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Weakly nonlinear analysis of the onset of convection in
rotating spherical shells

Calum S. Skene and Steven M. Tobias

Department of Applied Mathematics, University of Leeds, Leeds, UK

ABSTRACT
Aweakly nonlinear study is numerically conducted to determine the
behaviour near the onset of convection in rotating spherical shells.
The mathematical and numerical procedure is described in general-
ity, with the results presented for an Earth-like radius ratio. Through
the weakly nonlinear analysis a Stuart–Landau equation is obtained
for the amplitude of the convective instability, valid in the vicinity of
its onset. Using this amplitude equation we derive a reduced order
model for the saturation of the instability via nonlinear effects and
can completely describe the resultant limit cycle without the need
to solve initial value problems. In particular the weakly nonlinear
analysis is able to determine whether convection onsets as a super-
critical or subcritical Hopf bifurcation through solving only linear 2D
problems, specifically one eigenvalue and two linear boundary value
problems. Using this, we efficiently determine that convection can
onset subcritically in a spherical shell for a range of Prandtl numbers
if the shell is heated internally, confirming previous predictions. Fur-
thermore, by examining the weakly nonlinear coefficients we show
that it is the strong zonal flow created through Reynolds and ther-
mal stresses that determines whether convection is supercritical or
subcritical.
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1. Introduction

Many planets in our solar system such as the Earth, Mercury, Jupiter and Saturn, as well
as Jupiter’s moon Ganymede, exhibit magnetic fields (see the review of Jones 2011 for
example). These planetary bodies all consist of conducting fluid cores; with liquid metal
in Mercury, Earth, and Ganymede, and metallic hydrogen in the gas giants Jupiter and
Saturn. Due to this, dynamo action – by which a magnetic field arises and is sustained by
the motion of a conducting fluid – is widely believed to be responsible for maintaining
these field. Without such a mechanism sustaining these fields, any magnetic field present
when they formed would have long since diffused. In all these planetary dynamo exam-
ples, convection is believed to be the energy source providing themotion of the conducting
fluid. Therefore, it is of importance to investigate convection in these systems in order to
understand the mechanisms behind planetary dynamos.
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Owing to the critical role that convection plays in the planetary dynamo process, a lot of
work has been conducted in order to understand how convection arises in rapidly rotating
spherical systems (Proctor 1994, Busse 2002). Roberts (1965) introduced the asymptotic
theory for the onset of convection in spheres in the rapidly rotating (low Ekman num-
ber) limit, relevant to planetary bodies. Subsequently, asymptotic solutions were proposed
by Roberts and Chandrasekhar (1968) and Busse (1970b), giving a local stability crite-
rion on the Rayleigh number for the onset of instability. However, these solutions fail to
capture the global instability through the process of phase-mixing, whereby local distur-
bances that initially grow exponentially aremoved away from their region of instability and
thereafter decay away (Soward 1977). The true asymptotic theory for the onset of convec-
tion in spheres was given by Jones et al. (2000), where the complication of phase mixing
is addressed through the method outlined by Yano (1992). This gives the global critical
Rayleigh number for the onset of convection, and differs by an O(1) amount from the
local critical value of Roberts and Busse. Following on from the work of Jones et al. (2000),
the asymptotic theory of the onset of convection in rapidly rotating spherical shells was
given by Dormy et al. (2004).

The nature of the onset of convection for rapid rotation revealed by these studies is as fol-
lows. Convection first onsets as a thermal Rossbywave, which due to the Taylor–Proudman
constraint takes the form of a number of columns aligned with the rotation axis with
azimuthal wavenumber m. As the Ekman number is lowered, larger Rayleigh numbers
and azimuthal wavenumbers are required for the onset of convection. In the case of a full
sphere, internal heating is used in order to provide a heat difference between the centre
of the sphere and the sphere’s boundary, and convection onsets at a critical cylindrical
radius. In contrast, in the case of a shell two different forms of heating have been consid-
ered by Dormy et al. (2004). Differential heating directly imposes a temperature difference
between the inner and outer boundaries of the shell, whereas internal heating also includes
uniformly distributed internal heat sources. Dormy et al. (2004) show that an internally
heated shell behaves similarly to a full sphere provided the radius ratio is small enough.
However, for differential heating, convection always onsets at a cylindrical radius adjacent
to the inner shell boundary. In addition to the numerical solutions given for an Earth-like
radius ratio in Dormy et al. (2004), the more recent study by Barik et al. (2023) consid-
ers the onset of convection in a shell for a variety of Ekman numbers and radius ratios.
In this manner, a database of critical Rayleigh numbers, critical wavenumbers and angu-
lar velocities of the thermal Rossby waves present at the onset of convection was made
available.

In both the full sphere and shell, convection onsets as a Hopf bifurcation, whereby a
complex conjugate pair of eigenvalues transition from being stable to unstable at the crit-
ical Rayleigh number. However, these studies do not reveal the nature of this bifurcation.
In a supercritical Hopf bifurcation nonlinearities saturate the instability to form a stable
periodic limit cycle immediately after onset. On the other hand, in a subcritical Hopf bifur-
cation nonlinearities promote the growth of the instability, leading to a limit cycle solution
below the onset of instability (which can be reached with a finite amplitude perturbation).
In numerical simulations convection is most often found to onset supercritically (see the
benchmark ofChristensen et al. 2001 for example).However, theweakly nonlinear analyses
of Soward (1977) and Plaut et al. (2008) suggest that this onset could change to being sub-
critical for small enough Ekman number for the case of internal heating. In the full sphere
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this change to a subcritical bifurcation has been confirmed by Guervilly and Cardin (2016)
and Kaplan et al. (2017) for low Prandtl numbers. In these studies the fully nonlinear equa-
tions are solved near onset in order to determine whether the instability is supercritical or
subcritical. Due to the low Ekman numbers required to find a subcritical bifurcation (at
least Ek ≈ 10−6), these studies have high numerical requirements necessitating the use of
a quasi-geostrophic model in Guervilly and Cardin (2016) and hyperviscosity in Kaplan
et al. (2017).

A more efficient method for determining whether a bifurcation is supercritical or
subcritical is weakly nonlinear analysis (Malkus and Veronis 1958, Stuart 1960, Wat-
son 1960). In a weakly nonlinear analysis the critical parameter at which an instability
arises is first found, and then perturbed by an O(ε2) amount. At order O(ε) the sys-
tem resembles the original system at onset, however at O(ε2) select, weak, nonlinearities
enter the picture. The key idea is that by allowing the instability to evolve on an O(ε2)
timescale, a Stuart–Landau equation (Landau 1944) for the amplitude of the instability
can be determined at O(ε3). As this equation is the normal form for a Hopf bifur-
cation, it is then immediately apparent from the coefficients what the nature of the
instability is. As all the equations in the weakly nonlinear analysis remain linear, it has
become an important and powerful mathematical technique for extending linear stability
analyses.

