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A B S T R A C T

Decisions regarding total knee arthroplasty are usually made using a patient’s own assessment of pain and the 
structural disposition of the joint as seen on plain film radiographs. Pain severity can fluctuate, and radiographs 
can be misleading, with the apparent joint status affected by anatomical orientation. An important component of 
the surgical management of knee osteoarthritis (OA) is the timing of surgical intervention: knee arthroplasty 
performed too early in the course of the disease may increase the need for revision surgery.

Femoral 3D bone shape (B-score) from MR images is an objective measure of OA severity and has been 
correlated with current and future risk of pain. We aimed to derive the B-score from CT images and compare it 
against the B-score derived from MR images.

We used baseline and 24-month image data from the IMI-APPROACH 2-year prospective cohort study, 
comprising pairs of CT and MR images taken for each subject-timepoint. The femur was automatically segmented 
in both CT and MR modalities using an active appearance model, a machine-learning method, to measure the B- 
score. Linear regression was used to test for correlation between measures. Limits of agreement and bias were 
tested using Bland-Altman analysis.

CT-MR pairs of the same knee were available from 424 participants (78 % women). B-scores from CT and MR 
were strongly correlated (CCC = 0.980) with negligible bias of 0.0106 (95 % CI: − 0. 0281, +0.0493).

The strong correlation and small B-score bias suggests that B-scores may be measured reliably using CT im
ages. Since CT images are used in planning robot-assisted knee arthroplasty, with further study B-scores derived 
from CT surgical planning images could in principle provide a useful objective input to deciding the appropri
ateness, timing and type of knee arthroplasty.

1. Introduction

Osteoarthritis (OA) of the knee is a slowly progressive disorder 
involving multiple joint tissue pathologies and causing substantial pain 
and disability. Knee arthroplasty is usually considered medically 
necessary when there is both pain or functional disability despite con
servative therapies, and radiological evidence of joint space narrowing 
(JSN), a surrogate for cartilage loss. The assessment of structural pa
thology may also be made radiologically using grading systems such as 
Kellgren-Lawrence (KL) which includes definite JSN in grades 3 and 4 
[1]. Radiographic determination of OA structural status and JSN, 
however, is imprecise due to its dependence on acquisition method and 
reader reliability [2].

It is recognized that an important component of the surgical man
agement of knee OA is the timing of intervention. Knee arthroplasty 
performed too early in the course of the disease can mean a lack of 
benefit, and revision surgery (which is often complex) may be required 
at an earlier age when knee replacement is performed on a younger 
patient [3]. Pain is the primary reason for surgery, but pain variability 
can make decisions about timing more challenging. Pain due to knee OA 
demonstrates considerable within-person variability [4,5]. An objective 
and accurate quantitative measure of structural OA could provide useful 
information to aid the decision to perform knee arthroplasty.

Supervised learning of the 3D shape and appearance of the bones of 
the knee with an appropriate clinical imaging-derived model, can pro
vide automatic segmentation of the anatomy in a consistent and 
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repeatable fashion [6,7]. Such 3D methods have been shown to be su
perior to simpler 2D approaches [8]. Active Appearance Models (AAMs) 
comprise one such class of models and are a well-validated machine-
learning method used to segment images to sub-voxel accuracy [8–10], 
producing a set of dense, corresponded landmarks delineating the sur
face of the segmented anatomy [6]. From the Principal Component 
Analysis (PCA) inherent to AAMs, it is possible to distil the segmented 
anatomical surface into a set of shape vectors [11]. This allows compact 
representation and direct comparison of the segmented anatomy be
tween individuals and across populations [6].

