was more convinced in each of 

these situations (Table 2 in Supplementary file S3). 

The Classifier suggested a total of 32 different gen- 

era for our images. This is a 60% increase in estima- 

tion, compared to the actual number of genera (n = 

21) present in our database. When considering all the 

outputs given in the four possible genera suggested 

by the Classifier, Gymnotus Linnaeus 1758, Ancis‑ 
trus Kner 1854, Bunocephalus Kner 1855, Rinelori‑ 
caria Bleeker 1862, Moenkhausia Eigenmann 1903, 

Otocinclus Cope 1871, and Tetragonopterus Cuvier, 

1816, were the most frequently mentioned, totaling 

198 occurrences, which accumulated 51,30% of all 

identifications in our sample (Table 1). 

For the ‘black screen test’ the classifier reported 

that 0.0% of the pixels were ‘fish’, as expected. How- 

ever, the application still provided classifications, 

despite reporting that there was no fish in the image, 

assigning probabilities to several genera: Tyttocharax 

(39.36%), Characidium Reinhardt 1867 (13.74%), 

Otocinclus (9.10%), and Hemigrammus Gill 1858 

(7.28%). 

To assess the correctness of the identifications by 

the Classifier, we only considered the genera sug- 

gested in ‘Class_1’. The Classifier was able to cor- 

rectly identify the fishes in our pictures at the genus 

level in only 18 of 100 photographs throughout our 

dataset (Supplementary file S4). For our sample of 

photos submitted to the Classifier, only eight out of 

21 genera were correctly identified. The highest accu- 

racy was observed for the genera Gymnotus (100%, n 

= 4) and Ancistrus (75%, n = 3) (Table 1). 

Taking into account only the incorrect identifi- 

cations (n = 82), we segmented the errors by type, 

order, family, or genus, always the most extensive. 

There was an inaccuracy of 65.85% (n = 54) at the 

order level (Fig. 2a). In 19.51% (n = 16) of the 

cases, the order was correctly classified, but there 

was an error at family-level identification (Fig 2.b). 

The model was unable to correctly classify at the 

genus level, although it correctly determined the 

order and family of the photographed specimens in 

14.63% (n = 12) of the cases (Fig. 2c). 

The beta regression of the relation between the 

‘Class_1_prob’ variable using the ‘fish_pixels’ as 
predictor showed an estimated intercept is approxi- 

mately 0.791, with a standard error of 0.161. The 

coefficient for ‘fish_pixels’ = − 0.1897 was not sta- 

tistically significant (p = 0.897), and the pseudo- 

r2= 1,517*10-4 indicates that the model has a very 

low power to explain much of the variance in the 

response variable ‘Class_1_prob’. Also, the cal- 

culated Fleiss’ Kappa coefficient was 0.0126 (20 
subjects, 20 raters), indicating a very weak level 

of agreement among the raters. With an associated 

z-value of 1.03 and the corresponding p-value of 

0.304, the agreement was not significantly different 

from what would be expected by chance. 

 
 

 
Discussion 

 
Quality of training dataset 

 
The quality of the images used to train the Classi- 

fier model in Robillard et al. (2023) differs notice- 

ably among the genera. The masker model, which 

extracts pixels related to the body area of the fish 

from the uploaded images, yields highly disparate 

results for the different genera of fish analyzed. This 

variation can be associated with factors such as the 

size of the fish in the photograph, light, and color 

intensity. In some cases, the model even completely 

removes most of the fish body, thus reducing the 

available ‘fish_pixels’. 
The amount of information used by the Classi- 

fier during the learning phase was little expressive 

in proportion since it learned from pictures with an 

average of only 6,01% of ‘fish pixels’, and for some 

genera, this value was even lower, less than 5% 

(values in Table 3, Supplementary file S2.3). This 

potentially hindered the model’s ability to identify 

photographs of these genera with few pixels used to 

train the classification database. 
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Fig. 2 Percentage of masked area values for 21 fish genera 
used in simulation in this essay to test the ‘Amazon fish masker 
and classifier’ model developed in Robillard et al. (2023). Gen- 

era names are sorted by average in ascending order. CI = Confi- 
dence interval 95% 
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Classifier limitations 

 
Although Robillard et al. (2023) recognized that 

applying the model to images from geographic areas 

outside the northwest Amazon has not yet been 

explored, their model was trained and validated with 

photos of live specimens with varying color patterns 

and pictures of preserved material from verified col- 

lections. Thus, there was some degree of pheno- 

typic variation incorporated into the development of 

machine learning from inception. Therefore, it would 

be expected that the Classifier would perform well for 

the same genera used to train the model, given that 

the training database was composed of genera widely 

distributed throughout the Amazon and adjacent 

basins (Van Der Sleen and Albert 2018). 