In spherical convection problems weakly nonlinear analysis has been used to show the
formation of differential rotation in the convection zone of stars (Busse 1970a, 1973). This
differential rotation, or strong zonal flow, is a key feature of rotating convection confirmed
by numerical simulations (Gilman 1977, 1978, Tilgner and Busse 1997). In non-rotating
convection Mannix andMestel (2019) use weakly nonlinear analysis to study a degenerate
point where two modes become unstable simultaneously in spherical convection. Perhaps
of most relevance to our current work is the weakly nonlinear analysis presented by Plaut
et al. (2008) who perform weakly nonlinear analysis on a 2D quasi-geostrophic model of
rotating convection in a spherical shell. In this study the weakly nonlinear analysis showed
the formation of a strong zonal-flow due to Reynolds stress terms, and aligned with predic-
tions (Soward 1977) that convection in a spherical shell becomes subcritical at low enough
Ekman numbers for internal heating.

In this study we seek to extend linear stability analyses for determining the onset of con-
vection in a spherical shell by performing weakly nonlinear analysis numerically with no
simplifications of the governing equations. This methodology follows recent studies that
have derived the weakly nonlinear equations analytically for complex non self-adjoint sys-
tems, and solved them numerically. This has allowed otherwise intractable problems, such
as flow over an open cavity and flow past a cylinder (Sipp 2012) and a swirling jet (Skene
et al. 2020), to be tackled. In this manner, a reduced order model can be found for the
onset of convection accurate for Rayleigh numbers close to the critical value. Through this
reduced description, the limit cycle solution produced via instability can be determined
without solving any initial value problems. By examining the structure of this limit cycle,
its amplitude can be determined as a function of Rayleigh number, and nonlinear effects
such as a change in the angular rotation rate can be found. Crucially, the nature of the
Hopf bifurcation can be determined, allowing for an efficient search to be conducted for
the parameters at which convection onsets subcritically in a spherical shell. The rest of
the paper is organised as follows; section 2 presents the mathematical formulation behind
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the weakly nonlinear analysis, section 3 discusses the numerical procedure, the results are
contained in section 4, and conclusions are offered in section 5.

2. Mathematical formulation

We consider a spherical shell with inner and outer radius ri and ro, respectively. The non-
dimensional Navier–Stokes equations under the Boussinesq approximation are

∂u
∂t

+ u · ∇u = −∇p − 2ez × u + R̃aEk
r
r0
Têr + Ek∇2u, (1)

∇ · u = 0, (2)

∂T
∂t

+ u · ∇T = Ek
Pr

(∇2T + S
)
, (3)

for the fluid velocity u, pressure p and temperature T. These equations have been non-
dimensionalised as follows; length using the shell thickness d = r0 − ri, temperature with
the temperature difference across the shell�T, time with the rotational time� and veloci-
ties with d�. This introduces the non-dimensional parameters of the modified Rayleigh
number R̃a = RaEk/Pr, Ekman number Ek = ν/(�d2) and Prandtl number Pr = ν/κ .
Note that the modified Rayleigh number is used rather than the traditional Rayleigh num-
ber Ra = αg0�Td3/(νκ), where α is the coefficient of thermal expansion and g0 is the
acceleration due to gravity at the outer boundary, to account for the stabilising effect of
lowering the Ekman number. Following Dormy et al. (2004), the temperature equation
has a source term S which takes the form

S =
⎧⎨
⎩
6
1 − β

1 + β
Internal heating

0 Differential heating
, (4)

with β = ri/ro the radius ratio which is fixed at the Earth-like value of β = 0.35 for the
rest of the study. Boundary conditions are no-slip for the fluid velocity u(r = ri) = u(r =
ro) = 0, and fixed temperature on the shell walls T(r = ri) = 1, and T(r = ro) = 0.

We begin our analysis by seeking a solution in spherical polar coordinates (r, θ ,φ) in
the form q = q0(r)+ εAqA(θ , r) exp(iωct + imcφ)+ c.c., at R̃a = R̃ac and with ε � 0.
As ε is small, substituting this form of the solution into the equations separates into two
separate problems. The first is that q0 is a steady solution, which has solution q0(r) =
(u0, p0,T0)

T = (0, p0,T0)
T , called the conducting state, where

dT0

dr
=

⎧⎨
⎩

riro
(ro − ri)2

r−2 Differential heating

−21−β1+β r Internal heating
, (5)

and p0 balances the buoyancy term in the momentum equation. Temperature profiles of
the steady base state are shown in figure 1. In both cases the temperature monotonically
decreases from the inner radius to the outer radius of the shell. The key difference is the
gradient of this decrease. For internal heating the temperature gradient is linear, whereas
for the case of differential heating the temperature gradient has a r−2 dependence, causing
it to be much more negative close to the inner shell boundary.
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Figure 1. Temperature (left) and temperature gradient (right) profiles for internal heating and differen-
tial heating.

The second problem is the eigenvalue problem iωcMqA = LmcqA, where

Lmq =
⎛
⎝−∇mp − 2ez × u + R̃acEk r

r0Têr + Ek∇2
mu

∇m · u
−uA · ∇mT0 + Ek

Pr∇2
mTA

⎞
⎠ , (6)

and

M =
⎛
⎝I 0 0
0 0 0
0 0 1

⎞
⎠ . (7)

Note that we have introduced the operator∇m which is the same as∇ , except thatφ deriva-
tives are replaced with multiplications by im. This eigenvalue problem, for loss of stability
in a Hopf bifurcation, requires that the eigenvalue is purely imaginary, and is achieved
when R̃a is the critical Rayleigh number R̃ac. We now consider Rayleigh numbers close,
but not equal, to this critical value. Specifically we will consider solutions at the Rayleigh
number R̃a = ˜Rac + ε2 ˜Rac. At this Rayleigh number we do not change the analysis already
presented as we are only introducing perturbations at O(ε2). This definition gives the
small parameter ε as the relative distance from the critical modified Rayleigh number, i.e.
ε2 = (R̃a − R̃ac)/R̃ac. However, we are now above the critical Rayleigh number and so
should expect the perturbation to grow. This can be quantified by finding an equation for
A(t) which is the goal of the weakly nonlinear analysis we now present.

In order to find an amplitude equation wemust go beyondO(ε). To do this we can seek
a solution in the form

q = q0(r)+ ε
[
AqA(θ , r) exp(iωct + imcφ)+ c.c.

