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ABSTRACT

Twisted hypercubes are generalizations of the Boolean hypercube, obtained by iteratively connecting two instances of a graph by a
uniformly random perfect matching. Dudek et al. showed that when the two instances are independent, these graphs have optimal
diameter. We study twisted hypercubes in the setting where the instances can have general dependence, and also in the particular
case where they are identical. We show that the resultant graph shares properties with random regular graphs, including small
diameter, large vertex expansion, a semicircle law for its eigenvalues and no non-trivial automorphisms. However, in contrast to
random regular graphs, twisted hypercubes allow for short routing schemes.

1 | Introduction and Construction Definition 1. (o-twist). Let G, = (V,E,) and G, = (V,E;)
be two finite graphs on the same vertex set, and let o be a permu-

The Boolean hypercube Q, is the graph whose vertex set :

is V(Q,) =1{0,1}" and whose edge set is E(Q,) = {{x,y}| x o ) .

and y dr;ffer by exactly one coordinfte}. One appeansing property P roduces a graph C_;O * G = (VI’E/.)’ defmefi as f9llows' Fori=

of the hypercube graph is its recursive construction: starting with 0,1, let Zl ={x.Dlx €V} and F' = {(x, D), (0. DH{x. v} € By}

Q, as a single edge, Q,, is given by the Cartesian graph product Then G, x G, has vertex set

Q,, = Q,00Q,,_;; essentially, the Cartesian product with an edge

amounts to matching together the corresponding vertices of two

disjoint copies of Q,_,. See Figure 1 for the first steps of this ~ and edge set

process.

tation of the vertices V. The o-twist operation, denoted G, * G,

Vi =vouv!

E' = F*UF' U{{(x,0), (o(x), D}|x € V}
Generalizing this procedure gives rise to the definition of a
twisted hypercube, which is obtained by iteratively applying per-

fect matchings between the vertices of two copies of the original o
graph. cency matrix of G, * G, is given by

Alternatively, if A; € R™™ is the adjacency matrix of G;, and P
is the m X m permutation matrix representing o, then the adja-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.
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FIGURE1 | The recursive construction of the hypercube. The color of an edge indicates in which step it was created. Newly created edges are in

bold.
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Definition 2. (Twisted hypercube). Using the o-twist
operation, we define a class of recursively constructed graphs.

1. A twisted hypercube graph of generation n, denoted G,,
is defined as follows. For n = 0, G, is an isolated vertex,
labeled by @, and for n =1, G, is a single edge, that is,
V(G,) ={0,1} and E(G,;) = {{0,1}}. For general n > 1, let

G° | and G! | be two twisted hypercubes of generation
n—1, let o,_; be a permutation on {0,1}*~* vertices, and
define
Op_1
G, =G, * G} (2

2. It is possible to consider random permutations in this con-
struction; G,, is then called a random twisted hypercube. In
this case, the definition requires also specifying the joint dis-
tribution of Gg_l and G}l_l in the o-twist operation. For the
rest of the article, we assume that all the permutations o,
are chosen uniformly at random for every k.

3. When the all permutations o, k =1, ...,n —1 are inde-
pendent of all other permutations, and the two instances
GY_ and G} _, are independent for all n, we call G,, an inde-
pendent twisted hypercube.

4. When the two instances G2—1 and G;_l are identical for all
n, we call the graph a duplicube. In this case, the graph
G, can be described by a single sequence of permutations
G = (0))p~,» Where each o, is a permutation on {0, 1}*: the
vertex set is V(G,) = {0,1}", and for every k € [n], the ver-
tex x = (X, ...X_1,0,X 4y, ..., X,) is connected to y =
(031G - X1y L Xpyqs -, X, ). We write G, = G,(0)
when we wish to stress the dependence on the permuta-
tions. See Figure 2 for the first steps of this process.

The term twisted cubes was first introduced in the context of rout-
ing in computing networks [1-3]. The idea is that slight modifica-
tions to the structure of the hypercube can yield graphs with both
better diameter (and so, smaller latency) and better connectivity
(and so, better fault-tolerance) than the hypercube. Dudek et al.
[4, Definition 2] first introduced randomness to these construc-
tions, and studied independent instances connected by uniform
matchings. They named their construction random twisted hyper-
cubes. Since our definition generalizes theirs by allowing different
joint distributions of matched instances, we have chosen to use
the name random twisted cubes for the general case, and indepen-
dent twisted cubes for their special case.

Any twisted hypercube G, is an n-regular graph with N = 2" ver-
tices. When oy, is the identity permutation for every k, then G, is
just the Boolean hypercube graph Q,,. The hypercube has diam-
eter n, has poor vertex- and edge-expansion (relative to the fact
that its degree grows with the graph size; see Section 2.2), and
a random-walk mixing time of order ®@(nlogn) [5]. Many other
geometric and structural properties of the hypercube are known
(e.g., distances between vertices [6] and isoperimetric inequali-
ties for various sets [7-9]).

Another well-researched class of n-regular graphs are the uni-
formly random regular graphs. With probability 1 — o(1), a ran-
dom n-regular graph on 2" vertices has diameter ©(n/ logn), [10]
has high edge-expansion [11] and a random-walk mixing time of
order ©(n/ log n) [12]. Further, its eigenvalues follow a semicircle
distribution [13].

For fixed n and N — oo, the uniform distribution over n-regular
graphs on N vertices can be approximated by adding n suc-
cessive random perfect matchings on N isolated vertices,
where the ith matching is uniform over all matchings on
previously-unmatched pairs of vertices [14, Theorem 8]. In con-
trast, consider the random twisted hypercube G, where all o}
are uniformly random permutations on {0, 1}, with indepen-
dence between different k’s. It consists of a union of n indepen-
dent matchings as well, but these matchings are not uniformly
random. For example, the last matching is a uniformly random
matching only between the two instances of G,_,, while earlier
matchings consist of a union of smaller matchings; in the case
of the duplicube, they consist of copies of smaller matchings and
therefore have even stronger dependencies between the edges. In
this sense, the random twisted hypercube G,, is a hybrid between
the structure of the Boolean hypercube and the randomness of a
random n-regular graph. It is therefore natural to ask how its var-
ious geometric and structural properties compare to those of the
hypercube and random n-regular graphs.

Remark 1. An nth iteration duplicube is defined by a sin-
gle sequence of permutations oy, ...,0,_;. To sample such a
sequence, one requires approximately ®(n2") random bits. An
independent twisted hypercube, on the other hand, requires
©(n*2") random bits to sample since it is defined using 2" %!
independent copies of o, for every k. As we will see in the next
section, despite the fact that it uses less randomness, the struc-
tural properties of the duplicube still match those of the indepen-
dent twisted cube —it has optimal diameter and constant vertex
expansion.
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FIGURE2 | An example of the recursive construction of the duplicube, using random matchings. The color of an edge indicates in which step it

was created. Newly created edges are in bold.

2 | Our Results

In this work, we study the diameter, expansion, eigenvalues, and
symmetries of a random twisted hypercube G,,. All our theorems,
except Theorem 1, hold for any twisted hypercube where the
matchings o) are uniformly random and with independence
between permutations of different generations, regardless of the
joint distribution of the instances in (2).

2.1 | The Diameter

For a graph G = (V,E), let d; : V? — R be the graph distance
between two vertices. The diameter of a graph is the maximum
distance in the graph, that is, D(G) := max{d;(x,y)|x,y € V}.
An immediate result shows that the diameter of the hypercube
Q,, has the worst possible diameter out of all twisted hypercube
graphs.

Proposition 1.  For every choice of permutations o, we have
D(G,) £D(Q,) =n.

Proof. Byinduction. Forn = 1,itis clear. In the general case, let
x,y € V(G,),and denote x = (X,x,),y = (#,¥,).Ifx,, = y,, then
X, y€V(G,_,),and dGn(x,y) = dGH (%,5) < n— 1. Otherwise, x
is connected to some (x’,1 — x,,), and

dg (6,) <1+d; (x',5) <n

The following lower bound is also immediate.

Proposition 2.  For every choice of permutations o, we have
D(G,) > (n—1)/log, n.

Proof. If G, has diameter d, then the ball B(v,d) of radius d
around any vertex v must contain the entire graph. Since the
graph is n-regular, the number of vertices in this ball is smaller
than 2n?, and we get

2" = |B(v,d)| < 2n¢

yielding

> n—1

~ log,n
mi

It was shown by Dudek et al. [4] that for the independent twisted
hypercube (where the permutations o, are chosen uniformly at

random, and the instances of G,_; in the o-twist operation G,, =

[
G % G} _, are independent), the diameter of G, is almost
surely asymptotic to n/log, n. We show that their proof tech-

nique carries over to the duplicube as well.

Theorem 1. Let G, be the random duplicube. Then D(G,) =
1 4 O(lOngn) with probability > 1 — o(27").

log, n

Moreover, we show that regardless of the joint distribution of the
two instances of G,_,, the diameter is asymptotically better than
that of Proposition 1 by at least aloglog n/ loglog log n factor. The
following theorem is proved in Section 4.2.

Theorem 2. There exists a constant C > 0 such that

logloglogn

D(G,) < Cn (3)

loglogn
with probability 1 — o(27").

Remark 2. The proof of Proposition 1 also gives a simple rout-
ing scheme between any two vertices x, y: when at x, let k € [n]
be the largest index such that x;, # y,, and go along the edge
created by o,_;. Thus, we always have a local routing scheme
which gives a good approximation to the diameter, as well as
the average distance between pairs of vertices. Contrast this with
general random n-regular graphs, where there is no known local
easy way to find an approximation to the minimal path between
two vertices.

logloglogn
loglogn
in Theorem 2 by a more careful analysis of the quantities c(n)

and (n) that appear in the theorem’s proof. We showed that the
diameter of a random twisted hypercube is asymptotically less
than that of the Boolean hypercube, yet we have no intuition to
the correct diameter.!

Remark 3. It might be possible to improve the factor

2.2 | Vertex Expansion

Let G = (V,E) be any graph. For a set S C V, let dS be its set of
neighbors, that is, dS = {x ¢ S|3y € S such that {x, y} € E}.

