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ABSTRACT

Twisted hypercubes are generalizations of the Boolean hypercube, obtained by iteratively connecting two instances of a graph by a

uniformly random perfect matching. Dudek et al. showed that when the two instances are independent, these graphs have optimal

diameter. We study twisted hypercubes in the setting where the instances can have general dependence, and also in the particular

case where they are identical. We show that the resultant graph shares properties with random regular graphs, including small

diameter, large vertex expansion, a semicircle law for its eigenvalues and no non-trivial automorphisms. However, in contrast to

random regular graphs, twisted hypercubes allow for short routing schemes.

1 | Introduction and Construction

The Boolean hypercube 𝑄𝑛 is the graph whose vertex set

is 𝑉(𝑄𝑛) = {0, 1}𝑛 and whose edge set is 𝐸(𝑄𝑛) = {{𝑥, 𝑦}| 𝑥

and 𝑦 differ by exactly one coordinate}. One appeasing property

of the hypercube graph is its recursive construction: starting with

𝑄1 as a single edge, 𝑄𝑛 is given by the Cartesian graph product

𝑄𝑛 = 𝑄1◽𝑄𝑛−1; essentially, the Cartesian product with an edge

amounts to matching together the corresponding vertices of two

disjoint copies of 𝑄𝑛−1. See Figure 1 for the first steps of this

process.

Generalizing this procedure gives rise to the definition of a

twisted hypercube, which is obtained by iteratively applying per-

fect matchings between the vertices of two copies of the original

graph.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.
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Definition 1. (𝜎-twist). Let 𝐺0 = (𝑉, 𝐸0) and 𝐺1 = (𝑉, 𝐸1)
be two finite graphs on the same vertex set, and let 𝜎 be a permu-

tation of the vertices 𝑉. The 𝜎-twist operation, denoted 𝐺0

𝜎

⋆ 𝐺1,

produces a graph 𝐺0

𝜎

⋆ 𝐺1 = (𝑉′, 𝐸′), defined as follows. For 𝑖 =

0, 1, let 𝑉𝑖 = {(𝑥, 𝑖)|𝑥 ∈ 𝑉} and 𝐹𝑖 = {{(𝑥, 𝑖), (𝑦, 𝑖)}|{𝑥, 𝑦} ∈ 𝐸𝑖}.

Then 𝐺0

𝜎

⋆ 𝐺1 has vertex set

𝑉′ = 𝑉0 ∪ 𝑉1

and edge set

𝐸′ = 𝐹0 ∪ 𝐹1 ∪ {{(𝑥, 0), (𝜎(𝑥), 1)}|𝑥 ∈ 𝑉}

Alternatively, if 𝐴𝑖 ∈ ℝ
𝑚×𝑚 is the adjacency matrix of 𝐺𝑖 , and 𝑃

is the 𝑚 × 𝑚 permutation matrix representing 𝜎, then the adja-

cency matrix of 𝐺0

𝜎

⋆ 𝐺1 is given by
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FIGURE 1 | The recursive construction of the hypercube. The color of an edge indicates in which step it was created. Newly created edges are in

bold.

(
𝐴0 𝑃

𝑃𝑇 𝐴1

)
(1)

Definition 2. (Twisted hypercube). Using the 𝜎-twist
operation, we define a class of recursively constructed graphs.

1. A twisted hypercube graph of generation 𝑛, denoted 𝐺𝑛,
is defined as follows. For 𝑛 = 0, 𝐺0 is an isolated vertex,
labeled by ∅, and for 𝑛 = 1, 𝐺1 is a single edge, that is,
𝑉(𝐺1) = {0, 1} and 𝐸(𝐺1) = {{0, 1}}. For general 𝑛 > 1, let
𝐺0

𝑛−1 and 𝐺1
𝑛−1 be two twisted hypercubes of generation

𝑛 − 1, let 𝜎𝑛−1 be a permutation on {0, 1}𝑛−1 vertices, and
define

𝐺𝑛 = 𝐺0
𝑛−1

𝜎𝑛−1

⋆ 𝐺1
𝑛−1 (2)

2. It is possible to consider random permutations in this con-
struction; 𝐺𝑛 is then called a random twisted hypercube. In
this case, the definition requires also specifying the joint dis-
tribution of 𝐺0

𝑛−1 and 𝐺1
𝑛−1 in the 𝜎-twist operation. For the

rest of the article, we assume that all the permutations 𝜎𝑘

are chosen uniformly at random for every 𝑘.