] + ε2(AĀqAĀ(θ , r)+
AĀqRa(θ , r)+ [AAqAA(θ , r) exp(2iωct + 2imcφ)+ c.c.])+ O(ε3), (8)

Substituting this into the governing equations gives the same equations we have already
considered atO(0) andO(ε). AtO(ε2) we obtain

(2iωcM − L2mc)qAA = (−uA · ∇mcuA, 0,−uA · ∇mcTA)
T , (9)
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−L0qAĀ = (−uA · ∇−mcuĀ − uĀ · ∇mcuA, 0,−uA · ∇−mcTĀ

− uĀ · ∇mcTA)
T , (10)

−L0qRa =
(
R̃acEk

r
r0
T0êr, 0, 0

)T
. (11)

Solving these determines the second order corrections qAA and qAĀ, stemming from non-
linear interactions of the neutral eigenvector, as well as base-flow modification qRa that
arises from increasing the Rayleigh number. Notably they all take the form of resolvent
problems. In other words, the harmonics and base-flow modifications are all found as the
long-term driven response to forcings arising from nonlinear interactions.

To determine an equation for the amplitude A we first make the assumption that as we
are only just supercritical that the growth of the eigenmode will be slow. This is quantified
by writing that the amplitudeA depends on the slow time scale T = ε2t, i.e.A := A(T). At
third order we then obtain the following equation atm = mc and ω = iωc

(iMωc − Lmc)q3 = −MqA
dA
dT

+ [
χA − γA|A|2] , (12)

where

χ =
⎛
⎝−uRa · ∇mcuA − uA · ∇0uRa + R̃acEk r

r0TAêr
0

−uRa · ∇mcTA − uA · ∇0TRa

⎞
⎠ , (13)

γ =
⎛
⎝uAĀ · ∇mcuA + uA · ∇0uAĀ + uAA · ∇−mcuĀ + uĀ · ∇2mcuAA

0
uAĀ · ∇mcTA + uA · ∇0TAĀ + uAA · ∇−mcTĀ + uĀ · ∇2mcTAA

⎞
⎠ , (14)

and q3 is a third order term. Ensuring that this equation is solvable, and hence our weakly
nonlinear expansion is valid, will yield the amplitude equation. In order to do this we first
introduce the inner product 〈·, ·〉 and define adjoint operatorsL†

m andM† as the operators
that satisfy 〈a,Lmb〉 = 〈L†

ma, b〉 and 〈a,Mb〉 = 〈M†a, b〉, for all a and b, respectively.
The Fredholm alternative then tells us that this equation will be solvable when

〈q†
A,MqA〉dA

dT
= χA − γA|A|2, (15)

with χ = 〈q†
A,χ〉 and γ = 〈q†

A, γ 〉. The vector q†
A solves the adjoint eigenvector problem

L†
mq

†
A = −iωcM†q†

A. (16)

We note that there are many choices of inner product 〈·, ·〉, with different choices leading
to different adjoint eigenvalue problems. However, all choices will lead to the same values
of χ and γ , therefore a numerically convenient inner product can be chosen. The choice
for our study will therefore be discussed in the next section on the numerical implementa-
tion. For convenience in what follows we will write χ = χr + iχi and γ = γr + iγi, where
χr,χi, γr, γi ∈ R.



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 7

By normalising the adjoint eigenvector such that 〈q†
A,MqA〉 = 1 we obtain the simpli-

fied amplitude equation

dA
dt

= ε2(χA − γA|A|2). (17)

This is a Stuart–Landau equation governing the growth of the eigenmode. By also nor-
malising qA to have unit energy, we have that the energy of the instability will grow as
E(t) = E0ε2|A(t)|. For small A the solution behaves like A ≈ exp(ε2χ t), showing that if
Re(χ) > 0 we will get exponential growth (we will assume Re(χ) > 0 for the rest of the
paper). When A grows larger the cubic nonlinearities become important.

To explore the role of the cubic nonlinearity we can write the complex amplitude in the
form A = η exp(iψ), where η is the amplitude and ψ is the phase. This leads to the polar
form of the amplitude equation

dη
dt

= ε2
(
χrη − γrη

3) , (18)

dψ
dt

= ε2
(
χi − γiη

2) . (19)

From this form we see that there are potentially two steady solutions to the η-equation.
The first is η = 0, corresponding to our fixed point. The second is when γr > 0, which
has amplitude ηLC = √

χr/γr, and phase ψLC = ψ0 + tε2(χi − γiχr/γr) = ψ0 + tε2ψε .
In this manner, we can see that if γr > 0 the instability is a supercritical Hopf bifurcation,
i.e. the nonlinearities saturate the growing instability to form a stable limit cycle with the
amplitude and phase described by the previous expressions. On the other hand, if γr <
0 then nonlinearities promote the instability and no stable limit cycle is reached. This is
the case of a subcritical Hopf bifurcation. Hence, we can use the weakly nonlinear theory
to describe the limit cycle near criticality without timestepping either the Stuart–Landau
amplitude equation or full governing equations, just by determining the sign of γr. This
comes at the expense of finding γr which is not an inconsiderable problem numerically.

Using the limiting expressions forAwe can substitute them into our solution to see that
as t → ∞

q → q0 + εALCqA exp(i(ωc + ε2ψε)t + iφm)+ c.c. + O(ε2). (20)

This is a second order accurate expression for the limit cycle. A third order accurate expres-
sion could also have been obtained by retaining terms up to second order, introducing the
second order harmonics and base-flow modifications into the expression. Equation (20)
shows that the limit cycle has its phase modified from that of the eigenvalue to ψLC =
ωc + ε2ψε . We can also use equation (20) to calculate the energy of the limit cycle as

E = 1
2

∫∫∫
u · u dV ≈ 4ε2A2

LC + O(ε4). (21)

As well as giving a direct link between ALC and E, this equation gives us a way to verify
the weakly nonlinear setup. By performing a few nonlinear simulations of the full govern-
ing equations at different values of ε we can check that the saturated limit-cycle energy E
matches that predicted by equation (21) with an error that decreases as ε4.
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Before discussing the numerics we first note that changing the Rayleigh number does
not change the velocity or temperature components of the base-flow. Indeed, solving
equation (11) will only give a pressure correction, with uRa = 0 and TRa = 0. This sig-
nificantly simplifies the form of χ given by equation (13), so that χ only depends on the
temperature component of the neutral eigenvectorTA. The result of this observation is that
we only need to solve equations (9) and (10) for qAA and qAĀ, respectively. In other words,
after the critical Rayleigh number is determined only one additional adjoint eigenvector
problem, as well as two linear boundary value problems, need to be solved to determine
whether the instability is supercritical or subcritical. We give details of this method in the
next section.