Definition 3.  (Vertex expander). Let 0<7n<1 and
a>0, and let G =(V,E) be a graph. A set SCV is said
to have a-expansion if |0S| > «|S|. The graph G is an
(n, a)-vertex-expander if S has a-expansion for all SCV of
size |S| < n|V].

30f19

QSURDIT suowwo)) aanear) ajqesrjdde ayy £q pautaAoS a1 sadNIR YO (SN JO SINI 10J A1RIQIT 2UIUQ AJ[IA\ UO (SUONIPUOI-PUB-SULI)/WOD K[Im " AreIqijaul[uo//:sd)y) suonipuo)) pue SuLI ], 3y} 23S “[$707/21/€1] uo Areiqry aurjuQ L3[IA\ 1591 £q L9T 1T BSY/Z001 0 1/10p/wod Kaim: Areiqriaurjuoy/:sdny woiy papeojumod ‘1 ‘ST0T ‘81478601



The hypercube Q,, is not an (), a)-vertex-expander for any con-
stants 5, > 0. To see this, fix some constant 7 > 0. There
is some p > 0 so that the ball S ={x €{0,1}"| Y x; < [n/2 —
p\/ﬁ] — 1} has size (n +o0(1))2". However, its boundary is
S ={x e€{0,1}"| ¥ x; = [n/2 - p\/ﬁ]} and has size at most

(njz) =2"(1 + 0o(1))/4/7n. Thus Q, cannot have an expansion

factor o asymptotically larger than Ln for any constant 7. The
random twisted hypercube graph, on the other hand, achieves
constant expansion with high probability. The following theorem
is proved in Section 4.3.

Theorem 3. For every n € (0,1) there exists a constant a > 0
such that

lim P[G, isa (1, a)-vertex expander| = 1

n—oco

In fact, the proof of Theorem 3 shows that P[G,isnota
(1, a)-vertex expander]| = O(27°") for some constant ¢ > 0 that
depends on 7.

Remark 4. 1tis also possible to talk about edge expanders, and
compare the size of a set S to the number of edges connecting it
to 8S. Both Q,, and G,, are not very good edge expanders (for any
choice of permutations o, ); see Section 3 for more details.

Remark 5. In random d-regular graphs, balls of any constant
radius r around an individual vertex are trees with high probabil-
ity (even when d is logarithmic in the number of vertices). Such
sets are very poorly connected-the vertex expansion is of order
1/d" (consider cutting the d-ary tree in half at the central vertex).
However, in a random twisted hypercube, a ball of radius r con-
tains G, as a subgraph, which, by the theorem above, has good
vertex expansion with arbitrarily high probability for large r.

2.3 | Eigenvalues

Let A € R™™ be a symmetric matrix, whose eigenvalues are

M=, > 24, Letut = izlﬁl% be the uniform measure

over the eigenvalues of A, where §, is the Dirac-delta distribution
centered at s.

Let Adj(Q,,) be the adjacency matrix of the hypercube Q,. The 2"
eigenvalues and eigenvectors of Adj(Q,,) are well understood; the
following is well known [16, section 1.4.6].

Fact1. For every integer d € [0,n], the adjacency matrix
Adj(Q,) has eigenvalue n — 2d with multiplicity (g )

In particular, the hypercube’s largest eigenvalue is n, while its
second largest eigenvalue is n — 2. Thus, its normalized spectral
gap, defined as i(/ll —A,),is % The same gap is achieved for the
graphs G, regardless of the choice of 5. The following proposition
is proved in Section 4.4.

Proposition 3. Let A, be the adjacency matrix of G,. Then
A =nand, =n-—2.

A consequence of Fact 1 is that uA%(@) is the probability mea-
sure of a {+1} Binomial random variable with n trials and suc-
cess probability 1/2. By the central limit theorem, we then have

that
pAG@D/Vr

weakly, where T' is the standard Gaussian distribution on R.
Unlike the spectral gap, this property is not preserved for the ran-
dom twisted hypercube graph. In fact, the spectrum of Adj(G,,)
behaves like that of a random n-regular graph.

Theorem 4. Let A = Adj(G,) and u, = u*/V". Then the ran-
dom measure u, converges weakly to the semicircle law u .. in
probability, that is, the absolutely continuous measure whose prob-
ability density function is
2 — x2 —
fcirc(x) — {47.[2 4—x X e [ 2, 2]
0 x & [-2,2]

The above theorem follows from the following lemma, which
states that the number of short cycles in the neighborhood of any
vertex in G, is small. Essentially, this means that G, is almost
locally treelike. For a vertex v and positive integer k, let 8(v, k)
denote the number of cycles of length no more than k containing
v, and B(v, k) denote the ball of radius k around v.

Lemmal. Letv €V, andletk > 0 be an integer. There exists
a constant C > 0 which depends only on k such that the following
holds. Let m, > 0 be an integer, and let

F,= |J {6k <cmiy

ueB(v,k)

Then
P[FU] 2 1-— C2—m0m(2)k+2n2k+1

Theorem 4 and Lemma 1 are proven in Section 4.4.

Remark 6. A classical theorem by McKay [17] states that a reg-
ular graph on N vertices has a limiting semicircle law if, for every
k, the number of k-cycles in the graph is o(N). This result cannot
be directly used in the case of the twisted hypercube: for example,
each vertex is guaranteed to be in a 4-cycle, so there are at least
N /4 4-cycles in every twisted hypercube (in fact, we conjecture
that for the duplicube, for every k, each vertex is in a constant
number of k-cycles in expectation). Lemma 1 is the main techni-
cal component in our proof of Theorem 4.

24 | Asymmetryof G,

Let G = (V,E) be any graph. A function ¢ : V — V is called an
automorphism of G if {x,y} € E & {o(x),9(y)} € E. The set of
all automorphisms of a graph is denoted by Aut(G), and always
contains the trivial automorphism — the identity function Id.

It is well known that for the hypercube,
and every automorphism ¢(x) is of the form ¢(x,, ...
(X”(l) + bl’ .

Aut(Q,)| = n!2",
> xn) =
\ Xy +b,) for some permutation 7 € S, and

40f19
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b € {0,1}". On the other hand, a random regular graph of degree
n on 2" vertices is almost surely asymmetric, that is, almost surely
has no non-trivial automorphisms [18, Corollary 3.5]. This is also
true for random twisted hypercubes.

Theorem 5.

P[Aut(G,) = {Id}] = 1 — O(n*27"/*")

The proof of Theorem 5 is found in Section 4.5.

2.5 | Different Base Graphs
The twisted hypercube graph is the result of repeatedly applying
the o-twist operation on a single vertex. It is also possible to start

with any base graph G, = H, and define G}/ =G)_, s G .,
where o,,_, is a permutation on 2"~ |V (H)| vertlces When each
0y is a uniformly random permutation on 2X|V(H)| elements, we
denote the resulting random graph by Gf .In this case, we say that
fo is a random twisted hypercube with base graph H. None of
the main results concerning the diameter, expansion, and eigen-
values are severely affected. This is because as n — oo, the vast
majority of the edges meeting each vertex are those created by

the o-twist operation.

Lemma 2. Let H bea finite connected graph. Let Gf berandom
twisted hypercube with base graph H. Then there exists a random
twisted hypercube G, and a coupling (Gf ,G,) such that:

1. D(G}) < D(H)D(G,).

2. If the permutations that define Gf are independent then so
are the permutations that define G,,.

3. If Gf is the duplicube with base graph H, then G, is also a
duplicube.

Proof Sketch. Consider the o-twist operation G/, =G0 *
1 Lo asingle vertex and
using Hall’'s marriage theorem, there exists a set S of 2* edges
induced by o, which comprise a perfect matching between the
copies of H in the two instances of Gi’ . Such a set S naturally
induces a permutation on {0, 1}*. For a given o, let 7, be cho-
sen uniformly at random among all such induced permutations.
Then if o, is chosen uniformly then 7, is a uniform random per-
mutation on {0, 1}*. We can use these permutations to generate a
graph G,, which is coupled with GnH so that G,, is a subgraph of the
graph obtained by contracting every copy of H in Gf to a single
vertex. Thus D(G”) < D(H)D(G,,). o

GH ", By contracting each copy of H in G

Thus, both Theorems 1 and 2 continue to hold with only a
constant-factor change in the diameter.

Remark 7. 1If H is not connected, one may simply apply the
o-twist operation several times first until Gf is connected (this
can be shown to happen with probability tending to 1 asn — o),
then use that as the base graph.

Corollary 1. (Corollary to Theorem 3). Let H be a finite
graph. For every 1 € (0, 1) there exists a constant o > 0 such that
the

Jl_}rglo P[G,is a (n, a)-vertex expander]| = 1

The proof of the above corollary is essentially identical to that of
Theorem 3. The latter only uses the edges created by the last three
o-twist operations, and so the statement still holds for G’: aswell.

Corollary 2. (Corollary to Theorem 4). Let H be a finite
graph. Let u,, = ,uA(GI:)/ Vi Then u, converges weakly to the semi-
circlelaw u,. in probability, that is, the absolutely continuous mea-
sure whose probability density function is

Fu() = { #\/4 -x2 xe[-22]
0 x & [-2,2]

Proof Sketch. 'We will assume for simplicity that |V (H)| = 2¢
for some integer d. We can couple GZI with G, 4 by observing
thatG,,, = Gfd , and using the same permutations o, for G’: and
GSd. Since all the edges due to the permutations are the same
for fo and GS“, their adjacency matrices differ by no more than

= |V(H)| entries at each row, and all the eigenvalues of the
matrix A = Adj(GY) — Adj(ng> are bounded by c. Denoting

A 1= Adj (Gf” ) for every integer k > 0 we have

2n+d 2n+d
A, (Gf ) Z/l (6"
i=1
= |Tr(4¥) = Tr((4 + A)"))|
= |Tr(P(4, )
where P is a polynomial of degree k for which in every mono-
mial, A has total degree at most k — 1. By Von Neumann’s trace

inequality [19, eq. H.10], if A,, ..., A,, are N X N symmetric
matrices, then

m

N N

DAA A < P A(A) - A(AL)

i=1 i=1

and so the trace of every monomial in P is bounded above
n+d

by ¥ "|A;(A)"!|. Thus the difference in the normalized

moments of G,G,d and fo is bounded by

2 2n+d
e zA< DRV
2!! +d
< C(k)(n +d) Z(A(A)k !