3. When the all permutations 𝜎𝑘 , 𝑘 = 1, . . . , 𝑛 − 1 are inde-
pendent of all other permutations, and the two instances
𝐺0

𝑛−1 and 𝐺1
𝑛−1 are independent for all 𝑛, we call 𝐺𝑛 an inde-

pendent twisted hypercube.

4. When the two instances 𝐺0
𝑛−1 and 𝐺1

𝑛−1 are identical for all
𝑛, we call the graph a duplicube. In this case, the graph
𝐺𝑛 can be described by a single sequence of permutations
𝜎 = (𝜎𝑘)

∞
𝑘=1, where each 𝜎𝑘 is a permutation on {0, 1}𝑘: the

vertex set is 𝑉(𝐺𝑛) = {0, 1}𝑛, and for every 𝑘 ∈ [𝑛], the ver-
tex 𝑥 =

(
𝑥1, . . . 𝑥𝑘−1, 0, 𝑥𝑘+1, . . . , 𝑥𝑛

)
is connected to 𝑦 =(

𝜎𝑘−1(𝑥1, . . . , 𝑥𝑘−1), 1, 𝑥𝑘+1, . . . , 𝑥𝑛

)
. We write 𝐺𝑛 = 𝐺𝑛(𝜎)

when we wish to stress the dependence on the permuta-
tions. See Figure 2 for the first steps of this process.

The term twisted cubeswas first introduced in the context of rout-
ing in computing networks [1–3]. The idea is that slightmodifica-
tions to the structure of the hypercube can yield graphs with both
better diameter (and so, smaller latency) and better connectivity
(and so, better fault-tolerance) than the hypercube. Dudek et al.
[4, Definition 2] first introduced randomness to these construc-
tions, and studied independent instances connected by uniform
matchings. They named their construction random twisted hyper-

cubes. Since our definition generalizes theirs by allowing different
joint distributions of matched instances, we have chosen to use
the name random twisted cubes for the general case, and indepen-
dent twisted cubes for their special case.

Any twisted hypercube𝐺𝑛 is an 𝑛-regular graph with𝑁 = 2𝑛 ver-

tices. When 𝜎𝑘 is the identity permutation for every 𝑘, then 𝐺𝑛 is

just the Boolean hypercube graph 𝑄𝑛. The hypercube has diam-

eter 𝑛, has poor vertex- and edge-expansion (relative to the fact

that its degree grows with the graph size; see Section 2.2), and

a random-walk mixing time of order Θ(𝑛 log𝑛) [5]. Many other

geometric and structural properties of the hypercube are known

(e.g., distances between vertices [6] and isoperimetric inequali-

ties for various sets [7–9]).

Another well-researched class of 𝑛-regular graphs are the uni-

formly random regular graphs. With probability 1 − 𝑜(1), a ran-

dom 𝑛-regular graph on 2𝑛 vertices has diameterΘ(𝑛∕ log𝑛), [10]

has high edge-expansion [11] and a random-walk mixing time of

orderΘ(𝑛∕ log𝑛) [12]. Further, its eigenvalues follow a semicircle

distribution [13].

For fixed 𝑛 and 𝑁 → ∞, the uniform distribution over 𝑛-regular

graphs on 𝑁 vertices can be approximated by adding 𝑛 suc-

cessive random perfect matchings on 𝑁 isolated vertices,

where the 𝑖th matching is uniform over all matchings on

previously-unmatched pairs of vertices [14, Theorem 8]. In con-

trast, consider the random twisted hypercube 𝑮𝑛, where all 𝜎𝑘

are uniformly random permutations on {0, 1}𝑘 , with indepen-

dence between different 𝑘’s. It consists of a union of 𝑛 indepen-

dent matchings as well, but these matchings are not uniformly

random. For example, the last matching is a uniformly random

matching only between the two instances of 𝑮𝑛−1, while earlier

matchings consist of a union of smaller matchings; in the case

of the duplicube, they consist of copies of smaller matchings and

therefore have even stronger dependencies between the edges. In

this sense, the random twisted hypercube 𝑮𝑛 is a hybrid between

the structure of the Boolean hypercube and the randomness of a

random 𝑛-regular graph. It is therefore natural to ask how its var-

ious geometric and structural properties compare to those of the

hypercube and random 𝑛-regular graphs.