3. Numerical implementation

The open-source PDE solver Dedalus (Burns et al. 2020) is used to solve the eigenvalue
problem, linear boundary value (resolvent) problems, as well as initial value problems
needed for this study. Specifically, we use Dedalus v3 which has the capability of dealing
with spherical domains (Vasil et al. 2019, Lecoanet et al. 2019). Dedalus solves equa-
tions using a spectral method. For example, for the eigenvalue problem (6) Dedalus will
construct matrices Lm andM such that the discrete eigenvalue problem becomes

Lmq̂ = λMq̂. (22)

Note that q̂ is a vector of coefficients for the spectral representation of our state. A similar
discretisation is performed for the linear boundary value problems. As Dedalus explic-
itly constructs matrices for the eigenvalue problem, which can then be solved with scipy’s
ARPACK wrapper, this motivates our choice of inner product.

By defining our inner product between the spectral representation of two states a and b
to be

〈â, b̂〉 = âH b̂, (23)

where H is the Hermitian conjugate, we obtain the adjoint eigenvector equation

LHmq̂
† = λ∗MH q̂†. (24)

There are three main advantages to this formulation (so-called discrete adjointing). Firstly,
it is trivial to obtain the adjoint eigenvector problem by Hermitian transpose of the matri-
ces that Dedalus constructs for the direct-eigenvector problem. In fact, Dedalus already
has this functionality built in. Secondly, the LU decomposition needed for finding eigen-
values using the shift-invert method can be shared between the direct and adjoint solves,
significantly reducing the computational cost of additionally solving the adjoint eigenvalue
problem. Thirdly, this discrete inner product implies that we are adjointing the discretised
system, ensuring that we get the adjoint of our numerical model to machine precision (see
the discussion in Mannix et al. 2024, for example). We note that by defining this inner
product, we need to be consistent in its use. Specifically, it is this inner product that must
be used when projecting the vector quantities to scalar quantities in forming the amplitude
equation.
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The first step in the weakly nonlinear analysis is to find the critical Rayleigh number R̃ac
such that λ = iωc, i.e. the eigenvalue is purely imaginary. We note here a benefit of solving
the adjoint equation even for the efficient solution of the linear problem. The relation δλ =
〈q̂†, δLmq̂〉/〈q̂†,Mq̂〉 (see the review of Luchini and Bottaro 2014 for example), means that

∂λ

∂Ra
=

〈
q̂†,

∂Lm
∂Ra

q̂
〉
, (25)

where we have simplified the expression using our chosen adjoint normalisation. In this
manner, each time we calculate an eigenvalue at a given Rayleigh number, by also solving
the adjoint eigenvector problemwe have access to its derivative with respect to the Rayleigh
number. Hence, by setting up an optimisation problem with cost functionalJ = Real(λ)2

we can use a gradient-based optimisation routine, here L-BFGS-B from scipy’s optimize
module, in order to converge our critical Rayleigh number.

4. Results

With the mathematical and numerical procedure described we now turn to the results,
which we split into two sections. First, we consider the case of differential heating in
section 4.1. This section illustrates the procedure outlined thus far for Pr = 1, and validates
theweakly nonlinear formulation against solving the full nonlinear equations. Secondly, we
consider internal heating in section 4.2. When considering internal heating we consider a
range of Prandtl numbers Pr ∈ {1, 0.1, 0.01} and use the weakly nonlinear methodology to
map out efficiently the parameter regimewhere convection onsets subcritically. This would
be exceptionally time consuming using timestepping of the full nonlinear equations.

4.1. Differential heatingwith Pr = 1

Carrying out the weakly nonlinear procedure outlined in sections 2 and 3, for Ek ∈
{10−3, 10−4, 10−5, 10−6}, results in the critical Rayleigh numbers and coefficients χ con-
tained in table 1. The corresponding saturation terms γ are displayed in table 2. For each
Ekman number, we choose mc to be the azimuthal wavenumber m at which convection
onsets for the smallest Rayleigh number. We begin our results by analysing the behaviour
at the large Ekman number Ek = 10−3. At this Ekman number the lowest critical Rayleigh
number is obtained for mc = 4. The optimisation procedure gives R̃ac ≈ 55.9, and an
eigenvalue of λ ≈ −0.0231i. The critical frequency shows that the first mode to become
unstable, which takes the form of a thermal Rossby wave, travels prograde to the planet’s
rotation. As the growth rate is negligible, we canwriteλ = iωc withωc = −0.0231. In addi-
tion to checking the growth rate is negligible, similarly to Barik et al. (2023) we also check
the energy balance of the solution by defining the residual

R = |Dν + De|
max({|Dν |, |De|}) , (26)

where Dν = ∫∫∫
V uA,r · ∇2uA,r dV and De = 2

∫∫∫
V e : e dV . In defining the residual we

have useduA,r = Real(uA) and the rate of strain tensor e = 1/2(∇uA,r + ∇uTA,r). By check-
ing thatR ≈ 0 we ensure that the resolution is sufficient to obtain converged results. Using
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Table 1. Critical Rayleigh numbers for a range of Ekman numbers for differential heating and Pr = 1.

Ek R̃ac mc ωc χ Lmax Nmax R
10−3 55.9 4 −0.0231 3.88 × 10−2 − 8.66 × 10−3i 43 43 1 × 10−12

10−4 75.2 5 −0.0112 1.20 × 10−2 − 8.66 × 10−3i 83 83 5 × 10−14

10−5 106 15 −0.00712 8.60 × 10−3 − 2.67 × 10−3i 183 183 3 × 10−13

10−6 180 32 −0.00353 4.23 × 10−3 − 8.87 × 10−4i 383 183 9 × 10−10

The resolutions are given by the maximum spherical harmonic degree Lmax and maximum degree of the radial polynomial
Nmax. Also shown are the growth terms χ computed via the weakly nonlinear analysis.

Table 2. The saturation coefficient γ in the amplitude equation for varying Ekman
number with differential heating and Pr = 1.