(Cauchy-Schwarz)

1 1
< C(k)\/wn_l Z/Ii(A)z\/Wn_(k_l)zli(A)Zk_4
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By the proof of Theorem 4, 2n1+d n~k=2 % 2,(A)*~* converges
to a constant in probability as n — oo, which means that the
sum on the right-hand side above converges to 0 in probabil-
ity. This implies that the kth moments of the empirical distribu-
tion of the eigenvalues of GI: converge to those of the semicircle

law. ]

Corollary 3. (Corollary to Theorem 5). Let H be a finite

graph. Then
lim PlAut(GY) = {1a}] = 1-0(n?275 )

We omit the proof of Corollary 3 since it is similar to the proof of
Theorem 5.

3 | Remarks and Further Directions

1. In [20], Zhu gives a simple-to-define, deterministic
sequence of permutations o = (oy),-, for which the
twisted hypercube has asymptotically optimal diameter.
What can be said about the expansion, asymmetry, and
eigenvalues of this construction? If these properties differ
from those of a random twisted hypercube, find a deter-
ministic construction for which they agree.

2. Theorem 1 shows that the random duplicube has diameter
"_(1+ o(1)).Is it true that for all random twisted cubes

log, n

the same result holds with high probability??

3. Given a sequence of permutations o = (o;),,, is there a
good local routing scheme for the duplicube G,(c) that
gives a better approximation than Proposition 1 to the
shortest path between two vertices?

4. The twisted-hypercube model can be readily extended
to d-dimensional hypergraphs: at every step, create d
instances of the current hypergraph, and connect the
vertices of the d instances by a perfect matching of
d-hyperedges. What can be said about the resultant hyper-
graph?

5. The graph G,, is, in general, not a good edge-expander. One
reason for this are cuts across the matchings o, for large k.
For example, the two instances of G,_; in G, each have
2"~1 vertices, and are connected by 2"! edges, giving an
isoperimetric ratio of 1. This is not so large for a graph
whose degree is n. What can we say about the geometric
properties of a set with small edge boundary? For Q,, it is
known that sets that have small edge expansion are similar
to subcubes [21]. Do non-expanding sets in G, have similar
structure?

6. We show that with high probability G, is a good vertex
expander. However, to our knowledge there is no effi-
cient way to verify that a given graph is a vertex expander:
assuming the small-set-expansion hypothesis, it is hard
to even approximate the vertex expansion of a graph in
polynomial time [22]. Is it possible to exploit the struc-
ture of the twisted hypercube to verify this property in time

poly(2")?

7. By using the same coupon-collector argument as for the
hypercube, the mixing time of the lazy simple random

10.

11.

12.

walk of any twisted hypercube is O(nlogn). On the other
hand, if an nth generation edge is never refreshed, then the
random walk stays constrained to one half of the graph,
and so the mixing time must also be w(n). What is the
mixing time for the lazy simple random walk on G,? Is it
o(nlog n) with high probability?

. Is it possible to remove edges from G, and obtain a

(near) constant-degree graph, while maintaining good ver-
tex expansion? Is it possible to approach the vertex expan-
sion of a constant-degree random regular graph in this
way?

. Replace every vertex of Q,, by an n-cycle, obtaining a graph

CCC,; this is known as the cube-connected-cycle [23].
As n — oo, it is well known that CCC, converges in the
Benjamini-Schramm sense [24] to the lamplighter graph
7, Z. We conjecture that the Benjamini-Schramm limit
of the twisted cube-connected-cycle, obtained by replac-
ing every vertex of G, by an n-cycle, is the 3-regular tree:
as n — oo, a vertex chosen at random from this graph cor-
responds to a high-generation edge with high probability,
and these should not be part of many small cycles.

Although Theorem 5 shows that random permutations
lead to an asymmetric graph, in general different choices
of o can lead to different automorphism groups. Can
we relate properties of the automorphism group of the
duplicube G, (o) with properties of o? In particular, can we
find large families of ¢ so that G,(0) is vertex-transitive?
As a non-trivial example, consider the permutations o), =
Id for k # 2. There are two essentially different possi-
bilities for o,: the first is o, = Id, leading to the hyper-
cube Q,. The second is the matching between a pair of
4-cycles which sends an edge to a non-edge. This leads to
a vertex-transitive graph that is not isomorphic to Q,,. Can
we find a (perhaps random) vertex-transitive G, (c) with
improved geometric properties over the hypercube?

The argument in Theorem 3 only uses the edges of the
last three generations of the twisted hypercube. On the
other hand, such an argument could not hold while using
only the edges of the last two generations, since the graph
induced by the edges of the last two generations is a
union of cycles. In fact, we believe that when o; = Id
for i < n — 2, the resultant graph does not have constant
vertex-expansion with high probability. In light of this, it
is natural to ask: for an integer k > 0, what are the prop-
erties of the twisted hypercube graph, where o; = Id for
i < n —k,and o; is uniformly random for i > n — k? What
happens when k grows slowly to infinity with n? This is
a natural interpolation between the hypercube Q,, and the
completely random twisted hypercube G,,.

The hypercube Q, induces a partial order on its vertices in
anatural way: x <y if x; < y; for every i. This natural par-
tial order has applications (see e.g., [25, Chapter 6]). The
twisted hypercube induces a similar partial order induc-
tively: given the order on G,_,, extend it to G, by having
(x,0) < (0,_1(x),1) for all x € V,,_;, and by keeping the
original order within G, _; in both instances. It can be ver-
ified that this is indeed a partial order. What are the prop-
erties of this partial order as a function of 6? Are there any
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combinatorial applications to the partial order produced by
the twisted hypercube?

13. The hypercube Q, is bipartite, and hence always
2-colorable. On the other hand, the chromatic num-
ber y of random d-regular graphs (of constant degree d)
is known to take only one of two possible values with
high probability, and satisfies 2y log y ~ d [26]. What is
the chromatic number of G,? It can be shown that it is
at least 3 with high probability, and so G, is in general
not bipartite (to see this, consider the case where G, is
bipartite, and look at the probability that o, induces an
odd cyclein G, ;).

4 | Proofs

4.1 | Notation and Definitions

All logarithms are in base e unless otherwise noted. For two
sequences f(n), g(n), we write f = o(g) iflim | f(n)|/|g(n)| — 0.
For natural numbers n, k € N, we set N = 2" and K = 2¥. The set
of numbers 1, ..., n is denoted by [n].

We denote the vertex set of G, by V,, :={0,1}". For two sets
S1,S, €V, write S; ~ S, if there are x € S; and y € S, with
{x,y} € E(G,), and S; ~ S, otherwise. We say that the edges
between two disjoint sets of vertices A,B CV, constitute a
matching if every vertex in A U B is adjacent to at most one such
edge. The set of neighbors of a vertex x € V,, are denoted by
N(x), and the set of neighbors of a set of vertices S C V, by
N(S) = U egN(x).

Let x,y € V,,. The generation number of x and y, denoted by
y(x,¥), is defined as

y(x,y) :=n—max{l <s < nlx; = y;Vi > s}

that is, n minus the longest common suffix of x and y. If {x, y} €
E(G,) is an edge, then that edge is due to the permutation
Oy (xy)-1- Supposing that y(x, y) = k, we then say that x and y are
k-neighbors. Every vertex x has exactly one k-neighbor for every
k € [n]; we denote it by N, (x).

the ball of radius r around v, and by

B (v,r) :={z € V,|Ja path P of at most r edges from
v to z s.t.y(x,y) < kV{x, y} € E(P)}

the r-neighborhood of v obtained by paths which only use edges
of generations smaller than k.

For 1 < s < n, the graph G, contains multiple disjoint instances
of graphs G,. Indeed, let z € {0, 1}"~%, and define

VZi={(,2) €V,|y €{0,1}} “)

Then the induced graph on V% is an instance of G, (when the con-
struction is deterministic, or in the case of the duplicube, these
instances are all isomorphic). The sets VZ are disjoint for differ-
ent z, and partition the vertices of G,. For a vertex x € V,, let
I(x) be the set VZ which contains x; it is the set of all vertices in
G, which share a suffix with x of size at least n — s, that s,

L(x) :={y € V,ly(x,y) < s}

Note that |[I(x)| = 2°. See Figure 3 for a visual aid. Finally, for
aset S CV,, we denote by 9, S the boundary due to the first k
generations of edges, that is,

0;S ={x ¢ S|3y € S,{x,y} € E(G,), y(x,y) < k}

We often write dS instead of d,.S for brevity.

4.2 | The Diameter
The proof of Theorem 1 resembles the proof of Dudek et al. [4]
for the independent twisted hypercube.

Proof of Theorem 1. The main idea of the proof is to show
that with high probability, for every v € V,,, the ball around v

of radius —=

O( -2~ ) contains > n2"/? vertices in the copy

2log, n log,n

of G,_, which contains v. If this holds, then the diameter is
n n . 0 1 n—1 g¢n-1

g ogn ) for every v € V),u € V,, denote by S, S”

the balls around v, u in G,_;. The probability that $*~*, S"~! are

connected by the last permutation is

For an integer r > 0 and vertex v € V,,, denote by onlpor/2 S
non/? n2am=D/2\" 5
l-———21- |1 >1—e™"
2" -
B(v,r) :={z € V,|3 a path of at most r edges from v to z} <n2"/2 ) 2
G,,, Gn Gn
Gn1 Gr1 Gh2 Gh2 Gn3 Gh3 Gh-3 Gn-3
Gn_2 Gn_2 Gno3 Gn_3 Gn_3 Gn3
L. I. J,‘.
In1(x) In—2(7) In—3(w)
FIGURE 3 | Each large rectangle represents the same graph G,,, with the same vertex x highlighted. The partition into instances of G, is shown for
s € {n — 1,n — 2,n — 3} while highlighting I, (x).
7 0f19
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By a union bound, with high probability every two such balls are

connected, so we can find a path of length —— + O( #) from
log, n logyn

v to u. If v, u are in the same V;'l then we use the path from v to
0,_1(u) and go from o,_;(u) to u via one additional edge.