Remark 1. An 𝑛th iteration duplicube is defined by a sin-

gle sequence of permutations 𝜎1, . . . , 𝜎𝑛−1. To sample such a

sequence, one requires approximately Θ(𝑛2𝑛) random bits. An

independent twisted hypercube, on the other hand, requires

Θ(𝑛22𝑛) random bits to sample since it is defined using 2𝑛−𝑘−1

independent copies of 𝜎𝑘 for every 𝑘. As we will see in the next

section, despite the fact that it uses less randomness, the struc-

tural properties of the duplicube still match those of the indepen-

dent twisted cube—it has optimal diameter and constant vertex

expansion.
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FIGURE 2 | An example of the recursive construction of the duplicube, using random matchings. The color of an edge indicates in which step it

was created. Newly created edges are in bold.

2 | Our Results

In this work, we study the diameter, expansion, eigenvalues, and
symmetries of a random twisted hypercube𝑮𝑛. All our theorems,
except Theorem 1, hold for any twisted hypercube where the
matchings 𝜎𝑘 are uniformly random and with independence
between permutations of different generations, regardless of the
joint distribution of the instances in (2).

2.1 | The Diameter

For a graph 𝐺 = (𝑉, 𝐸), let 𝑑𝐺 ∶ 𝑉2
→ ℝ be the graph distance

between two vertices. The diameter of a graph is the maximum
distance in the graph, that is, 𝐷(𝐺) ∶= max {𝑑𝐺(𝑥, 𝑦)|𝑥, 𝑦 ∈ 𝑉}.
An immediate result shows that the diameter of the hypercube
𝑄𝑛 has the worst possible diameter out of all twisted hypercube
graphs.

Proposition 1. For every choice of permutations 𝜎𝑘 , we have
𝐷(𝐺𝑛) ≤ 𝐷(𝑄𝑛) = 𝑛.

Proof. By induction. For𝑛 = 1, it is clear. In the general case, let
𝑥, 𝑦 ∈ 𝑉(𝐺𝑛), and denote 𝑥 = (�̃�, 𝑥𝑛), 𝑦 = (�̃�, 𝑦𝑛). If 𝑥𝑛 = 𝑦𝑛, then
�̃�, �̃� ∈ 𝑉(𝐺𝑛−1), and 𝑑𝐺𝑛

(𝑥, 𝑦) = 𝑑𝐺𝑛−1
(�̃�, �̃�) ≤ 𝑛 − 1. Otherwise, 𝑥

is connected to some (𝑥′, 1 − 𝑥𝑛), and

𝑑𝐺𝑛
(𝑥, 𝑦) ≤ 1 + 𝑑𝐺𝑛−1

(
𝑥′, �̃�

) ≤ 𝑛

◽

The following lower bound is also immediate.

Proposition 2. For every choice of permutations 𝜎𝑘 , we have
𝐷(𝐺𝑛) ≥ (𝑛 − 1)∕ log2 𝑛.

Proof. If 𝐺𝑛 has diameter 𝑑, then the ball 𝐵(𝑣, 𝑑) of radius 𝑑

around any vertex 𝑣 must contain the entire graph. Since the
graph is 𝑛-regular, the number of vertices in this ball is smaller
than 2𝑛𝑑, and we get

2𝑛 = |𝐵(𝑣, 𝑑)| ≤ 2𝑛𝑑

yielding

𝑑 ≥ 𝑛 − 1

log2 𝑛
◽

It was shown by Dudek et al. [4] that for the independent twisted
hypercube (where the permutations 𝜎𝑘 are chosen uniformly at

random, and the instances of 𝑮𝑛−1 in the 𝜎-twist operation 𝑮𝑛 =

𝑮0
𝑛−1

𝜎𝑛−1

⋆ 𝑮1
𝑛−1 are independent), the diameter of 𝑮𝑛 is almost

surely asymptotic to 𝑛∕ log2 𝑛. We show that their proof tech-
nique carries over to the duplicube as well.

