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Abstract

Purpose Accurately quantifying the rupture risk of unruptured intracranial aneurysms (UIAs) is crucial for guiding treatment

decisions and remains an unmet clinical challenge. Computational Flow Dynamics and morphological measurements have

been shown to differ between ruptured and unruptured aneurysms. It is not clear if these provide any additional information

above routinely available clinical observations or not. Therefore, this study investigates whether incorporating image-derived

features into the established PHASES score can improve the classification of aneurysm rupture status.

Methods A cross-sectional dataset of 170 patients (78 with ruptured aneurysm) was used. Computational fluid dynamics

(CFD) and shape analysis were performed on patients’ images to extract additional features. These derived features were

combined with PHASES variables to develop five ridge constrained logistic regression models for classifying the aneurysm

rupture status. Correlation analysis and principal component analysis were employed for image-derived feature reduction.

The dataset was split into training and validation subsets, and a ten-fold cross validation strategy with grid search optimisation

and bootstrap resampling was adopted for determining the models’ coefficients. Models’ performances were evaluated using

the area under the receiver operating characteristic curve (AUC).

Results The logistic regression model based solely on PHASES achieved AUC of 0.63. All models incorporating derived

features from CFD and shape analysis demonstrated improved performance, reaching an AUC of 0.71. Non-sphericity index

(shape variable) and maximum oscillatory shear index (CFD variable) were the strongest predictors of a ruptured status.

Conclusion This study demonstrates the benefits of integrating image-based fluid dynamics and shape analysis with clinical

data for improving the classification accuracy of aneurysm rupture status. Further evaluation using longitudinal data is needed

to assess the potential for clinical integration.
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Introduction

The management of patients with unruptured intracranial

aneurysms (UIA) remains a clinical challenge. While 3%

of adults have one, only a small percentage of these rupture

[1]. When they do rupture, they cause subarachnoid haem-

orrhage, which results in significant morbidity and mortality

[2].

Currently, the only options for prophylactic treatment

are endovascular and surgical interventions [2]. Despite

advances in these approaches, they remain associated with
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complication rates ranging from 3 to 10% [3, 4]. Subse-

quently, in clinical practice, the decision on whether to treat

an aneurysm relies on comparing the perceived risk of its rup-

ture against the risks associated with its treatment. In recent

years, a number of natural history studies have investigated

factors associated with aneurysm rupture. The standard risk

stratification model for estimating the risk of rupture is the

PHASES score [5], which uses six clinical variables (eth-

nicity, hypertension, age, aneurysm size, aneurysm location,

history of previous SAH) to estimate the five-year risk. While

this scoring system achieved an AUC (Area Under the Curve,

where the curve is the Receiver Operating Characteristic,

ROC) of 0.82 on its original dataset, its performance deteri-

orates when applied to external data [6–8].

Although the best available model, the PHASES score

remains a crude assessment of the risk of rupture and there

remains a need for more detailed and personalised risk esti-

mates. Angiographic imaging and derived haemodynamic

and morphological data hold vast potential. In recent years,

the development of computational fluid dynamics (CFD) has

provided insight into aneurysm rupture, with factors like wall

shear stress [9], oscillatory shear index [10] and residence

time [11] already explored. This has led to the understanding

that aneurysms with irregular shapes (e.g. high aspect ratio

[12] or presence of bulges [13]) or that exhibit complex flow

patterns [14] are more prone to rupture, and identification

of novel risk factors derived from shape and haemodynamic

analyses. These factors have been integrated into several rup-

ture classification models [14–17], although none has been

implemented in clinical practice. One reason for this is that

CFD and morphology models have not been tested to see if

they add any predictive value over and above routinely avail-

able clinical variables. To improve their clinical uptake, it is

also necessary to reduce their lengthy processing, feature-

extraction, and evaluation times, to show that the feature

extraction operation can be performed repeatably and reli-

ably, and to show that the adoption of computer-derived data

is beneficial in a clinical context.