Hence we shall show that for any fixed v € V, the ball of radius

n n : n/2 ; 5
g + O( 1og§n> contains > n2"/“ vertices in the copy of G,,_;

which contains v, with probability 1 — 0(n27*"). Beginning with
an empty graph on V = {0, 1}", we add edges by revealing the val-
ues of the permutations o, one-by-one, as follows. Set g = 0.9n.

1. Initiate a queue Q and insert v € Q.

2. While Q # ¢:

Take out the firstu € Qand foreveryi =q,q+1,...,n—2:

a. Letu = (uy,b,u,)sothatu, € {0,1}.1fb = 0,set 7 = o;,
and otherwise set 7 = ai‘l; then, if 7 (u,) wasn’t previ-
ously revealed, reveal it. This is called the revealing step.

b. For every u' €{0,1}"'71, we add all edges
{(uy, b, u), ((u;), 1 — b, u’)}.

c. For every vertex w that was connected to u and was not
previously added to Q, we add w € Q.

3. After Q is empty reveal all other edges in an arbitrary order.

We note that when revealing an entry o;(u) or crl.‘l(u), we in fact
add 2"'~ edges to G, that come from the different copies of the
ith generation duplicube. We say that a vertex u is discovered at
step k, if one of the edges revealed in the kth step is the first edge
that is adjacent to u (where k refers to the number of times we
have done step (2a)). Let G’ be the subgraph of G,, whose edges
are only the edges of generations i > q. Let S; be the set of ver-
tices u € V so that dg (v, u) = j and so that if u was discovered
at step k, then no vertex with the same 0.9n-prefix of u was dis-
covered previously. Finally, fix r,, to be the smallest integer so that
n'o > 2% and let r, be the smallest integer so that (1n,/1000)" >

1000n2"/2, Clearly r, = O'glnn +0M)andr, = —— + O( n

lo 2log, n login )

We will analyze the growth of F(j) = ‘S j) separately for j <r,
and r, < j < ry starting with j < r,. We say that the kth step is
bad ifu = (u,, b, u,) was the vertex taken out of Q, the value x =
a;—'l(ul) was revealed, and there exists a vertex w whose prefix is x
that was discovered in a previous step. At the first phase, we will
show that there are very few bad steps. First we calculate a bound
on the number of steps m while the distance between v and the
vertex that was taken out of the queue in the step is of distance
j < ry. Namely,

m<(n-— q)Z(n —q—1) <2n(0.1n)0 < 201"
=)

Moreover, for the Zth step for £ < m, the probability that ¢ is a
bad step is at most

‘f(m—q)+1
Pe = Z55, 1 _
2! 1-¢(n—q)

where the numerator is the number of previously discovered ver-
tices (which upper bounds the number of prefixes discovered),
and the denominator is the number of choices left. We note that

the probability of choosing a given prefix is not uniform, but if a
given prefix has already been chosen it only decreases its proba-
bility to be chosen again. This is at most

0.11n
—0.78n

b, < 20899n =

As this bound is uniform for all # and the same bound holds true
for the conditional probability subject to any way of revealing the
first (# — 1) edges, the probability p of having c bad steps in the
first phase is at most

p< (m )2—0.78nc < 90.11ne—078nc _ 5=0.67cn
<\, <

Taking ¢ = 4 we get that this probability is 0(27>"). Let k be a
step where the vertex taken out of Q is in S;_;. If this kth step
is not bad, then S | grows by 1 due to a new vertex discovered,
and if there is a bad edge then it reduces the size by at most 2
(since there were at most two prefixes involved in choosing the
bad step). Therefore,

F(1) > n—q—2c > (n/1000)
F(2) > (F(1) — 2¢)(n — q) > 0.1n(0.001n — 8) > (1/1000)>

F(rg) 2 (F(ro —1) —2c)(n—q)
> ((n/1000)°~" - 8)0.1n > (n/1000)"

During the second phase, we don’t expect there to be no bad
steps, but as the set S; is already quite large, we expect that S;
will still grow by an ﬁ—facton Indeed, conditioned on F(j) >
(n/1000)/ > 209057 we show that F(j + 1) > 105 F(J) with prob-
ability > 1 —0(27*"). When all these events occur, we can con-
clude that F(r,) > n2"/? with probability 1 — o(n27"). Fix j > r,
and let X be a random variable counting the number of bad steps
exposed from the vertices of S;. The number of new vertices we
discovered up to this step is at most n/ (and this is also a bound for
the number of prefixes discovered). For every step in this phase,
the probability that it is bad is at most

’ n/

p = 20.9n —ni

" We can bound X

and as n/ <"t <2, this is at most 5.

from above with a (F @3 %)-binomially distributed random

variable. Thus E[X] < F(j) n— o(F(j)). Furthermore, by Cher-

20.(m -
noff’s bound on binomial variables

P[X > F(j)/10000] < e™¥FU) < o(272")
‘When this event doesn’t occur, then

F(j+1) > (F(j) — 2X)(n — q) > 0.9998

n
“F(j)-0.1n > F(j)——
()-01n> (1)1000

as required.
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Remark. As mentioned before, the proof of Theorem 1 is an
adaptation of the proof in Dudek et al. [4] for the small diam-
eter of the independent twisted hypercube. The main change
is that in this proof, revealing the value of a permutation
o, (u,) (for u; € {0,1}*) reveals many edges between (u;,0,u,)
to (o (uy), 1, u,). Hence, instead of accounting for the number of
vertices already discovered, we account for the number of prefixes
already discovered.

Proof of Theorem 2. The proof is by induction. For the base
cases, let y > 0 to be chosen later, and let k* = y lognloglogn.
by Proposition 1, for all n < k* we have

n
loglogn
n
loglogn

D(G,) < n <loglogk*

< Clogloglogn

and so (3) holds with probability 1 for C large enough (depending
ony).

For the induction step, let n > k*. By increasing y, we may
assume that » is larger than any given global constant; this will
ensure that inequalities which hold only when n is large enough
indeed hold. For an integer k > 1 and z € {0,1}", let G} be the
induced graph on I;(z); this is an instance of G,. Denote by E

the event that D(G}) < Cllogloglogk o4 assume that EZ holds
loglogk k

for every k=1, ...,n—1 and every z € {0,1}". Let x,y € V,,.

If x, = y,,, that is, the two vertices are in the same half of the

graph G, then by the induction hypothesis, D(G*_,) < C(n —

1) logloglog(n—1)

D) and we certainly have dg; (x,y) < Cplogloglogn

loglogn

For the case x, = 1 — y,,, that is, the two vertices are in opposite
sides of the graph G,, we’ll show that for a not-too-large radius,
the spheres around x and y contain enough vertices, so that with
high probability there is an edge between them induced by o,,_;.

Given a vertex v € V,, and any integers t > s > 0, let M(v, s,t) =
{(N(v),k)|s < k <t} be the set of neighbors of v whose edge to
v was added at times s < k < ¢, along with their generation num-
ber. Note that for (z,k) € M(v,s,t), the set I;(z) is contained
in I,,,(v), and that since each k-neighbor is added at a differ-
ent generation, the sets {I;(2)}, k)em(v.s.) ar€ all mutually disjoint
(see Figure 4). We can therefore iteratively apply the function
M(v, s, t) to obtain a large set of disjoint vertices.

More formally, let s, # > 0be integers, and consider asubset S ,(x)
of the sphere of radius # around x, defined as follows:

Sp(x) ={(x,n — 1)}

Si(x) = M(z,s,t —1)
(z,H)eS;_,(x)

By the remark above, the sets {Is(z)}(z,t)es,(x) are all disjoint,
and so the set U(x) := U, yes, (x;(2) has cardinality 2°|S,(x)|-
Define S,(y) and U(y) similarly. Write the values of s and ¢ as
s = % — %a(n) and ¢ = tﬁ’ for some functions a, 8 : N — N to
be chosen later. Assuming that there is a vertex u € U(x) which
is connected to v € U(y), the distance between x and y can be
bounded as follows:

Ii(Ne(v))

Ni—1(v)

/

7

ON;(v)

4 \ \
I(v) I (Ny(v)) Ii—1(Ni—1(v))

FIGURE4 | The entire rectangle represents the graph I, ,(v). Each
neighbor N, (v) is contained in I} (N (v)), and these I; (N, (v)) are all dis-
joint.

AN

T
|

FIGURES5 | IfU(x)isconnected to U(y), we have a path from x to y.
The red dotted lines represent an optimal path within G,.

dGn(x,y)32£+D(G‘;) +D(GY) +1 (5)
where # bounds the distance to go from x to a vertex z in S,(x),
D (G;‘) bounds the distance from z to u, and 1 is the distance from

u to v (see Figure 5).

We now analyze D(GY) + D(G?). By choice of s, we have

noo1
c—> = : %W
loglogs log 108(% - %cx(n))
(assume 0((")5%") C}’l——O((}’l)
- 1oglog<§)
n(l—w)
n
=C
1
loglogn + log(1 - 124
<C g4 " logl 21"4
hS _ 2log oglognq . __298%
loglogn logn 8081 lognloglogn

SCL 1_M 1+L
loglogn n lognloglogn

cc—t (1406
loglogn lognloglogn n
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Since we assume that EY and EY hold, that is, that

D(Gu) (Gu) <Cs logloglog s < Cslogloglogn
S loglogs loglogs

, we have

D(G) +D(6)
loglogl
,loglog ogn<1+ 6 _@)

loglogn lognloglogn n
Choosing a(n) = 17” — then gives
D(6") +D(c?) < cnlBlo8logn () 1
§ 4= loglogn logn

Choosing also  B(n) = log2lognloglogn so that ¢ =

18
fog2 m by (5) we have that

36 n
dg X, )) f ————
6,(%:7) log 2 lognloglogn

Cnlogloglogn 1 1 +1
loglogn logn

loglog]
(for C large enough) < cn8 087081

loglogn
All that remains is to bound the probability of the event
{U(x) ~U(y)Vx,y € V,} from below. We do this using a union
bound. The number of vertices in S,(x) can readily be seen
to be

1

REDID I R

||[\4I
||M|
"MW

PR

|| M“I

Denoting U = |U(x)| = |U(»)|, the probability that the sets U(x)
and U(y) are disconnected at the nth step is therefore bounded
from above by

PlUx) » U]

(%)