Theorem 1. Let 𝑮𝑛 be the random duplicube. Then 𝐷(𝑮𝑛) =
𝑛

log2 𝑛
+ 𝑂( 𝑛

log2𝑛
) with probability ≥ 1 − 𝑜(2−𝑛).

Moreover, we show that regardless of the joint distribution of the
two instances of 𝑮𝑛−1, the diameter is asymptotically better than
that of Proposition 1 by at least a log log𝑛∕ log log log𝑛 factor. The
following theorem is proved in Section 4.2.

Theorem 2. There exists a constant 𝐶 > 0 such that

𝐷(𝑮𝑛) ≤ 𝐶𝑛
log log log𝑛

log log𝑛
(3)

with probability 1 − 𝑜(2−𝑛).

Remark 2. The proof of Proposition 1 also gives a simple rout-
ing scheme between any two vertices 𝑥, 𝑦: when at 𝑥, let 𝑘 ∈ [𝑛]

be the largest index such that 𝑥𝑘 ≠ 𝑦𝑘 , and go along the edge
created by 𝜎𝑘−1. Thus, we always have a local routing scheme
which gives a good approximation to the diameter, as well as
the average distance between pairs of vertices. Contrast this with
general random 𝑛-regular graphs, where there is no known local
easy way to find an approximation to the minimal path between
two vertices.

Remark 3. It might be possible to improve the factor
log log log𝑛

log log𝑛

in Theorem 2 by a more careful analysis of the quantities 𝛼(𝑛)

and 𝛽(𝑛) that appear in the theorem’s proof. We showed that the
diameter of a random twisted hypercube is asymptotically less
than that of the Boolean hypercube, yet we have no intuition to
the correct diameter.1

2.2 | Vertex Expansion

Let 𝐺 = (𝑉, 𝐸) be any graph. For a set 𝑆 ⊆ 𝑉, let 𝜕𝑆 be its set of
neighbors, that is, 𝜕𝑆 = {𝑥 ∉ 𝑆|∃𝑦 ∈ 𝑆 such that {𝑥, 𝑦} ∈ 𝐸}.

Definition 3. (Vertex expander). Let 0 < 𝜂 < 1 and
𝛼 > 0, and let 𝐺 = (𝑉, 𝐸) be a graph. A set 𝑆 ⊆ 𝑉 is said
to have 𝛼-expansion if |𝜕𝑆| ≥ 𝛼|𝑆|. The graph 𝐺 is an
(𝜂, 𝛼)-vertex-expander if 𝑆 has 𝛼-expansion for all 𝑆 ⊆ 𝑉 of
size |𝑆| ≤ 𝜂|𝑉|.
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The hypercube 𝑄𝑛 is not an (𝜂, 𝛼)-vertex-expander for any con-
stants 𝜂, 𝛼 > 0. To see this, fix some constant 𝜂 > 0. There
is some 𝜌 > 0 so that the ball 𝑆 = {𝑥 ∈ {0, 1}𝑛|∑𝑥𝑖 ≤ ⌈𝑛∕2 −

𝜌
√

𝑛⌉ − 1} has size (𝜂 + 𝑜(1))2𝑛. However, its boundary is

𝜕𝑆 = {𝑥 ∈ {0, 1}𝑛|∑𝑥𝑖 = ⌈𝑛∕2 − 𝜌
√

𝑛⌉} and has size at most(
𝑛

𝑛∕2

)
= 2𝑛(1 + 𝑜(1))∕

√
𝜋𝑛. Thus 𝑄𝑛 cannot have an expansion

factor 𝛼 asymptotically larger than 1√
𝑛
for any constant 𝜂. The

random twisted hypercube graph, on the other hand, achieves
constant expansion with high probability. The following theorem
is proved in Section 4.3.