This study’s first aim is to evaluate whether haemody-

namic and morphological data generated within the pipeline

developed as part of the European project @neurIST [18],

can improve the distinction between ruptured and unruptured

aneurysms compared to the PHASES score. Its second aim is

to identify which image-derived features of aneurysm shape

and flow most strongly correlate with rupture status in order

to optimise the feature set and facilitating integration of com-

putational risk models with existing clinical workflows.

Methods

Patient population

Patient data was collected within the European Union funded

@neurIST project (FP6-IST). In this study patients were

recruited from seven clinical centres across Europe (UK,

Switzerland, Hungary, Netherlands, Spain, and Ireland). Eth-

ical approval and patient consent were obtained for all

patients according to local ethics and data usage regula-

tions. All images and patient data were processed exclusively

within the @neurIST project.

The @neurIST project recruited over 1400 participants.

However, only those with both 3D Rotational Angiographies

(3DRA) and complete PHASES data were included for anal-

ysis and processed to obtain patient-specific morphological

and haemodynamic data. This resulted in a final study popula-

tion of 170 patients, divided into 78 with ruptured aneurysms

and 92 with unruptured aneurysms.

The representativeness of the dataset was tested by com-

paring the distributions of demographic and aneurysm char-

acteristics with those in the PHASES study, which also

includes the UCAS and ISUIA studies and amounted to 8382

participants [5]. These are shown in Table 1.

Unlike the dataset from the PHASES study, the @neurIST

dataset presents a relatively balanced split between rup-

tured and unruptured cases. Furthermore, the distribution of

patients between ruptured and unruptured cases differs for

the two datasets for key features such as hypertension and

previous SAH, as well as for all age groups except those

younger than 40 years. Because of the different distributions

between PHASES and @neurIST, as well as the fact that the

PHASES score was developed from longitudinal data, while

our dataset is of cross-sectional nature, in building the logis-

tic regression models we decided not to use the aggregate

score of the six PHASES variables as originally developed

in [5], but rather treated the PHASES variables as individual

and independent features. Further details are provided in the

Additional Material.

Morphological and haemodynamics analysis

The @aneurIST toolchain, described in detail in [19], was

employed to segment all 3DRA images, allowing for the

extraction of the specific geometry for each individual

aneurysm. Segmented geometries were meshed to run a com-

putational fluid dynamics (CFD) analysis of the blood flow

within the aneurysm and in the surrounding regions. A full

cardiac cycle was simulated: inlet conditions were imposed

as a flow-rate waveform, whereas outlet conditions were rep-

resented using a pressure waveform. Flow-rate and pressure

waveforms were computed with a generic whole body 1D cir-

culation model set-up within the @neurIST toolchain [20].
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Table 1 Comparison of

demographic and aneurysm

characteristics between PHASES

and @neurIST datasets

PHASES @neurIST dataset

Rupture (n � 220)

(%)

No rupture (n �

8162) (%)

Rupture (n � 78)

(%)

No rupture (n �

92) (%)

Patient characteristics

Women 74 68 72 74

Age

< 40 years 12 5 12 9

40–49 years 11 13 33 33

50–59 years 16 28 38 39

60–69 years 25 33 12 16

≥ 70 years 37 24 8 4

Hypertension 53 44 27 44

Previous SAH 23 13 6 4

Aneurysm characteristics

Size at the time of detection

< 5.0 mm 26 48 70 35

5.0–6.9 mm 13 26 20 31

7.0–9.9 mm 18 15 21 27

10.0–19.9 mm 29 11 7 4

≥ 20 mm 17 2 3 0

Location

ICA 38 38 18 42

MCA 25 34 27 23

ACA/PCA 38 29 56 36

Medical images and segmented geometries were pro-

cessed to extract the patient-specific morphological features

of the aneurysm. While the toolchain aimed for automation,

the evaluation of certain morphological variables such as

the location of the aneurysm neck (which must be iden-

tified through manual landmarking) and the aspect ratio

required human intervention. Guidelines were provided to

ensure consistency of these subjective variables. Similarly,

relevant haemodynamic variables were determined by post-

processing the results of the CFD simulations. This yielded

the morphological (shape) and haemodynamic (CFD) vari-

ables shown in Table 2. As explained in the next section, only

a subset of the variables shown in Table 2 are included in the

final model.