(zn—l _ U)(zn—l _

U-1)---(2"'-2U0+1)
272 1) (27 U+ 1)

(AM-GM inequality)

U
n—-1 _ 3U-1
(-2

(- -u)
_(,_1u-1)\’
- 22Vl 1 —-U

U-1\Y
S<1_ 2" )

<exp(-U?/2"+U/2")

<

nlogﬁ(n)
< exp( ) —a(n)+log2 —== +0(1)>

Plugging in our choice of a(n) and §(n), we get

o nlo c;gsz logn loglogn)

—@Hog logZ +o(1)
P[U(x) ~» U(y)] < exp| -2 lognloglogn
This is the number of decreasing positive integer sequences of <ex ( 2—%+%(1+0(1))>
length #, whose maximum entry is bounded by n — s — 1. Since = &P
every choice of # integers can be ordered in a unique fashion, _ eXp( 2I0gn(1+o(1))>
we have
n—s—1 Sexp(—2ﬁ>
st =("7,7")
w1 1 for n large enough. As there are no more than 2% = 21082
Y + Ea(n) - choices for the pairs x, y, this gives
n/Bn) )
P[Ax,y s.t. U(x) » U <ex <_2m + 2nlo 2)
"4 la(m -1 n/B(n) [3x,y (x) » U()] < exp : g
n/B(n) < exp( 27 )
B(H) n/p(n)
> <_) for n large enough. Let Ey = U, 13- Ef. We have thus shown
2 that .,
PIE By, s By ] 2 1 = exp(—2707 )
= exp((log,@(n) log2)—— > EnlEy n-i] &P )
B(n)
(Assumen, large so that log 8(n) > 21og 2) Since there are 2" instances of G, in G,, and recalling
that P[E,] =1 for k < k*, by repeated conditioning we thus
nlog B(n) h
> exp| ————— ave
26(n) )
k
, , PIE,]21- Y exp(—zm)z"—k
The collection U(X) = U, yes, x1s(2) has size at least Pl
z K
log2 nlogp(n) > — — logk
UGO| = 2°[8,(x)] 2 257255750 =1 k:zk* exp( 27 + nlog2)
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By choosing y large enough, for k > k* we have

k S k*  ylognloglogn
4logk ~ 4logk* ~ 4log(y lognloglogn)
>2log, n
and so .
P[E,]>1- ) e™"
ke=k*
4.3 | Vertex Expansion

The proof of Theorem 3 relies on the observation thatasetS C V,,
sampled uniformly at random will be an a-vertex expander with
high probability (for some small constant a > 0), since a con-
stant fraction of the edges of o,,_; will go from S to its comple-
ment. This alone is not enough, since there are always sets of the
form § = S, U S,, where S, C V0 (recall (4) for the definition of
VZ)and S; = {N,(x)|x € Sy}. To overcome this, we look at edges
coming from the last three permutations, o,_;,0,_,,0,_3, and
bound the number of sets S C V,, so that the boundary that comes
from o,_,-edges isn’t large enough. Afterwards we apply a union
bound over these sets to bound the probability that they have a
small o,,_,- and o,,_,-boundary.

More precisely, sets which have a small contribution to their
boundary at the kth generation are defined as follows.

Definition 4. (Badly-matched sets). Let x € {0, 1}*. Let
A C V), BCV,. Wesay that A, B are (k, a)-badly-matched if

2|x € A|N,(x) € B|
|Al + |B]

>(1-a)

Remark8. 1If A,B are badly-matched, then ||A|—|B]|| <
a(|A| + |B|). This is because if, say, |A| > |B| + a(|A| + |B|) then
even when all edges from B go into A there will still be a(]A| +
|B|) edges between A and Vlt \ B. This implies that

2|x € AIN,(x) € B| < 2|B| < (1 — a)(|A| + |B])

If A, B are not badly-matched, then |3, (A U B)| > a|A U B, since
|0,(AUB)| = |A| + |B| — 2|x € AIN,(x) € B|, so the set AUB
has a-expansion. If A, B are (k, a)-badly-matched, then they are
also (k, o’)-badly-matched for every a’ > a.

As alluded to above, we start by bounding the possible number
of badly-matched sets in generation n — 2, for any permutation
0,_s; this is the content of Proposition 4. We then bound the
probability that said badly-matched sets are also badly-matched
in generations n — 1 and n; this is the content of Proposition 5.
The last claim we need for the proof is that sets of size O(n) have
non-trivial vertex expansion regardless of the permutation. The
proofs of all assertions are found at the end of the section.

Recall that for an integer k >0, we set K := 2%, In addi-
tion, denote by H(x) = —xlogx — (1 — x)log(1 — x) the binary
entropy function.

Proposition 4. There exists a function 6 : R — R with
lim,_, 8(x) = 0, that depends on 1), such that the following holds.
Let 0<a< % and let k,j > 0 be integers so that j <nK. For
any permutation o,_,, the number of (k,a)-badly-matched sets
AC V) and BCV| such that (1— oc)% <|Al, Bl <1+ oc)% is

smaller than )
503 K32 5 AH8@)H(E)+j8(@)

Proposition 5. There exists a function § : R - R with
lim,_,, 8(x) = 0 that depends on 1, such that the following holds.
Let 0<a < %, and let k, j > 0 be integers so that j <nK. Let
A CV?and B C V] be such that (1 — @)L < |A|,|B| < (1 +a)?.
If the permutations ¢ are uniformly random, then

P[A, B are (k, a)-badly-matched] < 3qK22 3 1-0@H()+6@)
(6)

Claim 1. Letc > 3.Then there is some n, € N so that for every
n > n, and every S C V,, so that |S| < cn,

1
19512 151

Proof of Theorem 3. Fixn > 0 and let & € (0,1/2] be chosen
later. We define F,, to be the event that G, is not an (7, &t)-vertex
expander. We will show that

limP[F,] =0
n—o0
We will bound
nN
P[F,] < ) P[3S s.t. |S| = j and |3S] < a|S[] 7
Jj=0

By Claim 1, it is enough to start this sum with j = cn, as long as
a< clz The constant c will be determined at the end of the proof.
Thus the right-hand side of (7) is equal to

nN
D P[3S s.t. S| = j and [3S]| < «|S]]

Jj=cn

Let S €V, with |S| = j. For x € {0,1}*, denote S, = SN V*. If
thesets S, S; are not (n, «)-badly-matched, then by Remark 8, the
edges from o,_; are enough to guarantee a large boundary, that
is, the set S has a-expansion. This happens in particular when
[IS1] = |So|| = «IS|. We may thus restrict ourselves to S that sat-
isfy [S;| > %(1 —a)|S|. Thus

(l—oc)% < S $(1+oc)% (8)

for every ie€{0,1}. Similarly, if S;,S; are not (n-—
1, 3a)-badly-matched for any i €{0,1}, then [3,_,(S;y US;)| >
3als;| = %oc(l —a)|S|, which is larger than «|S| for a small
enough. This happens in particular when ||S;;| — |S;o|| = 3«|S;|-
We may thus further restrict ourselves to S that satisfy
|Sij| > %(1 — 3a)|S;|, which means that

(1-3a)(1 —a)i < )s,.j| <a +3a)(1+a)£ )

for every i, j € {0,1}.
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Finally, if there is are sets S; 00 Sij1 for some i, j € {0, 1} that are
not (n — 2, 5a)-badly-matched, then for a small enough we have
8,2 (Sijo U Sij1)| > a|S|, and we can assume that

(1= 50)(1 = 3a)(1 — oc)é < sy] = @+ s+ 300 + oc)%
In particular, this happens when
(1- 10a)1 < (s| <1+ 10a)1
g = MUl = 8

Thus, to bound P[3S s.t. |S| = j and |8S]| < «|S|], we only need
to consider sets S whose all four pairs S;jy, S;;; are (n —2,10a)
badly-matched; any other set has a-expansion by Remark 8. By
Proposition 4, with k = n — 2, for each i, j € {0,1} there are at

N AW
most 5000 N32 ¥ U0 () 41800 oy o ; such that S0, 5,

are (n — 2, 10a)-badly-matched, so there are at most

j 4
< 500003 N32§(1+5(10cx))H( L )+ 15(10a)>

N (1+5(10a))H<

— 5000%q!12N1222 )+4J5(100!)

A
N
possible sets to consider. Thus

P[3S s.t. |S| = j and |3S| < «|S]]

< 50004 12N122 3 (1+0000H (2 )+418000)

. mSax[P’[S does not have a-expansion] (10)

where S is restricted as above. To bound the probability, observe
that for any fixed S C V,,,

P[S does not have a-expansion]

< P[S,, S, are (n, a)-badly-matched

and Sy, Sy; are (n — 1, 3a)-badly-matched]
As the event {S,, S, are badly-matched} depends only on the per-
mutation o,_; and {S,,, S;; are badly-matched} depends only on
the permutation o,_,, these two events are independent. By the
relations (8) and (9), we can apply Proposition 5, yielding
P[S does not have a-expansion|

< P[S,, S; are not (n, ar)-badly-matched]
- P[Sgg, So; are not (n — 1, 3a)-badly-matched]

< 3Ny T O-S@H( Jr6@i 5 N 2)= T -8GH( )+5Ga

For simplicity, in the next inequalities we unify all the expressions
of the form §(ca) appearing in the exponents to §(a) (that goes to
0 as a — 0). Using (10), we get that,

P[3S s.t. |S| = j and [8S] < «|S]]
< 9 X 5000*a 4 N1625@) (2%‘1—5@»)‘”(%)

Note that we abused notation. Plugging this back in (7) we get

e (4] i (5)
PF,] <9 5000a4N10 3} 260 (25072 (1)

Jj=cn

We take a so that §(a) < % and get that 25(1-8(@) > 2. In addi-
tion, we use the well known inequality H(x) > 4x(1 — x) to
bound the right-hand side of (11) from above by

N :
9% 5000*e4N16 Y 20@i3 ()

Jj=cn

N
= 9 % 5000*q}*N1® Z 5~ 1-n-26(a))
j=cn
Finally, by taking « so that 1 — 7 —25(a) > 1%” and taking c so

cn/2 1
that 2”2 (37 > N6 = 216" we get that the sum on the right-hand
side is at most

9 % 50004 N2~ F () Y 2it

i=¢
J=5n

o .
<9x5000%a™ Y 27

j=%n
9 — (1=
= —— .5000*q275 47
1 —p—(-m/4
Thus,
9 4 _14~—2(1-7)
P[Fn] < w - 5000%a 27 8

This tends to 0 as n — oo.