Ek Part γ Real(γAA) Real(γAĀ)

10−3 Total 1.87 × 102 − 1.39 × 102i 5.26 × 100 1.82 × 102

u −9.41 × 100 − 5.54 × 100i −9.83 × 10−3 −9.40 × 100

T 1.97 × 102 − 1.34 × 102i 5.27 × 100 1.92 × 102

10−4 Total 2.95 × 103 − 2.54 × 103i −1.56 × 102 3.10 × 103

u 7.34 × 100 + 6.35 × 101i 1.01 × 102 −9.33 × 101

T 2.94 × 103 − 2.60 × 103i −2.56 × 102 3.20 × 103

10−5 Total 1.37 × 105 − 6.99 × 104i −4.50 × 101 1.37 × 105

u −1.07 × 104 − 6.53 × 103i 1.36 × 103 −1.20 × 104

T 1.48 × 105 − 6.33 × 104i −1.41 × 103 1.49 × 105

10−6 Total 3.24 × 106 − 1.49 × 106i −5.23 × 103 3.25 × 106

u −3.34 × 105 − 3.54 × 105i 9.87 × 103 −3.44 × 105

T 3.58 × 106 − 1.14 × 106i −1.51 × 104 3.59 × 106

As well as the total, the contribution due to specific terms is shown.

the unstable eigenvector we can calculate the growth coefficient χ = 0.039 − 0.0087i. As
the real part of this coefficient is positive, we can conclude that the instability will grow for
Ra > Rac.

With the critical Rayleigh number andwavenumber identifiedwe can now proceedwith
the weakly nonlinear analysis. The resolvent problems (9) and (10) are solved yielding the
second order termswhich allow us to compute the saturation coefficient γ . Using these sec-
ond order terms the weakly nonlinear coefficients can be computed. As the contribution to
γ from qAĀ (see table 2) far outweighs the contribution from qAA it can be concluded that
the base flow modification caused by the interaction of the growing eigenmode with its
conjugate is the main mechanism through which saturation is obtained. Since γr > 0 for
all Ekman numbers, the bifurcation is supercritical, and so there is a stable limit cycle close
to onset. The table further shows that it is primarily the temperature, rather than the veloc-
ity field, base-flow modification that is responsible for saturation. This is not unexpected,
the flow acts to modify the mean temperature gradient for saturation. Recalling the form
of ψε we also examine the imaginary part of γ . The negative value means that ψε will be
positive, causing the limit cycle phase to become more positive as the Rayleigh number is
increased. In this manner, even though the eigenvector rotates prograde to the planet’s
rotation, nonlinear effects, primarily a base-flow modification, will cause this prograde
motion to slow down and could eventually become retrograde for large enough Rayleigh
numbers. This fits with the work of Feudel et al. (2013) who show that as the Rayleigh
number is increased from its critical value the eastward drift of the thermal Rossby waves
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Figure 2. (Left) Kinetic energy from fully nonlinear runs for varying values of ε. (right) The error in the
limit cycle energy as predicted by our weakly nonlinear equations.

slows down and eventually becomes retrograde at this Ekman number owing to nonlinear
effects.

Before moving on to consider smaller Ekman numbers, we first verify the weakly
nonlinear analysis using the method described in section 2. Figure 2 (left) shows three
nonlinear simulations of the governing equations at different values of ε. Also shown as
straight horizontal lines are the limit cycle amplitudes predicted by the Stuart–Landau
equation. The figure shows that as ε is decreased, i.e. as we move closer to neutrality,
the solution takes longer to grow and saturate, with the eventual energy of the limit cycle
decreasing. This fits with both the fact that the time scale for the amplitude growth is small
depending on ε as T = ε2t and that the limit cycle energy depends on ε as given through
equation (21). It is also evident that the prediction becomesmore accurate as ε is decreased.
Figure 2 (right) shows the error in our prediction as a function of ε. Linear regression shows
that the error decreases as Error ∝ εα , where α ≈ 3.99. As this matches with our theo-
retical prediction of the error being fourth order in ε, this verifies our weakly nonlinear
procedure.

With the weakly nonlinear analysis described and verified, we now consider smaller
values of the Ekman number. Table 2 shows that at all Ekman numbers considered convec-
tion onsets supercritically (Real(γ ) > 0), with the temperature component of the base flow
modification term being primarily responsible. Indeed, the base-flow modification from
the velocity promotes subcriticality, i.e. makes γr more negative, as the Ekman number is
lowered. Meridional and equatorial slices of the eigenvector and harmonics for Ek = 10−6

are shown in figures 3 and 4, respectively. As is to be expected from rotating systems by
virtue of the Taylor–Proudman theorem, the terms all take the form of alternating colum-
nar structures. The harmonic uAA and base-flow modification uAĀ show their m = 2mc
andm = 0 dependence, respectively. Similarly to the study of Guervilly andCardin (2016),
the base-flow modification shows a zonal jet structure, albeit confined to a region close to
the inner shell boundary due to the differing form of heating used. In fact the longitudinal
component is by far the largest component of uAĀ. In all cases the zonal flow is strongly
retrograde near the equator, and has a smaller prograde flow further away which decays to
zero so that the zonal jet is confined to the vicinity of the thermal Rossbywave. This formof
the zonal flow is to be expected from examining the dominant terms of the Reynolds stress
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Figure 3. Meridional slices of terms in the weakly nonlinear expansion at Ek = 10−6. From left to right
the images display the longitudinal component of uA, TAĀ, and the longitudinal component of uAĀ
(red/green is positive and blue/pink is negative).

Figure 4. Equatorial slices of terms in the weakly nonlinear expansion at Ek = 10−6. From left to right
the images display the longitudinal component of uA,uAA and uAĀ (red is positive and blue is negative).

(Plaut et al. 2008). As the Ekman number is lowered the difference between the retrograde
and prograde portions of the jet become lessened.

As the Ekman number in the Earth’s core is extremely small, around Ek ≈ 10−15, it
is computationally infeasible to conduct our analysis at realistic planetary values. There-
fore, we utilise the results at our computationally tractable Ekman numbers to determine
empirical scaling laws forALC andψε that can be extrapolated. The obtained values ofALC
and ψε are shown in figure 5. Both parameters show a decrease as the Ekman number is
lowered, showing definitive scaling laws when Ek = 10−3 is disregarded. The fact that we
need to remove this point in order to determine an accurate scaling is not surprising, and
is simply a consequence of being far from the asymptotic regime. Linear regression gives
the following scaling laws

ALC ∝ Ek0.81, (27)

ψε ≈ 8.5 × 10−4 log(Ek)+ 1.2 × 10−2. (28)

It can be hypothesised that further decreasing the Ekman number will ultimately lead to
the scaling ALC ∝ Ek4/5. The result is that as the Ekman number is lowered the limit cycle



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 13

Figure 5. (Left) Values of ALC versus Ekman number (right) Values ofψε versus Ekman number.

produced near the onset of convection will have decreasing energy. Moreover, the scaling
forψε given by (28) shows that as the Ekman number is lowered, the phase change caused
through nonlinear effects will decrease until it becomes negative. Hence, there is a critical
Ekman number where the phase change switches from being a prograde rotation to a ret-
rograde one. This can be seen on figure 5 (right) to lie close to Ek = 10−6. Extrapolating
this further shows that at planetary values we should expect nonlinearities to reinforce the
prograde rotation of the neutral mode, producing a limit cycle rotating prograde to the
planet.