Classificationmodels

To assess the potential of image-based computed data in

improving the classification of aneurysm rupture compared

to using PHASES alone, five logistic regression models were

constructed (Table 3). The reference model (P) included only

PHASES variables. The remaining models evaluated the con-

tribution of additional data:

• Model PC combined PHASES with CFD-derived features

• Model PS combined PHASES with shape-derived features

• Model PCS incorporated both CFD and shape features

along with PHASES variables.

• Model CS solely relied on CFD and shape features, exclud-

ing PHASES.

Feature reduction: correlation coefficient
and principal component analysis

To prevent issues arising from multicollinearity of the input

variables, we reduced the dimensionality of the C (CFD-

derived) and S (shape-derived) features before training the

classification model. We aimed at retaining all the PHASES

variables in all models. However, we excluded ethnicity due

to a lack of variability as the dataset included no patients

from Finland or Japan. Additionally, the size of the aneurysm

(AneuDepth) obtained from the @neurIST toolchain was

treated as a PHASES variable, not as an S variable.

Lasso optimisation has been previously used in the liter-

ature for automatic feature reduction of logistic regression

models [15, 21]. However, preliminary investigation of the
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Table 2 Complete list of morphological and haemodynamics variables with their definition, before the highly correlated features are removed from

the analysis

Feature Definition Type Units Assessment

AR Aspect ratio Shape Adimensional Manual

NWidth Diameter of aneurysm neck Shape m Manual

Surface Aneurysm surface Shape m2 Automatic

NSurf Surface area of aneurysm neck Shape m2 Automatic

Vol Aneurysm volume Shape m3 Automatic

NSI Non-sphericity index Shape Adimensional Automatic

AbsHighWSSAreaAvg Area of high WSS, average over time within aneurysm CFD m2 Automatic

AbsLowWSSAreaAvg Time average of low WSS area within aneurysm CFD m2 Automatic

RelHighWSSAvg Percentage of high WSS area, averaged over time within aneurysm CFD Adimensional Automatic

RelLowWSSAreaAvg Percentage of aneurysm area with low WSS, averaged over time CFD Adimensional Automatic

AbsHighWSSAreaPeak Area of high WSS at peak systole within aneurysm CFD m2 Automatic

RelHighWSSPeak Percentage of aneurysm area with high WSS at peak systole CFD Adimensional Automatic

MaxWSSPeak Maximum WSS at peak systole CFD Pa Automatic

AbsHighOSIArea Area of elevated OSI within aneurysm CFD m2 Automatic

RelHighOSIArea Percentage of area with high OSI within aneurysm CFD Adimensional Automatic

MaxOSI Maximum oscillatory shear index within aneurysm CFD Pa Automatic

AbsHighPAreaPeak Area of high pressure at peak systole within aneurysm CFD m2 Automatic

RelHighPAreaPeak Percentage of aneurysm surface with high pressure at peak systole CFD Adimensional Automatic

MaxPPeak Maximum pressure at peak systole within aneurysm CFD Pa Automatic

AvgVAvg Average velocity inside aneurysm, averaged over time CFD m/s Automatic

AvgVPeak Average velocity inside aneurysm at peak systole CFD m/s Automatic

MaxVAvg Time average of maximum velocity inside the aneurysm CFD m/s Automatic

MaxVPeak Maximum velocity in aneurysm at peak systole CFD m/s Automatic

MaxVNPeak Maximum velocity in aneurysm neck at peak systole CFD m/s Automatic

MaxFluxNeck Maximum flux through aneurysm neck CFD kg*m/s Automatic

MomFluxPeak Momentum flux through aneurysm neck at peak systole CFD kg*m/s Automatic

AbsInfluxAreaPeak Area of influx flow into the aneurysm at peak systole CFD m2 Automatic