Previous work using AAMs has successfully captured 3D shape fea
tures characteristic of knee OA, namely broadening and flattening of 
articulating bone surfaces and osteophytic ridge formation around their 
borders, as well as predicting radiographic OA onset and progression [6,
8] and discriminating OA knees from healthy knees [6,9]. In the case of 
knee OA, changes in the shape of the distal femur were shown to have 
the greatest discrimination and responsiveness, prompting femoral bone 
shape to be adopted as an image-based metric of the disease state [6]. 
Distal femoral bone shape (“B-score”), automatically derived from 3D 
bone surfaces on magnetic resonance (MR) imaging [6], is employed as a 
quantitative imaging endpoint for OA disease status in Disease Modi
fying OA Drug (DMOAD) pharmaceutical clinical trials [12–14]. It 
comprises a unit scale defined in the femoral shape space, with its origin 
at the mean shape of the healthy subgroup (KL grades 0,1) of the 
Osteoarthritis Initiative (OAI) study cohort, oriented along the vector 
between this origin and the mean of the OA subgroup (KL grade > 2). 
Distance along the scale is normalized by the standard deviation of the 
non-OA subgroup [6]. As such, the B-score represents a statistical z-score 
which can be thought of as the number of healthy population standard 
deviations away from the mean healthy shape, along a line between 
healthy and OA. The B-score has been shown to be an objective, auto
mated assessment of OA status with clinical risk defined for current pain 
and functional limitation, and 5-year risk of total knee replacement 
(TKR) [6]. The B-score has a typical range in an adult population of -2 to 
+8, with values from -2 to +2 roughly encompassing non-OA knees, and 
values from +2 to +8 comprising OA. Such negative B-score values are 
to be expected in healthy individuals, since the origin of the scale is 
defined as the mean healthy shape and, as such, the healthy population 
exhibits a spread on either side of this mean in the healthy-to-OA di
rection in femoral shape space. The smallest detectable difference of the 
B-score is 0.251 z-score units, giving roughly 40 distinguishable sub
divisions for structural change [6]. As such, it represents a more sensi
tive, consistent and objective measure of OA state than radiographic 
systems such as KL grading.

Although the B-score was originally defined using MR imaging, 
computed tomographic (CT) imaging is more commonly used for 3D 
visualization of bony anatomy due to its high bone-soft tissue contrast 
and is routinely used in planning robot-assisted partial and total knee 
arthroplasty [15]. Previously we have determined that CT imaging may 
be employed to compute a B-score that is very similar to that derived 
from MR imaging of the same subject, with a small systematic bias [16]. 
In this study, we demonstrate an improved CT B-score algorithm that has 
negligible systematic bias and improved limits of agreement with the 
original MR B-score algorithm.

2. Methods

2.1. Data cohort and measurement of B-score

We used paired CT-MR image data from the IMI-APPROACH study, a 
European, 5-center, 2-year prospective cohort study. It includes clinical, 
imaging, biomechanical and biochemical parameters for a cohort of 297 
participants (age 66.5 ± 7.1, women 230 (77 %), BMI 28.1 ± 5.3). Pa
tients were stepwise selected for a high chance of structural and/or pain 
progression/sustained severity over two years [17]. The study was 
conducted in compliance with Good Clinical Practice (GCP), the 

Declaration of Helsinki, and the applicable ethical and legal regulatory 
requirements (for all countries involved) and was registered under 
clinicaltrials.gov identifier: NCT03883568. All participants received 
oral and written information and provided written informed consent.

The femoral surface was automatically segmented from CT and MR 
images using AAMs. Each imaging modality had its own separate AAM 
trained to segment that type of image with refinement of the CT model 
search result, similar to previous work [16]. An example of segmenta
tion using the CT AAM model and refinement is shown in Fig. 1.

In either image modality, parameterized bone surfaces created from 
the femoral segmentation were projected onto a vector representing the 
direction of change of 3D MR bone shape from non-OA (consistently KL0 
over 4 years) to OA (consistently KL≥2 over 4 years) knees in the OAI 
knee population [6]. The origin of the vector is the mean of the non-OA 
OAI population knee shape and one unit along the vector is one standard 
deviation of the distribution of projections of these non-OA knees onto 
this vector (Fig. 2). The resultant z-score comprises the B-score, which 
quantifies the normalized position of the knee surface projection onto 
this vector between population means. Moving along the population 
vector in the direction of increasing B-scores, we see many global 
anatomical changes in the distal femur consistent with OA progression, 
such as broadening and flattening of articular surfaces and osteophytic 
ridge formation and growth (Fig. 2).