Proof of Proposition 4. 'We can count the subsets A C V?, B C
Vv, by first choosing a set of edges of the kth matching that
are connected to A U B. For each chosen edge {x, y} where x €
V,?,y € Vli we decide whether x € A,y € B,or x € A,y &€ B or
Xx ¢ A,y € B. For sets that are (k, a)-badly matched, our count
yields the following.

1. The number of edges that are adjacent to AU B is at least
a- oc)% (the lower bound is achieved when |A| = |B| =
1- oc)% and N, (A) = B). It is at most (1 + oc)% +2a(1 +
oc)% (since there could be at most (1 + oc)é that cross from
A to B, and no more than 2a(1 + a)% additional edges that
are adjacent to only one of A, B, since A, B are supposed
to be (k, a)-badly matched). Since (1 + a)$ +2a(1 + @)% <
a1+ 40()% for a < % using the relation Z < 2nHE/M) the
number of possible choices for edges adjacent to AU B is
at most

(+4a)!
2

£=(1-a)l

S

(1+4a)§'
LY (C)
S Z 22 K/2

£=(1-a)L

(+4a)!

IA
[\S)
|
—
sl
~—
¥
NE
—
T
—
Z|~
S
N
T
—
el
NN
~—
~
—~
—
NS
~

#=(1-a)L

; X ;

By Lagrange’s mean-value theorem, E(H (K_/2> —
jl2 _ j ’ _ j £

H<_I(/2>) = <Izp— E)H (5) - —<f— E)logﬁ for some
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£ between - and 22. Thus we can write £ = ¢/ 22 for

K/2 K/2" K/2
some (1 —a) < ¢’ < (1 + 4a), and we have

'(f—%)ﬂ%@

We now bound the logarithms. Since & = ¢’ é <c'n, we
have that —log(1 — &) < —log(1 — ¢’n); the quantity on the
right-hand side is just a constant (provided that « is small
enough so that (1 + 4a)n < 1). For | log &|, we have

J
1 1L
og<c >

=4aj|logc’| +8 oc] log—

<4aj|H'(&)|

=4aj|logé —log(1-&)| (13)

daj|logé| = daj §4ocj|logc’|+4ocj10gli<

< 4aj|logc’| +8§ocH<%>

Thus, there exists a constant ¢ > 0 (that depends on 7)

such that
’(f—%)ﬂ%@

for some ¢ > 0 that depends on 7. Thus the left-hand side in
(12) is at most

<caj +ca§H<Ii<>

5aK2(1+crx)§H(%)+czxj (14)

2. Then we choose out of the edges adjacent to AU B the
edges that touch A only, and the edges that touch B only.
As A, B are (k, a)-badly matched, at least a (1 — o )-fraction
of the edges must touch both A and B, so no more than
an a-fraction of the edges are available to touch only one
of the sets. Assuming that o < 1/4, the number of possi-
bilities (for a given edge set chosen in the previous step) is

at most
1+4a) L ; 1+4a)d ;
o §)Z<(1 +4a) >“< §)2<(1 +4a)§>
£,=0 i £5=0 2
It
(1 +4a)= )
< (aj)z 2_ < a2K222]H(oc) (15)

a(l +4a)l

Multiplying (14) and (15), and setting §(cx) = 2H (@) + ca, the
number of badly-matched pairs is bounded by

503K 32 5 AHSE@H(E+8(@)
m]

Proof of Proposition 5. To bound the probability in (6), we go
over all possible subsets A’ C A and sum the probability that the
set of outgoing edges from A’ is some set B’ C B. Since A and

B both have sizes in the interval [(1 — a)%, a+ oc)%] , the size of

A’, B’ should be at least (1 — a)(1 — oc)% >(1- 20()%. The proba-
bility is bounded by

(1+oc)£

DI

rcAB!
£=(1—20)4 A'SAB'CB
( )2 |A"|=|B"|=¢

PN, (4") = B'|

1+l i

-y ¥4

K
j arcapcs | 2
/=1-2a); |4"|=IB! |=¢ (f>

(1+0¢)% o
<Y 3 s

j ’ /
f=(1-2a)l A'CAB'CB
( )z |A’|=|B! |=¢

assuming a<i (1+a)l i
(omne ) 90 [ @408 Vit
- . Il 2
r=(1-20)1 (1- 2“)5

(1+o¢)’
<22(1+°‘)jH(l Za)K Z 2- zH(K/z) (16)
£=(1— 2a)i

By Lagrange’s mean-value theorem, we write

2(5m) = 3(2) 5 (+(s)

Jj/2 K (] AT
2H(Z -2 )H
(57)) = 3(%) + (e-3)o
J/2 .
forsomeé’between %5 and X2 Aslf |5a],webound(f—

é)H’(g) by aj|H'(§)]. Write § = ¢/ £ forsome 1 —2a < ¢’ <1+
2a. Then (similar to (13) in the proof of the previous proposition)

'(z,” - %)H’({)' <caj +ca§H<é>

for some constant ¢ > 0 which only depends on 7. Thus (16) is
at most

(1+o¢)’
Z 2—*(1 S(aNH(L)+6(a))

J
£=(1- 20{)2

22(1+a)§H( Lo )

< 3qR22 5 A-8@)H()+8(@)]

where §(a) = max{(l +oc)H(l 2“) coc} u]

Proof of Claim 1.  For every vertex v € V,, the second neigh-
borhood of v, A,(v) :={u € V,|d(v,u) = 2}, is of size at least

(;’) This can be seen by induction. The base case for n =
2 is clear. Assume without loss of generality that v € V° and
partition A4,(v) = (A,(L)NV°) U (A,(v) N V!). Note that in the
instance of G,_, whose vertex set is V, the second neigh-
borhood of v is 4,_;(v) = A,(L)N VS. Thus, by the induction
hypothesis, |A,() N VY| > <”;1 ) In addition, A, (v) NV} con-
tains the neighborhood of N ,(v) inside V}Q, which is of size n — 1.
Summing up sizes we get | A, (v)| > (";l ) + ("1_1 ) = (:) Note
that for the hypercube Q, we have strict equality.

Now fix S C V,, of size at most cn and letv € S. Ifa %—fraction of
the neighborhood of v is not in S then [4S| > %n > C%ISI. Other-
wise, at least (1 — %)-fraction of v’s neighbors are inside S. Denote
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these vertices as T := N(v) N S. Thus |8S| > |N(T)| — |S]|. Since
the neighborhood of v is A, (v) U {v}, the neighborhood of T is of
size at least

n 1 1
A (V)| =n|N@ Sz( )——nzz—n2
|A, ()| = nIN@)\ S| 5) 3 =
Hence |3S| > %nz —cn> ClZ|S| for a large enough n. ]

4.4 | Eigenvalues
Proof of Proposition 3.  Since G, is n-regular, its largest eigen-
value 4, is n, and its corresponding eigenvector f,, : {0,1}" > R
satisfies f,(x) = 1. To show that 1, > n —2,let g, : {0,1}" > R
be given by

g,(0) = (=1

that is, g,, takes value 1 on the first instance of G,_, in G,,, and —1
on the second instance. Then A, g, = (n — 2)g,,.

The proof that 4, < n — 2 is by induction. The claim clearly holds
for n = 1, where G, is just an edge. Assume it holds for all k <
n—1, and let h : {0,1}* - R be an eigenvector of A, that is
orthogonal to both f, and g,,. If we write

ho(xq, ...
h(x) = (%,
hi(xq, ...
for some functions &; : {0,1}""! — R, then both h, and h, are
orthogonal to f,_;, and by the induction hypothesis, we have

hlA, b < (n=3)||h [I5- Using the recursive matrix representa-
tion (1) of the twisted hypercube graph, we can write

Al p h
T = (T 1T n—1 0
h Anh (ho hl )< PT Ai_l) <h1)

where P is the 2" x 2"! permutation matrix representing
0,1, and A% and A} _, are the adjacency matrices of the two
instances of G,_;. Explicitly opening the products, we get

AY_ hy+ Ph
WY |
PThy+ Al ik,

’xn—l) Xp = 0

Xp) X, =1

= hyAY_ hy+hiPhy +h[P"hy+h[Al_ h
< (n=3)||hof + 2k Phy + (n = 3)|| |3
= (n = 3)|ll3 + 2hgPhy < (n = 3)IAII3 + 2| ko |, ]| ||

< (=3I + [|ho|; + 11|15 = (2 = 2)lIR3
O

Proofof Lemma 1. 1In the following, C is a constant depending
on k whose value may change from instance to instance. A set of
edges F C E(G,) is said to be “finalized at generation m” if for
every edge {x,y} € F, y(x,y) < m, and there exists at least one
edge such that y(x,y) = m.Foragivenu € V,,letw = N, (u) be
its m-neighbor, and let E, (u) be event that there exists a cycle
of length no more than k which contains the edge {u, w} and is
finalized at generation m.

We will now bound the probability of the event E,,(u). Since
I,_,(u) #I,_;(w), that is, u and w are found on different copies
of V,,_,, in order for a cycle of length < k to exist, there must also
be an m-generation edge going from I,,_,(w) back to B_,,(u, k);
otherwise, any path starting with the edge {u, w} cannot reach u
again. In fact, this edge must be reachable from w in at most k
steps. Let W be the set of all z € I,,_;(w) such that there exists a
simple path P = (x,, ..., x,) with the following properties:

1. Pisashortest path from w to z, and t < k.
2. y(xpx;4y) Smforalli=1,...,t— 1.
3. y(x,_y,x,) <m.

4. P does not contain the edge {u, w}.

In other words, W is the set of all vertices in I,,,_;(w) which can
be reached from w by a path of at most k edges of generation at
most m, and which can still send out an m-generation edge with-
out backtracking. If there are no edges from W to B_,,(u, k), then
there is no cycle of length < k which contains {u, w} (see Figure 6
for a graphical depiction).