RelInfluxAreaPeak Percentage of neck area with influx flow into aneurysm at peak systole CFD Adimensional Automatic

VisDis Viscous dissipation within aneurysm CFD W Automatic

Table 3 Number of variables

after feature reduction, including

the dummy variables used for the

categorical features

Feature

group

Initial number of

features

Number of features

when threshold �

0.7

Number of features

when threshold �

0.8

Number of

features when

threshold � 0.9

P 6 6 6 6

PC 30 20 23 27

PS 12 9 10 10

PCS 36 23 27 31

CS 30 17 21 25
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dataset using lasso regression resulted in a feature pool that

did not include any PHASES variables, thus violating our

initial aim. Attempts to force the inclusion of PHASES vari-

ables within the final model by modifying the penalty term in

the cost function proved not effective. Thus, we performed

feature reduction using two distinct methods [22, 23], and

then used the reduced feature set for ridge logistic regression

[24]:

I. Pearson correlation coefficient to identify features with

high correlation, potentially indicating redundancy.

II. Principal Component Analysis (PCA) to create a new set

of uncorrelated features that capture most of the infor-

mation in the original data.

For the correlation-based method, we removed features

with Pearson correlation coefficients exceeding a specific

threshold, ranging from 0.7 to 0.9, and that reached signifi-

cance level (p < 0.01). The resulting models (P, PS, PC, PCS,

and CS) and the number of features used in each are shown

in Table 3.

For the PCA-based method, we computed the principal

components of the CFD and shape variables separately, and

then combined them with the PHASES variables to obtain

the PCA-derived P, PS, PC, PCS, CS models. PCA analysis

was performed using the Python3 package Sklearn, version

1.3 [25].

Logistic regressionmodels

For both correlation-based and PCA-based models, the same

statistical modelling procedure was used. All the numerical

variables were treated as continuous variables and standard-

ised by subtracting their standard deviation and dividing by

their mean values. Categorical variables from PHASES were

included as dummy variables. We used ridge logistic regres-

sion [24], implemented in Sklearn, for classifying ruptured

and unruptured aneurysms [14, 15, 21]. Logistic regression

computes the probability p(x) that an event occurs, in this

case an aneurysm belonging to the ruptured group, given a set

of n parameters x � {x1, · · · , xn} and the set of coefficients

β � {β0, β1, · · · , βn}. This is done through the logistic

regression equation:

p(x) �
1

1 + e−(β0+β1x1+···+βn xn)
(1)

Each parameter xi represent a PHASES, CFD or shape

variable. The coefficients βi indicate the weight of the param-

eter xi in determining the probability p(x) and are computed

through model fitting. For the purpose of model fitting, we

used eighty percent of the dataset for training and the remain-

ing twenty percent for testing. We randomised the splitting

Table 4 Performance of the logistic regression models. Since PHASES

variables are never removed, results for correlation-based and PCA-

based logistic regression models are the same

Feature group Correlation based PCA based

P 0.64 ± 0.08

PS 0.69 ± 0.08 0.66 ± 0.09

PC 0.71 ± 0.08 0.69 ± 0.08

PCS 0.71 ± 0.08 0.68 ± 0.08

CS 0.71 ± 0.08 0.69 ± 0.08

by performing ten-fold cross validation. Within each fold we

optimised the ridge regularisation parameters and the model

coefficients through a grid search algorithm under the con-

straint that the AUC of the resulting ROC was maximised.

This procedure of randomised splitting and optimisation was

repeated with 500 iterations of boostrap resampling to com-

pute the confidence intervals of the model coefficients [15].

The best performing model, that is the model that showed the

highest AUC during training, was then evaluated on the test

dataset. Since we designed the logistic regression to predict

the probability that patients belong to the ruptured group, a

positive coefficient βi means that the feature xi is associated

with membership to the ruptured group.

Results

Feature reduction: Pearson’s correlation

As shown in Table 3, the number of variables retained in the

model changed with the correlation threshold: an increase

in the threshold reduced the number of variables that were

filtered out, thus leading to models that require more param-

eters. The list of features retained in each group for a

correlation threshold 0.7 are shown in Table 5.