During our tests, we found cases where the masker 

removed most of the fish body, leaving only part of 

structures such as the pectoral, pelvic, and caudal 

fins, as in the case of the suckermouth catfish genus 

Ancistrus, where most of the structures were removed 

(Table 1 in Supplementary file S3). We emphasize 

that although the model does not consider the pres- 

ence/absence of the structures that are used to iden- 

tify taxa in morphological studies, such as odontodes 

or fleshy tentacles, the model was still able to prop- 

erly identify some genera. On the other hand, there 

were also instances where the masker left the fish 

nearly intact, but misidentifications occurred, as seen 

in the cases of Apistogramma Regan 1913, Astyanax 

Baird and Girard 1854, and Moenkhausia (Table 1 in 

Supplementary file S3). 

Indeed, for greater certainty in the identification 

provided by the model, it is necessary to correctly 

identify the elements that most directly affect the per- 

formance of the Classifier. Our hypothesis that only 

the number of pixels classified as fish could be a good 

predictor of the probability assigned by the Classifier 

overall is unsupported. However, the weak inverse 

relationship between the predictor variable ‘fish_pix- 

els’ and the response ‘Class_1_prob’ suggests that 

the Classifier performs better with images that con- 

tain less information (i.e. less confusion for the model 

to deal with). 
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402 It would be expected that the application would Robillard et al. (2023) noted that their model had 
 

449 

403 reject the image when it does not depict a fish prominent misidentifications particularly in tetras 450 

404 (0.0% fish pixels). However, the black screen test (Characidae), a key family in the Amazonian ichthyo- 451 

405 revealed that the application, even in the absence fauna (Oliveira et al. 2009; Van Der Sleen and Albert 452 

406 of pixels related to fish, still assigned a fish genus 2018). This highlights that their approach struggles 453 

407 identification. with one of the most significant Amazonian fish 454 

 groups. In contrast, errors at order and family levels 455 

408 Accuracy are rare in traditional morphology-based ichthyofau- 456 

 nal inventories that may eventually lead to misidenti- 457 

409 When considering misidentified individuals at the fications at species, subgenus, and genus levels, espe- 458 

410 genus level, most of the errors concern specimens of cially for small and medium-sized species like tetras 459 

411 the family Characidae, with the genus Moenkhausia (Characidae), catfishes (Siluriformes), and cyprino- 460 

412 being the most often suggested as the likely identi- dontiforms as these groups often exhibit uncertain 461 

413 fication (Fig. 2c). The elevated number of mentions taxonomy or rely on diagnostic characters not observ- 462 

414 to Moenkhausia may be attributable to the nature of able in field photographs or images of entire fixed 463 

415 the model training, since the Classifier developed specimens . Hence, the proposed model falls short 464 

416 by Robillard et al. (2023) was trained on a substan- of surpassing the efficiency of traditional taxonomy. 465 

417 tial Moenkhausia dataset, encompassing 398 pho- Additionally, for optimal functionality, the model 466 

418 tos including various morphotypes, characterized by requires an extensive dataset encompassing varied 467 

419 variations in morphological traits, such as scale size positions, lighting, developmental stages, and colora- 468 

420 and color patterns, among others (“Images used to tions, live or preserved, from the majority of species 469 

421 train Amazonian fish classification model” in Dikow in a given region. 470 

422 (2023)). This morphological plasticity within the 

423 Moenkhausia genus may have broadened the toler- 
 

Recommendations 

 

 

471 

424 ance of the model for classifying this genus, thus   

425 affecting its predictive accuracy. Moreover, this genus Contrary to the expectation that a higher quantity 472 

426 presents a challenging and unsettled taxonomy (non- of information available in the pictures could lead 473 

427 monophyletic) due to species exhibiting variable to increased Classifier accuracy, the disagreement 474 

428 morphology. The calculated Fleiss’ Kappa concord- between the identifications by specialists and the 475 

429 ance index reinforces the conclusion that the model’s classification provided was insufficient, and the beta 476 