4.2. Internal heatingwith varying Prandtl number

With the weakly nonlinear procedure now illustrated, we turn our attention to search-
ing for subcritical convection in a shell. Based on previous works (Soward 1977, Plaut
et al. 2008, Guervilly and Cardin 2016, Kaplan et al. 2017) we will carry out this search
using a system that is internally heated. Given the similarities between the asymptotic the-
ory of the onset of convection for spheres and shells for Earth-like radius ratios, as well
as the study of Plaut et al. (2008), we might expect that for internal heating a spheri-
cal shell can onset subcritically given that it certainly can in a full sphere (Guervilly and
Cardin 2016, Kaplan et al. 2017) as well as in a quasi-geostrophic model of a rotating shell
(Plaut et al. 2008). Nevertheless, we stress that the advantage of our current numerical
weakly nonlinear procedure is that the type of bifurcation can be determined efficiently by
performing one extra eigenvalue problem solve, and two linear boundary value problem
solves for the harmonic and base-flow modification.

In order to map out the parameter regime in which subcritical convection is possible in
a shell, we consider Ek ∈ {10−5, 10−6, 10−7} and Pr ∈ {1, 0.1, 0.01}. This parameter region
is motivated by the case of a sphere (Guervilly and Cardin 2016, Kaplan et al. 2017) with
the additional case of Pr = 1 added. Figure 6 shows the critical wavenumbers, Rayleigh
numbers and rotational frequencies obtained for these parameters (see also table 3). In
all cases a clear Prandtl-number-dependent scaling law with Ekman number is found. As
the Prandtl number is decreased the critical azimuthal wavenumbers decrease, and criti-
cal Rayleigh numbers increase. Consequently, it is more difficult to get to the asymptotic
regime.
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Table 3. Similar to table 1 but for internal heating.

Pr Ek R̃ac mc ωc χ Lmax Nmax R
1 10−5 192 23 −0.00964 1.04 × 10−2 − 4.32 × 10−3i 183 183 1 × 10−14

10−6 403 50 −0.00486 4.97 × 10−3 − 1.97 × 10−3i 383 183 6 × 10−10

10−7 859 109 −0.00238 2.35 × 10−3 − 8.91 × 10−4i 383 383 3 × 10−12

0.1 10−5 593 12 −0.0283 1.57 × 10−2 − 3.54 × 10−4i 183 183 1 × 10−14

10−6 1108 22 −0.0123 5.75 × 10−3 + 5.40 × 10−4i 383 183 2 × 10−10

10−7 1982 46 −0.00550 2.11 × 10−3 + 5.56 × 10−4i 383 383 5 × 10−14

0.01 10−5 2140 8 −0.0778 1.75 × 10−2 + 1.21 × 10−2i 183 183 2 × 10−14

10−6 3955 14 −0.0293 5.94 × 10−3 + 2.14 × 10−3i 383 183 5 × 10−13

10−7 7752 24 −0.0124 2.37 × 10−3 + 8.90 × 10−4i 383 383 5 × 10−12

Figure 6. Dependenceofmc(left), R̃ac (middle) andωc (right) on the Ekmannumber for internal heating.

Figure 7. Equatorial slices of the longitudinal component of uA at Ek = 10−7 for Pr = 1 (left), Pr = 0.1
(middle) and Pr = 0.01 (right) (red is positive and blue is negative).

With internal heating, convection still onsets as rotation-axis-aligned columnar struc-
tures, with figures 7 and 8 showing equatorial and meridional slices of the unstable mode
for our three considered Prandtl numbers, respectively. In all cases, convection now onsets
in the middle of the shell, as predicted by asymptotic theory (Dormy et al. 2004). We note
that due to the low radius ratio, this is similar to the case of the full sphere (Jones et al. 2000).
As the Prandtl number is lowered convection still onsets at a critical cylindrical radius in
the interior of the shell, however, it now extends radially outwards towards the outer shell
radius.

Table 4 shows the weakly nonlinear coefficient γ for cases of internal heating. For
each of the three Prandtl numbers considered, convection onsets subcritically for small
enoughEkmannumber. The regions of subcriticality are highlighted in the regime diagram
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Figure 8. Regime diagram showing the nature of the bifurcations obtained for internal heating. Super-
critical Hopf bifurcations are marked with blue circles and subcritical Hopf bifurcations are marked with
orange crosses.

Figure 9. Meridional slices of the longitudinal component of uAĀ (top row), and TAĀ (bottom row) with
internal heating at Ek = 10−7 for Pr = 1 (left), Pr = 0.1 (middle) and Pr = 0.01 (right) (red/green is
positive and blue/pink is negative).
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Table 4. The saturation coefficient γ in the amplitude equation for varying Ekman number and Prandtl
number for internal heating.

Pr Ek Part γ Real(γAA) Real(γAĀ)