Feature reduction: PCA

The amount of variance explained by the principal compo-

nents of CFD-derived and morphological features is shown

in Fig. 1. In what follows, we will present the results of

the logistic regression models built with ten components for

CFD variables and three for shape features, that were able to

explain 90% of the variance of the original features.

Classificationmodels

Changing the correlation threshold in the feature reduction

approach using Pearson’s correlation had only a minor effect,

thus we show in Table 4 only the results obtained when such
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Fig. 1 Percentage of explained

variance as a function of the

number of principal components

for haemodynamics and

morphological features

threshold was set to 0.7. When the correlation-based feature

reduction method is adopted, using only PHASES variables

produced the lowest AUC values, with mean ± standard devi-

ation AUC � 0.636 ± 0.084. The inclusion of shape data

increased the AUC to 69.2 ± 7.9. Inclusion of CFD variables

also improved prediction, with AUC � 0.71 ± 0.085 for the

PC group. Further addition of both CFD and shape variables

did not further improve classification in the PCS model (AUC

� 0.709 ± 0.084). The use of derived data alone (group CS)

yielded an AUC � 0.709 ± 0.084. The corresponding aver-

age ROC curves are shown in Fig. 2.

Results from using logistic regression models after PCA-

based model reduction are consistent and show similar

performance.

Table 5 presents the average value and 95% confidence

intervals for the coefficients of the best logistic regression

models for each group, after the feature reduction with cor-

relation threshold 0.7. As explained above, positive sign of

the coefficient means that the corresponding feature is asso-

ciated with ruptured status. Most of the features tend to be

associated with only state, either ruptured or unruptured. The

only exceptions are represented by Age, AneuDepth and

RelLowWSSAreaAvg. Results from logistic regression on

the P group identify both Age and AneuDepth as indicative

of rupture status. They are however evaluated as charac-

teristic of unruptured status in groups PC, PS and PCS.

Similar behaviour is observed for RelLowWSSAreaAvg,

which appears to be associated with rupture in PC and with

unruptured in PCS and CS. NSI and MaxOSI are the vari-

ables that are most strongly associated with rupture and show

Fig. 2 Average ROC curves for the five correlation-based logistic

regression models. The ROC curves for each group are obtained using

the variables that are retained after the correlation-based feature reduc-

tion. The feature for each group are listed in the corresponding column

of Table 3

narrow 95% confidence intervals. This is true for all the

groups where these variables are included, in which they con-

sistently rank high. In agreement with this, patients where

large areas of the aneurysm are subject to high OSI are

more likely to suffer a rupture (variable RelHighOSIArea).

Likewise, rupture is associated with low wall shear stresses
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Table 5 coefficients of the final logistic regression models (correlation threshold: 0.7) of the five groups with the 95% confidence interval reported

in brackets

Feature P PC PS PCS CS

Age * 0.009 − 0.013 − 0.023 − 0.022

[0.002; 0.017] [− 0.015; − 0.01] [− 0.031; − 0.016] [− 0.027; − 0.018]

AneuDepth * 0.031 − 0.025 − 0.332 − 0.136

[0.021; 0.04] [− 0.033; − 0.017] [− 0.349; − 0.315] [− 0.154; − 0.118]

Location_MCA + 0.933 0.037 0.852 0.11

[0.898; 0.968] [0.026; 0.048] [0.826; 0.879] [0.094; 0.126]

Location_PCOM + 1.107 0.088 0.904 0.203

[1.074; 1.141] [0.075; 0.102] [0.88; 0.927] [0.18; 0.226]

EarlierSAH_Yes + 0.421 0.001 0.326 0.022

[0.362; 0.479] [− 0.004; 0.007] [0.28; 0.371] [0.009; 0.035]

Hypertension_Yes- − 0.73 − 0.084 − 0.569 − 0.155

[− 0.749; − 0.71] [− 0.095; − 0.074] [− 0.586; − 0.553] [− 0.169; − 0.14]