430 predictive capacity did not surpass what could be regression results did not demonstrate a significant 477 

431 anticipated by chance. These findings highlight the relationship between the variable ‘fish_pixels’ and the 478 

432 difficulties associated with achieving a high level of probability associated with the genus suggested by 479 

433 agreement in accurately identifying fish genera using the Classifier. These findings write down the neces- 480 

434 the current state of the proposed classification model. sity for further investigation and consideration of 481 

435 Our findings notably contrast with those of Robil- other variables that may influence the classification 482 

436 lard et al. (2023), as they reported only 12 misclas- outcomes. 483 

437 sifications out of 596 tested images, consisting of two The current application lacks a criterion for 484 

438 at the order level and seven at the family level. The rejecting images, assigning genus-level identifi- 485 

439 authors proposed enhancing accuracy by capturing cations regardless of whether the image depicts a 486 

440 a series of photos until a suitable masker outcome fish. Implementing a simple adjustment to address 487 

441 is achieved. However, the masker model frequently this limitation is crucial for the effectiveness of 488 

442 omits crucial structures for genera discrimination, approaches like the ‘Amazonian Fish Classifier’ 489 

443 especially in Characidae family, where training data- for accurate fish identification. Caution is war- 490 

444 set images often lack visible caudal, dorsal, pelvic, or ranted when considering the use of Robillard et al. 491 

445 anal fins (Table 1 in Supplementary file S3). Despite (2023) and similar automated AI image identifica- 492 

446 this, our simulation and the inherent nature of the tion applications, particularly given the limitations 493 

447 Classifier reveal its insensitivity to specific anatomi- within the highly diverse South American region. 494 

448 cal structures. Many freshwater fish groups in South America, 495 
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496 especially in the Amazon, have incomplete tax- pixel patterns, does not consider these characters,
 

545 

497 onomy, with numerous undescribed species and diminishing its effectiveness in taxa identification. 546 

498 genera (Reis et al. 2016; Birindelli and Sidlauskas   

499 2018; Van Der Sleen and Albert 2018).   

500 Molecular studies expose cryptic or undescribed Conservation concerns 547 

501 species, taxonomic uncertainties, novel arrangements,   

502 and proposals for genera, highlighting the unresolved Our primary concern with this approach is focused 548 

503 nature of freshwater fish taxonomy (e.g., Benzaquem on the assertion that any citizen can contribute 549 

504 et al. 2015; Melo et al. 2016a; Melo et al. 2016b; Car- information on species identification and distribu- 550 

505 valho et al. 2018; Jacobina et al. 2018; García-Melo tion for conservation policies and measures through 551 

506 et al. 2019; Terán et al. 2020; Pires et al. 2021; Brito this application. The scientific community should 552 

507 et al. 2021; Aguiar et al. 2022; Crispim-Rodrigues exercise caution regarding the potential misuse of 553 

508 et al. 2023; Říčan and Říčanová, 2023). The appli- such applications by non-scientists and stakehold- 554 

509 cation by Robillard et al. (2023) is ill-equipped to ers. For instance, it is reasonable to speculate that 555 

510 handle such scenarios, potentially causing confusion the photographs used to train identification mod- 556 

511 within the scientific community and among stake- els, as tested in this essay, were initially identified 557 

512 holders due to its tendency to provide identifications by specialists (taxonomists) in institutions A or B. 558 

513 for all images, including those of problematic or Common sense suggests that the resulting iden- 559 

514 undescribed taxa. tifications may be perceived as having the same 560 

515 It is important to emphasize that recent studies, in accuracy and value as those provided by traditional 561 

516 addition to the classic morphological examination of taxonomy. 562 

517 specimens, have increasingly incorporated molecu- This can open a difficult precedent where the 563 

518 lar approaches in taxonomic descriptions—specifi- much-needed activity of taxonomists in the field 564 

519 cally, Integrative Taxonomy. This approach aims to and their identifications can be questioned because 565 

520 validate diagnostic characters or reinforce hypotheses the taxa in such area were already identified by the 566 

521 related to the existence of new taxa, especially in use of an identification model that was fed by other 567 

522 groups where morphological differences are not read- researchers/taxonomists. Following that, wrong and 568 

523 ily apparent or where diagnostic structures are small ill-intentioned decisions can become more com- 569 