For MR images, the shape parameterization comes directly out of the 
AAM segmentation, since the femur model used to segment the OAI 
dataset in the definition of B-score is used to segment the MR images. 
This B-score defining model was built from DESSwe images of 96 par
ticipants (43 men, 53 women) from the OAI 0.B.1 group. The KL grade 
distribution of this training set comprised 43 KL0 and KL1, 7 KL2, 28 
KL3 and 18 KL4 participants [6]. In the case of CT images, the refined 
segmentation model does not share the same shape parameterization as 
the MR model. This is because the shape parameterization depends on 
the set of corresponded shape model vertices that define the model 
surface. The MR and CT models use different arrangements of vertices. 
Therefore, the CT segmentation is first converted to a binary volumetric 
image. This image is then segmented by a binarized version of the MR 
AAM search model and then re-projected onto the original CT segmen
tation, with some small subsequent surface smoothing to mitigate any 
minor projective anomalies. This technique allows for 
re-parameterization in terms of the B-score-defining model, allowing for 
B-score measurements agnostic to modality and image segmentation 
model. The key algorithm step that improved upon versus earlier work 
[16] was the segmentation of the binary volumetric image; the seg
mentation behavior is now more consistent, with the final segmented 
surface fully optimized to convergence. In that previous work, the al
gorithm would sometimes produce a less optimized surface than this 
improved algorithm can produce. An overview of the CT and MR B-score 
algorithms is shown in Fig. 3.

2.2. Analysis of agreement between CT and MR B-score

Linear regression was used to test for B-score correlation between 
image modalities, with Pearson’s correlation coefficient, r, Lin’s 
Concordance Correlation Coefficient, CCC, and the linear regression 
coefficient of determination, R2, calculated as metrics of the correlation. 
Limits of agreement and bias were tested using Bland-Altman analysis. 
Images acquired from the same subject at baseline or 24-month time
points were treated as independent. In the IMI-APPROACH dataset pa
tient KL grade at baseline was also collected alongside CT/MR image 
data. To investigate the relationship between CT-derived B-score and KL 
grade, the baseline portion of this dataset was stratified by KL grade and 
the distribution of B-scores for each baseline KL grade cohort was 
determined.
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3. Results

There were 227 baseline and 202 24-month CT-MR image pairs of 
the same knee available, for a total of 429 CT-MR image pairs. After 
excluding cases where the image search algorithm failed, the final 
number of image pairs suitable for analysis was 424; with the exception 
of one CT image, which produced a poor-quality search result, the 
failures were all caused by the anatomy being partially outside the scan 
field of view. In the analysis set, there were 335 female knees (78 %). KL 
grading for the analyzed knee in these participants was KL0 19 %, KL1 
31 %, KL2 30 %, KL3 16 % and KL4 3 %, with 5 knees ungraded in the 
original study data (1 %), providing coverage across the OA spectrum. 
The mean time between CT and MR image acquisition was 11 days 

(median: 0 days; 95th percentile: 107 days). Of the MR-CT scans 62% 
were acquired on the same day, and 99 % were acquired within 4 
months of each other, a period of time which is unlikely to result in 
measurable anatomical change. To verify this, the analyses in Fig. 4
were repeated for the sub-cohorts of MR-CT scans acquired on the same 
day vs those acquired on different days. No meaningful differences were 
observed between them. The distribution of MR-CT B-score differences 
versus days between acquisition was also analyzed, with no evidence 
that the time between acquisitions had any effect on B-scores. Results of 
these analyses can be found in the supplementary material.

B-scores measured using CT and MR images were strongly correlated 
(Pearson’s r = 0.980, linear regression coefficient of determination of 
linear model fit, R2 = 0.961 (Fig. 4, bottom) and Lin’s CCC = 0.980) and 
showed good agreement, with a very small MR-positive bias of 0.0106 
(95 % CI: − 0. 0281, +0.0493). Limits of agreement for B-score were −
0.784 and + 0.805. The Bland-Altman plot showed no apparent asso
ciation between measurement values and bias (Fig. 4, top).