NWidth + 0.284 0.189 0.132

[0.272; 0.295] [0.164; 0.214] [0.113; 0.151]

NSI + 0.707 0.248 0.214

[0.695; 0.72] [0.23; 0.266] [0.2; 0.229]

Vol - − 0.162 − 0.123 − 0.148

[− 0.18; − 0.143] [− 0.136; − 0.109] [− 0.169; − 0.126]

AbsHighPAreaPeak - − 0.143 − 0.281 − 0.255

[− 0.155; − 0.13] [− 0.305; − 0.256] [− 0.279; − 0.231]

AbsHighWSSAreaPeak - − 0.017 − 0.058 − 0.052

[− 0.02; − 0.014] [− 0.066; − 0.05] [− 0.059; − 0.044]

AbsHighWSSAreaAvg - − 0.079 − 0.17 − 0.164

[− 0.087; − 0.071] [− 0.185; − 0.155] [− 0.18; − 0.148]

AbsLowWSSAreaAvg + 0.082 0.157 0.144

[0.073; 0.09] [0.143; 0.171] [0.128; 0.161]

AvgVPeak - − 0.023 − 0.029 − 0.022

[− 0.027; − 0.018] [− 0.039; − 0.02] [− 0.031; − 0.012]

MaxOSI + 0.163 0.24 0.22

[0.15; 0.175] [0.226; 0.254] [0.206; 0.233]

MaxPPeak - − 0.01 − 0.027 − 0.017

[− 0.014; − 0.005] [− 0.035; − 0.018] [− 0.026; − 0.009]

MaxVPeak + 0.046 0.057 0.044

[0.041; 0.052] [0.048; 0.066] [0.034; 0.054]

RelHighOSIArea + 0.053 0.066 0.088

[0.049; 0.056] [0.058; 0.074] [0.078; 0.097]

RelHighPAreaPeak - − 0.086 − 0.05 − 0.045

[− 0.092; − 0.081] [− 0.06; − 0.04] [− 0.056; − 0.035]

RelHighWSSPeak - − 0.055 − 0.023 − 0.014

[− 0.06; − 0.05] [− 0.029; − 0.016] [− 0.021; − 0.006]

RelLowWSSAreaAvg * 0.023 − 0.018 − 0.021

[0.017; 0.029] [− 0.03; − 0.007] [− 0.034; − 0.007]

RelInfluxAreaPeak - − 0.078 − 0.098 − 0.112
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Table 5 (continued)

Feature P PC PS PCS CS

[− 0.081; − 0.074] [− 0.104; − 0.093] [− 0.118; − 0.106]

VisDis + 0.064 0.166 0.152

[0.052; 0.076] [0.142; 0.19] [0.129; 0.175]

Intercept - − 0.513 − 0.025 − 0.451 − 0.078 − 0.02

[− 0.534; − 0.492] [− 0.032; − 0.019] [− 0.467; − 0.436] [− 0.089; − 0.066] [− 0.023; − 0.018]

The table contains only the variables that are retained in the models after the feature reduction stage. Positive coefficients mean that the feature is

associated with rupture status and are marked with a plus sign ( +). Negative coefficients mean that the feature is associated with unruptured status

and are marked with a minus sign (−). Features that are associated with ruptured or unruptured status depending on the group in which they are

included are marked with an asterisk (*). Bold coefficients indicate that the confidence interval includes the origin

(variables AbsHighWSSAreaPeak, AbsLowWSSAreaAvg),

high values of velocity inside the aneurysm region and high

viscous dissipation. Large high-pressure areas and volumes

are indicative of unruptured aneurysms.

In accordance with what was observed before, the PCA-

derived models show that haemodynamic or morphological

data improve the predictive power of the logistic regression

models. As PCA features are not interpretable and do not

bear clinical relevance, their coefficients are not reported in

the manuscript.