Given z € W, the probability that N,,(z) € B_,,(u, k) depends
only on the m-generation edges used in the path P. Since o,,_,
is uniform, we can bound this probability by

|B<m(u’ k)| - mk+1

P[N,.(2) € B, (u,k)|z € W] < T B

for some C > 0 which depends on k (we subtract k in the denom-
inator, since in the worst case the path from w to z has at most k
m-generation edges from I,,_,(w) to I,,_,(u) \ B_,,(u, k)). Since
there are at most m*+! vertices in W, taking the union bound
gives

m2k+2

PIE, )] < C72

Letting E,,, = U,,cp( 2k Em (1), we then have

m2k+2
P[Em] < C2_mn2k+l

Im—l (u) Im—l (u”)

B<7n (U, k)

FIGURE 6 | There can be a cycle containing the edge {u, w} only if
there is an m-generation edge crossing from some z € W to B_,,,(u, k).
Since both B_,, (1, k) and W are small in comparison to I,,_, (1), the prob-
ability of this happening is small.
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In particular, there exists a constant C > 0 such that

2 P[E,,] < C2_m"m(2)k+2n2k+1

m>my

If a vertex z € B(v, k) is part of a cycle of length at most k which
is finalized at generation m, then necessarily there exists some
u € B(v, 2k) such that E, (u) holds. Thus, if E¢ holds for every
m > my, then z can only be contained in cycles of length at most
k which are finalized at generation < m,. The number of such
cycles is bounded by

1i

3
Il
Il
3
n

for some constant C > 0. The probability of F, is then lower
bounded by

P[Fu] 2 P[nm>m0End
=1- Ip[um>moEm]
>1- ) P[E,]

m>m

>1-— C2_m°m§k+2}'l2k+l
as needed.

Proof of Theorem 4. 'We use the moment method. While the
main technique is classical (see e.g., [17]), we write the proof in
full for completeness.

Proving that u, converges weakly to u . in probability means
that for every continuous function f : R - R, we have conver-
gence in probability of the expected value of f:

/R fdu, — /[R Fdbtge (a7)

as n - oo. By the Weierstrass theorem, every continuous func-
tion on a closed interval can be arbitrarily well-approximated by
a finite-degree polynomial. Since u,. is supported on a bounded
interval, it suffices to show (17) for functions of the form f, = xk,
that is, showing that the kth moments of u, converge the to kth
moments of ;.. These moments are known, and are given by

C
/xkd:ucirc = { K2
R 0

where C,, is the mth Catalan number, and is equal to the num-
ber of ordered rooted trees with m edges. We will first show that
E [, x*dw, = [g x*dpigy., and then show that Var( [, x*du, ) —
0; by Chebyshev’s inequality, this implies the desired convergence
in probability.

k is even
k is odd

Since u,, is just the empirical measure of the eigenvalues of
A/ \/ﬁ, we have

2\ . ) k
Xy = L <) ==T1r( =
[ s, 22( ) - £

1 1
= 2_”W Z AilizAizis o 'Aik—likAikil

For a fixed i;, the sum %, A;; ---A;; is the number of
walks of length k in G, that start and end at the vertex i,. Let
X, (t) be the simple random walk on G,, which starts at vertex v.
Then, since G, is n-regular, the number of simple random walks

of length k is n*, and we have

)
k O AN I, 1
/Rx du, = =n ; [X,(k) = ] 18)

where the probability is over the randomness induced by the ran-
dom walk. Taking expectations over the measure induced by the
permutations, we thus have, foranyv € V,,,

k _ 1 kjaon _
[E/Rx du, = 2nn 2"E[P[X, (k) = v]]
= n*2E[P[X, (k) = v]]

In the following, C is a constant depending on k whose value
may change from instance to instance. Let m, = 8(k + 1) log, n.
By Lemma 1, with probability greater than 1 — Cn¥, the event F,,
holds, that is, every vertex in B(v, k) is contained in no more than
Cmg’rl cycles of length at most k. By conditioning on F,,, we have

E[P[X,(k) = v]] = E[P[X,(k) = v]IF,]P[F,]
+ E[P[X, (k) = v]|F¢|P[F¢]

The second term on the right-hand side is bounded below by 0
and above by

E[PIX,(0) = olIFg B 7S] < PIFE] < Cnt = o)
Since P[F,] = 1 — o(1), we then have

E[P[X,(k) = v]] = (1 +0o(1))
E[P[X,(k) = v]|F,] + o(n™*/?)

To bound this term, we will count the number of random walks
that return to the origin.

A step (X,(1),X,(t+1)) is said to be a forward step if
dg (0, X,(1) <dg (v, X,(t+1)), and a backward step if
dg, (v, X,(1)) 2 dg (v, X,(t +1)). By analyzing the combina-
torics of forward and backward steps, it was shown by McKay
[17, Lemma 2.1] that in an n-regular graph where every ball
B(v, k) has no cycles at all,

#{Walks of length k which return to the origin}
= (1 +o()n*Cy ), (19)

We now show that under F,, the number of walks in G, is of the
same magnitude. Let £ be the number of forward steps of the walk
X, (t) which are part of a cycle of length no larger than k, and
suppose that X (k) = v.

If # = 0, then the walk must make k/2 forward steps and k/2
backward steps, since it returns to the origin. This means that
k must be even, and the walk traces out a rooted tree with k/2
edges. Since the number of cycles with at most k edges isno larger
than C(log n)**!, there are at least n — C(log n)¥*! — 1 choices for
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every forward step. By (19), the total number of walks with £ = 0
is then equal to
(1 +o()n*?Cy

when k is even, and 0 when k is odd.

If £ > 0, then the walk makes ¢ forward steps which are part of
a cycle, and no more than k/2 — # forward steps which are not
part of a cycle. There are no more than k backward steps, and
each such step has no more than (C(logn)**! + 1) options. In
total, the number of such walks is then bounded above by

k+¢

(1 + o(L)n*/** (C(log n)*+1) O (n*/*~(logn)*)

Altogether, since the total number of walks of length k is nk,
we have

n*E[P[X, (k) = v]]

k/2
=n*?(1 + o(l))%(n"/zck/2 + Z <nk/2_f(log n)*’ ))

=1

=1+ o(l))Ck/2
as needed.

All that is left is to show that the variance is small. By (18), the
second moment of [ x*du, is given by

2
“d
£\ ([0n) ]
2 2
—E <2innk/22P[X,.(k) = i]>
i=1

.
—E [Zin" > PIX, (k) = iIP[X; (k) = J‘l]

ij=1

Set m, = 16(k + 1) log, n. Recall that for a vertex v €V, F,, is
the event that each vertex in B(v, k) is contained in no more than
C(mg + 1)** cycles of length no more than k. Denote F, ; = F; N
F;. By Lemma 1, P[F, ;| > 1 —2C27"om**?>n?+1, By the law of
total probability, we have

e[([<on)]

271
= 2% 2 E[n*P[X,(k) = i|P[X;(k) = j]|F;;|P[F.,]
=1
1 -
t o 3 [E[nk[FD[Xi(k) = (P [x;(k) = J] |F£J.]P[F£}.]

ij=1

The second term on the right-hand-side is bounded below by 0
and above, due to the choice of m,, by o(1). Thus

2
1
[E[(/kad/xn> ] =(1+o(1))27

on

x Y E[*PLX (k) = i|P[X;(k) = j]IF, ;] +o(1)
i,j=1

Using the same path-counting argument as above, by (19) we
have that under F; ;,

En*PX,(k) = i|P[X;(k) = j] = @+ 0(1))C} 12

and taking the sum overall i and j shows that

2 2
k _ k
[E[(/Rx d,un) ] —(1+0(1))<[E/Rx d/xn)

which implies that Var( [, x*du,) — 0.

4.5 | Asymmetry
The proof of Theorem 5 relies on the following lemma, whose
proof we postpone to the end of this section.

Lemma 3. There exists a universal constant C > 0 such that
the probability that there exists a decomposition of V, into two dis-
joint subsets other than V° L1 V! such that the edges between them
form a matching is smaller than Cn2™".

Proof of Theorem 5.  Let X,, be the number of automorphisms
of G,,. We partition these permutations into three kinds:

1. Automorphisms of G, thatswap between V2 and V. Let W,
be the number of these automorphisms.

2. Automorphisms of G, that preserve both V0 and V. Let Y,
be the number of these automorphisms. Note that Y, > 1,
since it always counts the trivial automorphism.

3. Automorphisms of G, that replace a proper subset A, C V2
with a proper subset A; C V! of the same size (so that V2 \
Ay and VI \ A, stay inside V0 and V!, respectively). Let Z,,
be the number of these automorphisms.

If ¢ is a non-trivial automorphism of the third kind, then the
edges between A, and Vg \ 4, form a matching, and the edges
between A, and V! \ A, form a matching (since, e.g., if there
is a vertex v € A, connected by more than one edge to V0 \
Ay, then ¢(v) will have more than one edge across the main
cut). But then, letting A := A, U A, and B=V,\ A, we get
that the edges between A and B form a matching as well, giv-
ing a partition V,, = A U B with a matching between them. By
Lemma 3, the probability that such a matching exists (and there-
fore, that there is a non-trivial automorphism swapping A, and
A,;) is bounded by O(n27"). Thus, denoting by F the event F :=
{3m € [n/20,n — 1] s.t. Z,, > 0}, we have

P[F] = O(n*27"/%) (20)

We turn to bound Y, W,,. For brevity, we abbreviate o :=0o,,_;.
In the first two types, the values of an automorphism ¢ on V?
determines the value of ¢ on all V,,. Explicitly, in the first case,
foreveryv € V,,_;, if we denote ¢(v, 0) = (¢,(v), 1) and p(v, 1) =
(¢1(v),0), then we must have ¢,(v) = op,0(v). For automor-
phisms of the second kind, we have similarly ¢, = c71¢;0. In
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both cases it must be that ¢, ¢, € Aut(G,_,). So in particular,
W, Y, <X, and

Wn + Yn S ZXn—l (21)

We first bound P[W, > 1]X,,_;]. By Markov’s inequality, this
is at most E[W,|X,,_;]. Write out W, =3 ¥ 1, cau, )
1, eaut,_,) * Lpy=op,0» @nd in particular we have

IE[Wn |Xn—1]