1 10−5 Total 1.29 × 105 − 1.01 × 105i 1.57 × 103 1.27 × 105

u −1.53 × 104 − 1.86 × 104i 6.71 × 102 −1.60 × 104

T 1.44 × 105 − 8.19 × 104i 8.96 × 102 1.43 × 105

10−6 Total 2.68 × 106 − 7.39 × 106i 4.11 × 104 2.64 × 106

u −1.47 × 106 − 7.35 × 105i 1.72 × 104 −1.48 × 106

T 4.14 × 106 − 6.66 × 106i 2.39 × 104 4.12 × 106

10−7 Total −9.10 × 108 − 2.16 × 108i 2.10 × 106 −9.12 × 108

u −1.03 × 108 + 2.21 × 108i 4.89 × 105 −1.04 × 108

T −8.07 × 108 − 4.37 × 108i 1.61 × 106 −8.09 × 108

0.1 10−5 Total 1.02 × 103 − 2.60 × 104i −3.12 × 102 1.33 × 103

u −5.54 × 103 − 1.26 × 104i −2.52 × 102 −5.29 × 103

T 6.56 × 103 − 1.35 × 104i −5.98 × 101 6.62 × 103

10−6 Total −9.55 × 104 − 3.66 × 104i 1.17 × 102 −9.56 × 104

u −6.30 × 104 + 2.05 × 102i 5.13 × 101 −6.31 × 104

T −3.25 × 104 − 3.68 × 104i 6.53 × 101 −3.25 × 104

10−7 Total −2.14 × 105 + 1.95 × 104i −2.40 × 100 −2.14 × 105

u −1.16 × 105 + 6.36 × 104i −9.71 × 100 −1.16 × 105

T −9.82 × 104 − 4.40 × 104i 7.31 × 100 −9.83 × 104

0.01 10−5 Total 1.16 × 103 − 1.16 × 103i 7.84 × 101 1.08 × 103

u 5.76 × 102 − 1.04 × 103i 7.82 × 101 4.98 × 102

T 5.80 × 102 − 1.19 × 102i 2.11 × 10−1 5.80 × 102

10−6 Total 2.92 × 101 − 1.07 × 104i 4.02 × 102 −3.73 × 102

u −1.09 × 103 − 7.83 × 103i 3.42 × 102 −1.43 × 103

T 1.12 × 103 − 2.83 × 103i 6.03 × 101 1.06 × 103

10−7 Total −3.00 × 103 − 2.03 × 104i 1.36 × 103 −4.36 × 103

u −4.02 × 103 − 1.55 × 104i 1.19 × 103 −5.22 × 103

T 1.02 × 103 − 4.83 × 103i 1.70 × 102 8.55 × 102

As well as the total, the contribution due to specific terms is shown.

(figure 8). Our regime diagram is in agreement with the full sphere results of Guervilly
and Cardin (2016) for the overlapping cases of Pr = 0.1 and Pr = 0.01, showing that,
as was to perhaps be expected from the asymptotic theory (Dormy et al. 2004), a low
radius ratio shell behaves similarly to a full sphere. In comparing our results with that of
Guervilly and Cardin (2016) we have taken the oscillating case on their regime diagram
to be subcritical. In other words, as long as nonlinearities are not saturating the instabil-
ity to a stable limit cycle near the critical Rayleigh number, we are taking the behaviour
to be subcritical. Additionally our regime diagram shows that for internal heating and
Pr = 1, subcritical convection can occur for small enoughEkmannumber. This agreeswith
the weakly nonlinear analysis of Plaut et al. (2008), where subcritical convection occurs
for a quasi-geostrophic model of rotating convection in a shell at Pr = 1 for low Ekman
numbers.

By examining table 4, it is evident that, similarly to differential heating, the base-flow
modification is the dominant effect determining the saturation mechanism. For unity
Prandtl number, the temperature component of the base-flow modification is still the pre-
dominant effect but the difference between this and the velocity component is less than in
the case of differential heating. Hence, the change to a subcritical bifurcation at Ek = 10−7

occurs when the temperature component of the base-flow modification changes to a sub-
critical rather than supercritical term. For lower Prandtl numbers, i.e. Pr ≤ 0.1, the velocity
component of the base-flow modification becomes the dominant term determining the
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type of bifurcation. Whilst for Pr = 0.1 both the temperature and velocity field base-flow
terms promote instability for small enough Ekman numbers, for Pr = 0.01 it is the velocity
field alone that causes a subcritical bifurcation.

Figure 9 shows the zonal flow contained in the base-flow modification. As for differen-
tial heating, the zonal flow is the dominant component of this term. In all cases the zonal
flow is concentrated near the critical radius where convection onsets, and transitions from
retrograde for radii below the critical radius to prograde for radii above this. As the Prandtl
number is lowered the zonal flow spreads out for fixed Ekman number as a consequence
of being further from the asymptotic regime. However, for each Prandtl number lowering
the Ekman number causes the retrograde part of the jet to become closer in magnitude
to its prograde counterpart. This behaviour is consistent with that seen for differential
heating.

Because the zonal jet that arises in response to the instability always promotes sub-
criticality for low enough Ekman numbers (mirroring the case of differential heating),
the change to subcritical behaviour overall can mainly be attributed to the temperature
component of the base-flow modification. For differential heating the temperature com-
ponent is always dominant over the velocity component, causing supercritical behaviour
at all Ekman numbers considered. For internal heating we obtain subcritical behaviour in
twomain ways. The first, seen for Pr = 1 and Pr = 0.1, is that the temperature component
switches to have a subcritical effect for low enough Ekman numbers. The second, observed
for Pr = 0.1 and Pr = 0.01, is that the velocity component becomes the dominant term.
This can be attributed to heat transport being less efficient at smaller Prandtl numbers,
and allows convection to onset subcritically even when the temperature base-flow mod-
ification opposes it (as seen for Pr = 0.01). It appears from the table that for Pr = 0.01
the temperature contribution has started to switch from positive to negative, indicating
that the first effect is probably an asymptotic effect that occurs at low Ekman numbers. We
hypothesise that at low enough Ekman numbers both terms will become subcriticality-
promoting terms for Pr = 0.01. The reason that Pr = 0.1 becomes subcritical at the largest
Ekman number can then be attributed to it having the right balance between the speed at
which it approaches the asymptotic regime, and the relative importance of the velocity and
temperature components of the base-flow.

The fact that the zonal flow always promotes subcriticality for low enough Ekman num-
bers can be understood by realising that overall the zonal flow locally reduces the rotation
rate to a larger extent than it locally increases it. This gives the net effect of alleviat-
ing the constraining effect of rapid rotation on convection, allowing it to set in at lower
Rayleigh numbers. However, the role of the temperature base-flow modification is trickier
to determine. For differential heating, the temperature base-flow modification is localised
to the location where the Taylor columns arise (figure 3). As it locally reduces the tem-
perature gradient, it suppresses the instability leading to a supercritical bifurcation. For
internal heating, figure 9 shows that the form the temperature base-flowmodification is less
localised. Even though it locally reduces the temperature gradient near the critical radius
where convection onsets, it also raises the temperature gradient away from this point which
may promote instability leading to the subcritical behaviour observed for internal heating
at some parameters. Although it is hard to pinpoint exactly why the temperature base-flow
modification promotes instability for internal heating at certain parameters, it is impor-
tant to note that the weakly nonlinear analysis systematically identifies that it can indeed
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have an overall subcritical effect, as well as giving its relative importance to other physical
mechanisms.

We conclude this section by considering our results in relation to that of Kaplan
et al. (2017). In their study they find subcritical convection in a full sphere at low Prandtl
numbers that comes with the creation of a strong zonal flow. They subsequently inves-
tigate the importance of this zonal flow for subcritical convection by artificially removing
the zonal velocity and zonal temperature components from their simulation each time step.
Even when the zonal flow is removed the subcritical solution is found to persist. It is inter-
esting to compare our spherical shell results with these by considering the breakdown in
table 4 which lets us isolate the effect of each term.We clearly see that a strong zonal flow is
created due to the Reynolds stress term and thermal stress term (see the right hand side of
equation (10)). If the zonal flow term is removed then the only term left that determines γ
is the harmonic term qAA. Our table shows that in this case subcritical convection would
occur only for Pr = 0.1, Ek = 10−7, and that the amount of subcriticality, as measured by
γ , would be extremely weak. Hence, the axisymmetric flow induced through the Reynolds
and thermal stresses is themost important term in determining whether convection onsets
subcritically or not.