Discussion

This study assessed five logistic regression models con-

structed from different combinations of clinical, morpho-

logical (shape), and haemodynamic data for classifying

aneurysms’ rupture status. Previous studies have identified

several morphological and haemodynamic factors which

show statistical association with aneurysm rupture, and have

shown that they can be used to classify ruptured and unrup-

tured cases [7, 14, and 26]. However, they have not assessed

whether the addition of these can improve established risk

prediction models with respect to clinically established pro-

tocols. Our results show that, when compared to the PHASES

score alone, the addition of either morphological or haemo-

dynamic data individually improved classification accuracy.

The addition of both morphological and haemodynamic data

did not cause any further improvement.

Throughout our study, we also showed how through sta-

tistical approaches on a relatively large dataset we can

reduce the number of image-derived features to those that

demonstrate strongest association. This has been exten-

sively debated through the scientific community [27–29],

which recognises the importance of using robust statisti-

cal approaches and considerations when evaluating new

potential image-derived features. This helps to avoid the

proliferation of potentially confounding and misleading fea-

tures, often arising from small, single-centre studies with

limited populations. Such features may lack statistical sig-

nificance and hinder generalisability of results.

Our results show that haemodynamic analysis can effec-

tively improve the separation between ruptured and unrup-

tured cases. We have found that high OSI and low WSS are

indicative of rupture, which is in accordance with previous

observations [9, 26, and 30]. In the final set of retained vari-

ables, WSS does not directly appear through its values, but

rather in terms of the area of the region where its values are

high or low. This derives from the feature-reduction stage of

the analysis, where we observed that MaxWSSPeak showed

a high correlation (r � 0.88, r < 0.001) with MaxVPeak and

was thus removed from the pool. The extension of aneurysm

surface area exposed to low WSS (AbsLowWSSAreaAvg)

is positively associated with rupture. This implies that, in

case of rupture, large parts of the aneurysm are exposed to

low WSS, a condition that has been identified as responsi-

ble for initiation, growth and rupture because of their role

in endothelial remodelling [10, 31]. The association of WSS

with rupture, however, is controversial and there exist studies

that have linked rupture with high WSS [32]. This incon-

sistency can be partially explained by the observations in

[33], where the authors hypothesised that aneurysms of dif-

ferent size fail because of various combinations of high/low

WSS and oscillatory shear index (OSI). The OSI is a quantity

derived from WSS that quantifies the oscillatory behaviour

of the WSS vector along the cardiac cycle [34]. High OSI

values are indicative of complex and dynamic flow patterns,

vortices and recirculation regions within the aneurysm which

ultimately induce low WSS and lower residence time [35].

Our models identify these conditions as associated with rup-

ture status, coherently with results reported in [9, 36].

Complex haemodynamics is often induced by irregular

shapes and geometries. NSI and AR are generally recog-

nised as aggregated metrics for describing aneurysms’ shape,

with higher values describing shapes that differ from an ideal

sphere [12, 37]. Deviations from spherical shape yield uneven

distributions of wall stress which enhance aneurysm instabil-

ity and favour rupture [12]. NSI higher than 0.2 have shown
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significant discriminatory power in multiple studies [12, 37].

Our cohort of ruptured patients presented NSI � 0.198 ±

0.07, and that feature ranked as highly influential in our anal-

ysis. AR was part of the initial set of variables but, despite

being widely acknowledged as a risk factor for aneurysm

rupture [12, 37], it was excluded from the final analysis.

This was because of its correlation with the PHASES vari-

able AneuDepth (r � 0.79, p < 0.001) and, by design,

we decided to retain all the PHASES variables. Studies [5,

38] observed that patients with ruptured aneurysms showed

higher values of AneuDepth. This association is confirmed

in our analysis when only the PHASES variables are used

as predictors but show an opposite direction when derived

data are included. Previous studies [39, 40] have shown that

narrow necks and larger volumes can induce blood stag-

nation within the aneurysm, thus creating haemodynamic

conditions favourable for rupture. We did not observe this

phenomenon in our results, and we ascribe it to the features

of our cohort, where patients with large volumes and nar-

row necks tend to belong to the unruptured group. Other

researchers have reported conclusions similar to ours [15,

41].