Theorem 3. For every 𝜂 ∈ (0, 1) there exists a constant 𝛼 > 0
such that

lim
𝑛→∞

ℙ[𝑮𝑛 is a (𝜂, 𝛼)-vertex expander] = 1

In fact, the proof of Theorem 3 shows that ℙ[𝑮𝑛is not a
(𝜂, 𝛼)-vertex expander] = 𝑂(2−𝑐𝑛) for some constant 𝑐 > 0 that
depends on 𝜂.

Remark 4. It is also possible to talk about edge expanders, and

compare the size of a set 𝑆 to the number of edges connecting it
to 𝜕𝑆. Both 𝑄𝑛 and 𝐺𝑛 are not very good edge expanders (for any
choice of permutations 𝜎𝑘); see Section 3 for more details.

Remark 5. In random 𝑑-regular graphs, balls of any constant
radius 𝑟 around an individual vertex are trees with high probabil-

ity (even when 𝑑 is logarithmic in the number of vertices). Such
sets are very poorly connected-the vertex expansion is of order
1∕𝑑𝑟 (consider cutting the 𝑑-ary tree in half at the central vertex).
However, in a random twisted hypercube, a ball of radius 𝑟 con-
tains 𝐺𝑟 as a subgraph, which, by the theorem above, has good
vertex expansion with arbitrarily high probability for large 𝑟.

2.3 | Eigenvalues

Let 𝐴 ∈ ℝ
𝑚×𝑚 be a symmetric matrix, whose eigenvalues are

𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑚. Let𝜇
𝐴 ∶= 1

𝑚

∑𝑚
𝑖=1𝛿𝜆𝑖

be the uniformmeasure
over the eigenvalues of𝐴, where 𝛿𝑠 is the Dirac-delta distribution
centered at 𝑠.

Let Adj(𝑄𝑛) be the adjacency matrix of the hypercube 𝑄𝑛. The 2
𝑛

eigenvalues and eigenvectors of Adj(𝑄𝑛) are well understood; the
following is well known [16, section 1.4.6].

Fact 1. For every integer 𝑑 ∈ [0, 𝑛], the adjacency matrix

Adj(𝑄𝑛) has eigenvalue 𝑛 − 2𝑑 with multiplicity
(

𝑛

𝑑

)
.

In particular, the hypercube’s largest eigenvalue is 𝑛, while its
second largest eigenvalue is 𝑛 − 2. Thus, its normalized spectral
gap, defined as 1

𝑛
(𝜆1 − 𝜆2), is

2

𝑛
. The same gap is achieved for the

graphs𝐺𝑛, regardless of the choice of𝜎. The following proposition

is proved in Section 4.4.

Proposition 3. Let 𝐴𝑛 be the adjacency matrix of 𝐺𝑛. Then
𝜆1 = 𝑛 and 𝜆2 = 𝑛 − 2.

A consequence of Fact 1 is that 𝜇Adj(𝑄𝑛) is the probability mea-
sure of a {±1} Binomial random variable with 𝑛 trials and suc-
cess probability 1∕2. By the central limit theorem, we then have
that

𝜇Adj(𝑄𝑛)∕
√

𝑛
→ Γ

weakly, where Γ is the standard Gaussian distribution on ℝ.
Unlike the spectral gap, this property is not preserved for the ran-
dom twisted hypercube graph. In fact, the spectrum of Adj(𝑮𝑛)
behaves like that of a random 𝑛-regular graph.

Theorem 4. Let 𝐴 = Adj(𝑮𝑛) and 𝜇𝑛 = 𝜇𝐴∕
√

𝑛. Then the ran-
dom measure 𝜇𝑛 converges weakly to the semicircle law 𝜇circ in

probability, that is, the absolutely continuous measure whose prob-

ability density function is

𝑓circ(𝑥) =

{
2

4𝜋2

√
4 − 𝑥2 𝑥 ∈ [−2, 2]

0 𝑥 ∉ [−2, 2]

The above theorem follows from the following lemma, which
states that the number of short cycles in the neighborhood of any
vertex in 𝑮𝑛 is small. Essentially, this means that 𝑮𝑛 is almost
locally treelike. For a vertex 𝑣 and positive integer 𝑘, let 𝜃(𝑣, 𝑘)

denote the number of cycles of length no more than 𝑘 containing
𝑣, and 𝐵(𝑣, 𝑘) denote the ball of radius 𝑘 around 𝑣.