While this may seem in contradiction with the results of Kaplan et al. (2017), it is simply
a consequence of the differing areas of validity of our studies. Our current weakly non-
linear analysis gives an amplitude equation with a cubic nonlinearity. When Re(γ ) < 0,
nonlinearities promote the growth of the instability and our amplitude equation will give
unbounded growth. In order to determine how nonlinearities saturate this growth we
would need to go to higher (fifth) order in our weakly nonlinear expansion, which is
beyond the scope of this study. In other words, we cannot say anything about saturation
in the subcritical case with our model, only that it is indeed subcritical. In contrast, the
nonlinear study of Kaplan et al. (2017) naturally includes these higher order terms. There-
fore, we should interpret their results as indicating that the zonal flow is not important
for the saturation of the runaway subcritical growth. Consequently, once the convection
has saturated, the zonal flow can be safely removed without inhibiting the convection.
This is consistent with a weakly nonlinear analysis in which fifth order terms |A|4A
would be dominant in this saturated regime, weakening the effect of the zonal flow. In
light of our weakly nonlinear model we can predict that if the zonal flow was removed
when the amplitude of the flow was small, meaning that the fifth order, and higher
terms, are negligible in comparison to linear and cubic terms, that removing the zonal
flow would suppress the convection. In this manner, our results are indicative of the
weak branch of convection, rather than the strong branch of convection (Kaplan et al.
2017).

5. Conclusions

We have presented the mathematical and numerical framework required for carrying out
a weakly nonlinear analysis for the onset of convection in a spherical shell. By solving
the weakly nonlinear equations, and adjoint equations, numerically we alleviate the dif-
ficulties associated with carrying out such an analysis analytically for a non self-adjoint
system. We have carried out this procedure for an Earth-like radius ratio for a range of
Ekman numbers and Prandtl numbers. The effects of two types of heating are considered;
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differential heating and internal heating. For our Boussinesq governing equations we show
that once the onset of convection is determined, the weakly nonlinear amplitude equation
coefficients can be determined by solving one 2D eigenvalue problem and two 2D linear
boundary value problems, making this approach a very efficient method for determining
the behaviour near criticality for an otherwise fully 3D nonlinear problem.

For differential heating we show that the weakly nonlinear Stuart–Landau amplitude
accurately reproduces the results of a full 3D nonlinear simulation, verifying the frame-
work. For all Ekman numbers considered the weakly nonlinear analysis reveals that
convection onsets as a supercritical Hopf bifurcation. The dominant term, beyond the
instability itself, in our weakly nonlinear expansion is a large zonal flow produced through
Reynolds and thermal stresses. The velocity component of this zonal flow promotes sub-
criticality, whereas the stronger thermal component promotes supercriticality and leads
to the overall supercritical behaviour of the instability. We show that the weakly nonlin-
ear analysis can be used to predict the overall change in rotation rate of the instability
due to nonlinearities as well as the amplitude and limit cycle behaviour obtained through
saturation.

Conversely for internal heating subcritical convection is found for all Prandtl numbers
considered provided the Ekman number is small enough. This subcritical convection is
primarily obtained through the zonal temperature component changing to a subcritical
effect for low enough Ekman numbers. For low Prandtl numbers the zonal velocity field
becomes more dominant which can lead to subcritical behaviour even when the tempera-
ture component of the zonal flow is supercritical. The discovery of subcritical convection
in a shell is in agreement with theoretical predictions (Soward 1977, Plaut et al. 2008)
and numerical studies for low Prandtl number convection in a full sphere (Guervilly and
Cardin 2016, Kaplan et al. 2017).

Overall our study has shown that weakly nonlinear analysis performed numerically is
an extremely efficient method for determining whether an instability onsets subcritically
or supercritically, as it requires the solution of 2D linear problems as opposed to 3D non-
linear calculations. Therefore, we propose going forwards that weakly nonlinear analysis
can be used for determining the behaviour of the onset of convection in a variety of systems
in parameter regimes inaccessible to direct numerical simulation. As the weakly nonlinear
coefficients obtained can be broken down into their constituent terms, they can be used to
probe the flow to reveal the dominant pathways governing the flow dynamics and deter-
mining the nature of the bifurcation. Further, we show that for a spherical shell the form
of heating used is an important factor underlying whether convection onsets subcritically
at low Ekman numbers.

The weakly nonlinear analysis presented is easily extendable to other equations and
geometries, and remains 2D as long as the instability contains at least one direction at a
single wavenumber. A simple extension would be to consider different heating profiles and
radius ratios. Different heating profiles could have more relevance to convection in other
planetary bodies such as Mercury or Ganymede (Jones 2011), whereas different radius
ratios would explore convection in the past and future Earth as well as other planetary
bodies. Specifically, a high radius ratio, relevant to Earth’s future, would be interesting as
asymptotic theory indicates that convection in this case will behave significantly differently
to a full sphere (Dormy et al. 2004). Extending our analysis to an anelastic system would
allow forweakly nonlinear convection in highly stratified systems such as in gas giants to be
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determined. Furthermore, the more complicated nonlinearities present in anelastic equa-
tions providemore routes to saturation such as viscous heating, which would be uncovered
through studying the weakly nonlinear terms. The reduced limit cycle description (20)
could be used for studying secondary bifurcations, i.e. the stability of the weak convective
branch to hydrodynamic perturbations could be studiedwithout the use ofNewton-Krylov
methods to converge the weak branch limit cycles (Garcia et al. 2021). As the reduced
description clearly provides the zonal flow generated by the convection near criticality, it
also provides a systematic way for finding and studying the zonal flow without conduct-
ing nonlinear 3D simulations. Finally, the effect of magnetic fields on these systems is a
natural line of enquiry. Whilst magnetic fields cannot be self-consistently included in our
weakly nonlinear expansion which is centred around a zero flow state that cannot pro-
duce a dynamo, the stability of magnetic fields on top of the reduced description of the
limit cycle (20) obtained through weakly nonlinear analysis is possible in a manner similar
to studying secondary hydrodynamic instabilities. In this way, weakly nonlinear analysis
can then be used to determine whether dynamos are supercritical or subcritical, and can
also be used to determine the effects of imposed magnetic fields on the supercriticality or
subcriticality of convection in spherical domains.
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