Despite this study showing the improved classification of

aneurysm rupture with the addition of CFD and morpho-

logical derived factors, there remain several limitations. In

terms of the CFD, the boundary conditions were obtained

from generic 1D models of the brain circulations, while

personalised models might offer a more precise represen-

tation of the boundary conditions. In terms of modelling,

we did not include in our analysis variables derived from

patients’ lifestyle such as smoking and diet, or related to

familial history of ruptured aneurysms and other cardio-

vascular pathologies. These are very well-established risk

factors and regularly taken into consideration by doctors

when evaluating possible treatment strategies [42]. How-

ever, they are not included among the PHASES variables

and, since our study aims at evaluating the potential of CFD

and shape analysis alongside the use of PHASES variables,

we ultimately decided to exclude them from our model.

In terms of the population, our study is similar to previous

studies [10, 26], and suffers from limited sample size and

the cross-sectional nature of the dataset. The cross-sectional

design of this study can explain a number of findings. It is

not clear what is the effect of rupture on aneurysm shape

and volume. Some authors report increases or while oth-

ers report no modification [43, 44] in small-cohort studies.

Our models identify smaller aneurysms (both in terms of Vol

and AneuDepth) as predictive of unruptured status: however,

without longitudinal observations to track their evolution,

it is not possible to reach definitive conclusions on their

role. Additionally, age showed an ambiguous effect in our

models with elderly patients being more likely to rupture

when exclusively considering the PHASES features, and less

prone to rupture when shape and haemodynamics are taken

into account. While there are conflicting views regarding the

role of age [45], elderly patients are more likely to have a

diagnosis of an UIA and this will influence the structure

of a dataset. Regarding hypertension, it was not associated

with rupture. Our dataset did not include any actual blood

pressure values, however. It is therefore possible that more

patients with ruptured aneurysms had undiagnosed hyperten-

sion, whereas more patients with unruptured aneurysms had

their blood pressure controlled on antihypertensive agents.

Furthermore, only 27% of the patients in the ruptured group

suffered from hypertension, which likely introduced a bias.

Our dataset also included a similar number of ruptured and

unruptured cases and did not represent the distribution of

aneurysms in the general populations. This is an issue com-

mon to most currently available studies [10, 13, 15]. The

dataset was also cross sectional and was used to develop a

classifier capable of distinguishing someone with a ruptured

aneurysm from someone with an unruptured aneurysm. The

dataset did not allow us to assess if it could predict which

unruptured aneurysms would go on to rupture in the future,

which is the clinical question that needs to be addressed and

what PHASES was developed for. Practically compiling the

necessary longitudinal datasets to answer this question is

challenging, however, due to the relatively low short rates of

rupture, which mean very large datasets with very long peri-

ods of follow up are necessary. This is now being addressed

in the Risk of Aneurysm Rupture (ROAR) study which is

following up the largest cohort of patients with unruptured

aneurysms to date with more than double the cases of the

whole PHASES metanalysis combined and far longer peri-

ods of follow up available [46]. Finally, our model was

only validated internally, and we did not perform external

validation. This is common to most computational studies

[14–16, 21, 24], with the notable exception of [47]. The

dataset used in this study, however, were collected during

the @neurIST project which, despite being a large multi-

centric effort involving twenty-nine partners from twelve

countries, did not have a uniformed data collection proto-

col. This implicitly guarantees that our model is robust to

various images modalities. The size of the dataset we used,

170 patients, did not allow for further subdivisions based on

the hospitals, while at the same time maintaining a mean-

ingful sample size. Further validation of this model can be

performed by resorting, for example, to larger datasets such

as AneuX [48].

In conclusion, we showed that using additional data

derived from CFD and morphological analysis increases the

ability of logistic regression models in separating ruptured

aneurysms from unruptured ones using clinical variables

alone. The resulting logistic regression models achieved

AUC � 0.71 and used a reduced number of features which
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were obtained through semi-automated processing of medi-

cal images and CFD results. This approach has the potential

to be included within current clinical protocols, once being

extended and validated using longitudinal data and larger

patient cohorts.
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