524 or variable (e.g., Guimarães et al. 2018; Brito et al. mon with devastating impacts on biodiversity and 570 

525 2019; Guimarães et al. 2019, 2020; Santana et al. conservation. 571 

526 2019; Mattox et al. 2020, 2023; Faria et al. 2021; Due to the current inefficiency of the method, 572 

527 Reia et al. 2021; Aguiar et al. 2022; Crispim-Rodri- if broadly used without the aforementioned biases 573 

528 gues et al. 2023; Říčan and Říčanová, 2023; Souza considered, it could lead to incorrect conservation 574 

A5Q249  et al. 2023). decisions and impact assessments. For environ- 575 

530 In these cases, molecular data and methods serve mental decisions, we should always seek the input 576 

531 as crucial tools for identifying species and genera, of biologists, especially taxonomists in the field or 577 

532 especially when taxonomy is challenging, difficult, laboratory, to properly support identifications from 578 

533 or involves cryptic species. The identification model applications. Such an approach alone is not desir- 579 

534 proposed by Robillard et al. (2023) may not accu- able, especially for freshwater fishes that are under 580 

535 rately classify in such instances. Therefore, despite severe pressure from stressors (Dudgeon et al. 2006; 581 

536 the considerable cost, discouraging the use of molec- Darwall et al. 2018; Harrison et al. 2018; Reid et al. 582 

537 ular tools for taxonomic identification is unwarranted. 2019; Tickner et al. 2020; Albert et al. 2020; Ottoni 583 

538 As several fish genera possess diagnostic char- et al. 2023). AQ5584 

539 acteristics, such as delicate structures, internal fea- At its current development stage, the tool would 585 

540 tures, intricate color patterns, osteological struc- require several adjustments to the model parameters, 586 

541 tures, gonopodial structures, tooth morphology, and so we recommend that its potential use should be 587 

542 subtle color patterns, some cases require additional limited to larger fish of commercial interest or when 588 

543 molecular tools to resolve their taxonomy. The conservation implications are not directly affected by 589 

544 model by Robillard et al. (2023), relying solely on decisions based on the application identifications. 590 
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Fig. 3 Distribution of Identification Errors in the ‘Amazon 
Fish Masker and Classifier’ Model Developed in Robillard 
et al. (2023). a: the model incorrectly classified at the Order 
level; b: The model correctly identified the order but erred in 

 
 

Conclusion 

 
The application of automated models based on con- 

volutional neural networks (CNN) or similar archi- 

tectures for fish classification through photograph 

analysis holds promise. However, the success of 

these models is contingent upon overcoming vari- 

ous constraints dictated by the intended final appli- 

cation, and it is crucial to acknowledge their current 

limitations and the need for further refinement. 

Upon evaluation in this study, the Robillard et 

al. application displayed an unsatisfactory per- 

formance, with low accuracy and an inability to 

Family and Genus; c: the model only misclassified the genus. 
Bars represent the probability values associated with the genus 
suggested by the classifier. The n value corresponds to the 
occurrence count 

 

surpass the null hypothesis of random identifica- 

tions. The low accuracy on identifications is not 

beneficial and can bring more confusion to the sci- 

entific community, as well as conservation stake- 

holders. In addition, the potential misuse of such 

applications by non-scientists and stakeholders 

raises concerns about the reliability and validity of 

the data, particularly in comparison to traditional 

taxonomy conducted by specialists and identifica- 

tions based on molecular libraries. The argument 

that automated classifications possess equal accu- 

racy and value as those by taxonomists opens a Pan- 

dora’s box, challenging the credibility of taxonomic 
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work and potentially paving the way for erroneous 

and ill-intentioned decisions with detrimental con- 

sequences for biodiversity and conservation. 

Transitioning to the broader implications, the inte- 

gration of citizen-contributed information for conser- 

vation policies is desirable, however, a note of caution 

is sounded when considering the adoption of methods 

reliant on Artificial Intelligence, particularly given 

the potential for misuse by non-scientists and stake- 

holders. As we navigate the evolving landscape of 

technological advancements in biodiversity research, a 

balanced approach that integrates the strengths of 

both automated tools and expert taxonomic input is 

essential to ensure the accuracy and integrity of con- 

servation decisions and impact assessments. Collabo- 

ration between technological innovations and tradi- 

tional expertise becomes paramount in addressing the 

challenges posed by the dynamic and complex field 

of biodiversity conservation. 
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