< Xi_lgpgax{ﬂ”g[% = 09,0]l9,, ¢, bijections of V,,_;}
0°¥1

So we need to bound P, [¢, = op,0]. Denote Ay = V,_,.Foru, €
Ay, let E,, be the event that p,(v,) = 0¢;0(Vy). In order for E, to
hold, we must have eitheri) E, N {p,0(v,) = vp}holds,orii) E, \
{p,0(vy) = vy} holds. The probability of the first event is at most
the probability of ¢,0(v,) = v,, which equals 1/2"", while the
probability of the second given that ¢, 0(v,) # v, is 2_—{_1 In par-
ticular E, holds with probability no greater than 2/(2"" —1).
Conditioned on E, , the permutation o is a uniform permuta-
tion over the set A; = A, \ {vy, ¢,0(vy)}, with |A;| > |A4,| — 2.
By iteratively conditioning on EUU,EUI, ..., where v, €A;, i =
0, ...,2"3 —1,we have that P[p, = 0p,0] < (m)zn/3 <
272" Hence

—_(n=7)2"/3
E[W,|X,_,] <2777 . x2 | (22)

Next we bound P[Y,, > 1|X,,_,, F¢]. Although the equation ¢, =
o~ l¢p,0 seems similar to the analogous equation ¢, = og, o for
W ,, we shouldn’t expect the same argument to hold, since (for
example) even if X, ; =1, we expect W, = 0, whereas Y,, > 1
always since it counts the identity. The problem lies with auto-
morphisms with small conjugacy classes. For a given ¢, and uni-
formly random o, the element o~'¢, o is a uniform element in the
conjugacy class of ¢,. The probability P, [goo = U‘lgola] is then
bounded by one over the size of the conjugacy class of ¢, (it is 0 if
@, and ¢, are not conjugate). The following claim, whose proof is
found at the end of the section, shows that under F¢, these classes
must be large.

Claim 2. Assume that F¢ occurs. Then the conjugacy class for
Lpon/4

every Id # ¢ € Aut(G,,_,) has size at least 24
As in the case of W, we have

P[Y, > 1|X,_,,F]
< |E[Yn - 1|X—nfl’FC]
<E[X?_|F

max P — 0__1 -
P01 €AUG, ) \1d} a[%0 #19]

<Epg Pt

where the last inequality is due to Claim 2, since the maximum is
. . . Lo/
taken over elements with a conjugacy class of size at least 25",

Finally, under F¢, the only possible automorphisms for m €
[n/20,n — 1] are of the first two kinds, and by (21) we have

X < 2n—n/20—1Xn/20 < 219n/20(2n/20)! < 2n+zlon2”/zo (23)

n-1

Thus
PIX, > 1]
< P[F] +P[F°n{X, > 1}]
<P[F]+P[Z,>0]+P[F n{W, >0} +P[F n{Y, > 1}]
<P[F]+P[Z, > 0] + [F"[Wn >0,X,, < 2"%"2"/2",170]
+ P[Yn >1,X,, < 2"*%"2"’”,170]

1 ,.51/20 1 ,.5n/20
22n+ mnz 22n+ mnz

< P[F] + P[Zn > O] + — O(n22—n/20)

2(n—7)2"/ 3 2 % n2n/4

as needed.

Proof of Lemma 3. We start with some preliminaries which
will be of use later on in the proof. Let V,, = A Ll B be a uniformly
random partition of V,, into two halves of equal size, and let V,, =
A’ U B’ be a partition where A’ is a binomial random subset of V,,
with success probability 1/2. The difference between these two
random partitions can be quantified as follows: for any arbitrary
set X of equal-sized partitions of V,,, we have

P[(A,B)eZ] =|]:D[(A’,B’) €2||A/| =2n—1] (24)
Sl 2

The denominator in the right-hand side can be approximated by
the de Moivre-Laplace limit theorem, which states that

plla’] = 2] = L2 a-m2 (@5)
T

Note that V,, contains a vertex-disjoint union of 2"~ copies of
P, the 3 vertex path, and let X be the set of all equal-sized par-
titions which do not separate the middle vertex from the other
two vertices of any of these paths. When the vertices are parti-
tioned randomly and independently, the number of paths split
this way is a binomial random variable with parameters 2"~2 and
1/4, and thus P[(A’,B') € 3| < e_lng'zn_z, and so by (24) and
(25), we have

\/7_-[ 2(;1—1)/2 <c- en—ln§.2n—z (26)

4 -2
P[(A,B) €] <e 3?2
[A.B)eZl<e ™ 7705

for some constant ¢ > 0. Let us now choose C so large that the
lemma is true for all n < n,, for some large enough n,. We pro-
ceed by induction on n. Assume that the lemma is true for G, _,.
For a decomposition V,, = A LI Bother than VO LIV}, let E, (A, B)
be the event that the edges between A and B form a match-
ing. Let p, :=P[3A, B s.t. E,(A, B)]. We will show that p,_; <
C(n — 12~V implies p, < Cn2™".

Fix a decomposition V,, = ALIB and set A; = Vﬂ; NAand B; =
V,nBfor j=0,1, so that AjLIB, =V and A, UB, = V.. We
consider three cases.

1. If both cuts coincide with the cuts of the (n — 1)th gener-
ation (i.e., AyUB, =VPUV and A UB, =VX UV,
then for A LB to induce a matching, all vertices of A,
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should send the edges of the last generation to A,, and all
vertices of B, should send the edges of the last generation to

n-1\ —1
B,. The probability of this event is exactly ( ;n_z )

2. If both cuts differ from the (n — 1)th generation cuts, then
assume first that A, is empty. By connectivity of G,,_;, there
exists an edge between some vertex a € A, and a vertex
b € B;. Since a also sends an edge to B, (induced by o,,_,),
in this case, the edges do not form a matching. We can there-
fore assume that all of A, By, A,, B; are non-empty. Assume
without loss of generality that |B,| > |A,|. Leta € A, be a
vertex that sends an edge to B, (again, such a vertex exists
by connectivity of G,_,). Since |B;| > |A,], the probability
that there are no edges from a to B, induced by o,_, is at
most 1/2, so with probability greater than 1/2 we do not get
a matching. We get that

P[3A,Bs.t. {A uBy # VUV, A UB, #VI 0LV}

1
n En(A’B)] < Epn—l

3. Finally, if, say, the cut A, U B, coincides with the respective
(n — Dth generation cut V® L1V, and A, UB, # VU
V1, then A LI B, should divide the set V| into halves; oth-
erwise (say, if |A,| > |B,|), B, sends at least one nth gen-
eration edge to A;, and so there is a vertex in B, with at
least two neighbors in A, and we do not get a matching.
Moreover, we may also claim that the nth generation edges
form a matching between A, and A,, and between B,, and
B, (since there is a matching between A, and B, A, cannot
have an edge with B;, and B, cannot have an edge with A,).
Then the desired probability is exactly the probability that
the cut A, U B, of G,_, forms a matching. Since the ends of
the edges of the matching between V? and V'} with first ver-
tices in sets V2 and VX° form a decomposition of G,,_; into
halves which is independent of G,,_; itself, the sets A; and
B, are a uniformly random partition of V}. The probability
that a uniformly random balanced cut of G,,_, is a matching
is at most the probability that this cut does not separate the
middle vertex of any P,, which is bounded by c - 2"~=2""
due to (26).

Putting all these together, we get

21\ 7! C1ein o
an%pn—l+<2n—2) eI < opp

for n > n, large enough.

Proof of Claim?2. Assume that F¢ holds, that is, every
automorphism of G,, either swaps or preserves V2, V! for
m € [n/20,n — 1]. We first show that every non-identity ¢ €
Aut(G,_,) has at least 2!°*/2° points that are not fixed.

Let m € [n/20,n — 1], and let ¢ € Aut(G,,). Since F¢ holds, ¥
either swaps or preserves an and V}n, and so can be represented
by the pair (1), %, ) as above. If it swaps V° and V! , then it has no
fixed points. Hence, if 3 has any fixed points, it must be preserv-
ing, and its fixed points are a union of the fixed points of 1, and
1. In this case, ¥, and ¥, are conjugate, so they have the same
number of fixed points; in particular, the number of fixed points

(resp. non-fixed points) of 1 is equal to twice the number of fixed
points (resp. non-fixed points) of 1,.

Thus by induction, if ¢ € Aut(G,_,) has any fixed points, then the
number of non-fixed points is equal to 2"~/ times the num-
ber of non-fixed points of any of its restrictions ¢ := Pyvzs where
z € {0, 1}*"17/20_If 1 is the identity, then ¢ is the identity also.
Otherwise, 1 has at least 2 non-fixed points, and so ¢ has at least
219%/20 non-fixed points on G,,_;.

Next we get our bound for the size of the conjugacy class of ¢.
Recall that we can express ¢ as a composition of disjoint cycles.

1. If g has a cycle of length m > 22/ 4 1, then the number of
conjugacy classes is bounded below by the number of con-
jugacy classes where (say) 1 is in such a cycle. The number
of such permutations is at least (2;:11> - (m —1)! (since
we need to choose m — 1 more elements, and then order
them in a cycle together with 1). This is 2" — 1) - 2" —
2)- - (2n—1 -m)> 2(n—2)22”/5.

2. Otherwise, the maximal cycle length is at most 225 We
have at least 21°*/2° points which are not fixed, so there are
at least r = 2''"/2° cycles. The number of conjugacy classes
is then lower-bounded by the number of conjugacy classes
where all the elements 1,2, ...,r are in distinct cycles, and
r+1,r + 2, ...,2r are in the same distinct cycles. For every
fixed choice of cycles for the first r elements, there are r!
ways to choose where to put r + 1,7 + 2, ..., 2r. This is at
least 2117/20) > 25n2"* o
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Endnotes

!In Question 2 of Section 3, we ask whether the bound in Theorem 2
can be improved to 10" - (1 + o(1)) for general random twisted hyper-
2

cubes. After the submission of this manuscript, Aragdo et al. [15] indeed
proved that D(G,) = (1 + 0(1)) —— with high probability, regardless of

log, n
the joint distribution of the copies.

2 After the submission of our manuscript, this question was solved in the
affirmative by Aragdo et al. [15].
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