The plots in Fig. 5 show a curvilinear relationship between both CT 
and MR-derived B-scores and KL grades with a marked upward move
ment in B-scores for KL grades of 2 and higher, which qualitatively 
agrees with the canonical KL grade boundary for radiographic OA by the 
identification of definite osteophytes. The interquartile range of the KL4 
cohort is markedly broader than the lower KL grades. This may be partly 
due to the larger variability in the highly diseased knee anatomy of such 
advanced OA, but is also likely strongly affected by the small sample size 
of participants with such severe disease in the IMI-APPROACH study (n 
= 12 patient-timepoints for the KL4 cohort), which reduces the stability 
and accuracy of the sample interquartile range as an estimate of the true 
dispersion of the KL4 population.

4. Discussion

The strong correlation and close-to-zero B-score bias indicates that B- 
scores can be measured reliably using CT scans. The improvement in 
agreement metrics between MR and CT B-scores confirms that the 
improved CT B-score algorithm agrees more closely with MR B-scores 
than in earlier work (previously R2 = 0.938, CCC = 0.967, bias = 0.100 
[95 % CI: 0.052, 0.14], Bland-Altman limits of agreement: − 0.896, +
1.096) [16]. Although it is likely that the bone surfaces identified using 
MR and CT will be at slightly different positions within the 
bone-cartilage boundary, the use of shape as opposed to geometric 
measurement as a metric here would appear to mean that this does not 
alter the B-score measurement of a knee.

While the radiographic KL grade is often used to stratify the knee 
joint by OA severity, it has several previously documented problems [18,
19]. The scoring is based on 2D plane radiographs and can be 
reader-dependent and therefore subjective. The use of a 2D imaging 
modality means that a very small change in knee orientation can alter 
the determination of joint space narrowing and thereby alter the KL 
grade. In addition, the grades are more categorical than ordinal, with 
new OA-related features being introduced at each grade, which makes 

Fig. 1. Example of 3D auto segmentation of the distal femur in a CT image from the IMI-APPROACH dataset. 
Left: transverse plane, middle: coronal plane, and right: 3D rendered surface.

Fig. 2. Schematic diagram of B-score definition and 3D renderings of bone 
shape changes with increasing B-score. 
(Top) Schematic diagram showing a lower-dimensional analogy of the B-score 
definition. Mean parameterized distal femur shapes are calculated for OA 
(KL2+) and non-OA (KL0) populations of the OAI [6] dataset. From this a 
vector in parameterized femoral shape space is defined from the non-OA pop
ulation mean shape to the OA population mean shape. Units along this vector 
are normalized by the standard deviation of the non-OA population femur 
shape. To determine the B-score of an individual patient, the parameterized 
shape obtained from the corresponded auto-segmentation of their femur is 
projected onto this non-OA to OA shape vector and normalized by the non-OA 
femoral shape standard deviation. (Bottom) As the measured B-score increases, 
we see progressive anatomical signs of knee OA. Articulating surfaces broaden 
and flatten and osteophytic ridges form around their borders.
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KL grades non-linear. Often, a KL grading of 3 or above is used when 
deciding the appropriateness of TKR surgery. We would expect the 
B-score to be a more reliable objective indicator of structural pathology 
when used for this purpose.

A systematic review of UK surgical registries and clinical studies 
showed that 85 %–90 % of TKRs lasted 15–20 years [20]. Thus, the 
younger the patient the more likely they will eventually require revision 
surgery. Arthroplasty performed too soon in the course of the disease 
can mean a lack of benefit [3], as TKR revision surgery is associated with 
poorer patient-reported outcomes, and TKR revision patients suffer 
significantly more disability and less improvement than those under
going primary TKR [21]. If measures such as B-score were used to make 
a more objective and fine-grained determination of knee OA status 
during the assessment of TKR suitability, it is possible that the surgery 
could be performed later in life, reducing the chance of needing a 
revision, or that an alternative more conservative surgical approach 
such as partial knee replacement (PKR) could be chosen. For example, a 
patient presenting with a lower B-score, in combination with other 
clinically relevant indications, might be a better candidate for more 
conservative therapy than a patient with end-stage knee OA and a much 
higher B-score.

In the evolving field of robotic surgery, the use of CT is becoming 
routine for surgical planning. B-scores from CT could therefore represent 
an important imaging biomarker, providing critical objective insight 
into the disease state. Because it is constructed on a metric line from zero 
representing normal (KL0) knee shapes to higher scores for KL ≥ 2 knee 
shapes, B-scores provide an automated high-precision objective 3D 
version of what KL grades capture in 2D, but with much more infor
mative content. In the future, it may be possible to use B-scores together 
with other important clinical and imaging information as part of a ma
chine learning algorithm to predict long term post-operative patient 
outcomes for different interventions, such as PKR vs TKR.

This study had some limitations. A larger KL4 cohort size would have 
been useful, since this grade is often well-represented in a population of 
TKR candidates, but under-represented, as in this study, within clinical 
trials and observational OA studies. However, the participants with a 
higher B-score (including those with KL4 which are primarily in the B- 
score range 4–7) do not appear to have a different pattern than the rest 
of the study population in the correlation and limits of agreement vi
sualizations. There was also no test-retest repositioning image data for 
CT available, which meant that we could not determine the smallest 
detectable difference of CT B-scores as a repeatability measure. By 

Fig. 3. Flowchart illustrating the CT and MR derived B-score processes. 
The right side shows the MR B-score pipeline: flowing from the auto-segmentation of the input MR image to its shape-space projection onto the OAI B-score-defining 
shape vector (with Z-score normalization) to calculate the B-score. The left side shows the CT B-score pipeline: flowing from the auto-segmentation of the input CT 
image to the conversion of the segmented surface to a volumetric binary image and its subsequent segmentation with a binarized version of the B-score-defining 
AAM, followed by point-to-surface projection and smoothing. Following this, the resultant surface undergoes the same shape-space projection and normalization as in 
the MR pipeline, producing the B-score.
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Fig. 4. Bland-Altman and linear regression analyses of corresponding MR and CT B-scores. 
(Top) Bland-Altman plot comparing MR vs CT B-score measured from the same patient at the same timepoint pairs of CT and MR images. We see negligible MR-CT 
bias and a 95 % confidence interval limit of agreement of less than a single B-score unit, with no evidence of measurement value dependence in the bias. (Bottom) 
Linear regression fit of MR vs CT B-scores measured from the same patient at the same timepoint pairs of CT and MR images. Data shows a consistent strong linear 
correlation across a wide range of measured B-scores with a linear best-fit close to the dashed unity line.
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treating baseline and follow-up subjects as independent, there is the 
potential of underestimating the size of confidence intervals on certain 
kinds of measurements [22]. In this study however, we are comparing 
the agreement between and noise properties of two different techniques 
(CT and MR imaging) for making the same measurement (B-score), 
rather than comparing cross-sectional or longitudinal measurements 
between participants or timepoints. As such our analysis of B-scores does 
not estimate or report between-participant or within-participant 
variance.

B-scores are constructed using the OAI dataset separated into OA/ 
non-OA knees by KL grade, and therefore have some properties of the 
KL grade and capture osteophyte growth and bone broadening and 
flattening, usually referred to as “attrition”. However, the B-score differs 
in that it is linear, continuous, automated (and therefore objective) and 
much more precise, with a resolution of around 40 discernible units 
between non-OA and severely OA knees [6]. Although joint space nar
rowing is to some extent incorporated in the B-score, through its con
struction using KL grades to define OA/non-OA OAI populations, a more 
accurate determination of JSW using a 3D measure from CT images 
might also be combined with B-score values to provide additional in
formation on cartilage integrity and/or meniscal competence for surgi
cal decision-making.

In summary, we have shown that B-scores can be reliably derived 
from CT imaging and show negligible bias, with no discernible measured 
value dependence, compared to MR-derived B-scores. This paves the 
way for future use of B-scores as a knee OA imaging biomarker derived 
from CT images as well as MR.
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