Lemma 1. Let 𝑣 ∈ 𝑉𝑛 and let 𝑘 > 0 be an integer. There exists
a constant 𝐶 > 0 which depends only on 𝑘 such that the following

holds. Let 𝑚0 > 0 be an integer, and let

𝐹𝑣 =
⋃

𝑢∈𝐵(𝑣,𝑘)

{
𝜃(𝑢, 𝑘) ≤ 𝐶𝑚𝑘+1

0

}

Then

ℙ[𝐹𝑣] ≥ 1 − 𝐶2−𝑚0𝑚2𝑘+2
0 𝑛2𝑘+1

Theorem 4 and Lemma 1 are proven in Section 4.4.

Remark 6. A classical theorem byMcKay [17] states that a reg-
ular graph on𝑁 vertices has a limiting semicircle law if, for every
𝑘, the number of 𝑘-cycles in the graph is 𝑜(𝑁). This result cannot
be directly used in the case of the twisted hypercube: for example,
each vertex is guaranteed to be in a 4-cycle, so there are at least
𝑁∕4 4-cycles in every twisted hypercube (in fact, we conjecture
that for the duplicube, for every 𝑘, each vertex is in a constant
number of 𝑘-cycles in expectation). Lemma 1 is the main techni-
cal component in our proof of Theorem 4.

2.4 | Asymmetry of 𝑮𝒏

Let 𝐺 = (𝑉, 𝐸) be any graph. A function 𝜑 ∶ 𝑉 → 𝑉 is called an
automorphism of 𝐺 if {𝑥, 𝑦} ∈ 𝐸 ⇔ {𝜑(𝑥), 𝜑(𝑦)} ∈ 𝐸. The set of
all automorphisms of a graph is denoted by Aut(𝐺), and always
contains the trivial automorphism—the identity function Id.

It is well known that for the hypercube, ||Aut(𝑄𝑛)|| = 𝑛!2𝑛,
and every automorphism 𝜑(𝑥) is of the form 𝜑(𝑥1, . . . , 𝑥𝑛) =(
𝑥𝜋(1) + 𝑏1, . . . , 𝑥𝜋(𝑛) + 𝑏𝑛

)
for some permutation 𝜋 ∈ 𝑆𝑛 and
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𝑏 ∈ {0, 1}𝑛. On the other hand, a random regular graph of degree
𝑛 on 2𝑛 vertices is almost surely asymmetric, that is, almost surely
has no non-trivial automorphisms [18, Corollary 3.5]. This is also
true for random twisted hypercubes.

Theorem 5.

ℙ[Aut(𝑮𝑛) = {Id}] = 1 − 𝑂(𝑛22−𝑛∕20)

The proof of Theorem 5 is found in Section 4.5.

2.5 | Different Base Graphs

The twisted hypercube graph is the result of repeatedly applying
the 𝜎-twist operation on a single vertex. It is also possible to start

with any base graph 𝐺0 = 𝐻, and define 𝐺𝐻
𝑛 = 𝐺0

𝑛−1

𝜎𝑛−1

⋆ 𝐺1
𝑛−1,

where 𝜎𝑛−1 is a permutation on 2
𝑛−1|𝑉(𝐻)| vertices. When each

𝜎𝑘 is a uniformly random permutation on 2𝑘|𝑉(𝐻)| elements, we
denote the resulting randomgraph by𝑮𝐻

𝑛 . In this case, we say that

𝑮𝐻
𝑛 is a random twisted hypercube with base graph 𝐻. None of

the main results concerning the diameter, expansion, and eigen-

values are severely affected. This is because as 𝑛 → ∞, the vast
majority of the edges meeting each vertex are those created by
the 𝜎-twist operation.

Lemma 2. Let𝐻 be a finite connected graph. Let𝑮𝐻
𝑛 be random

twisted hypercube with base graph 𝐻. Then there exists a random
twisted hypercube 𝑮𝑛 and a coupling (𝑮𝐻

𝑛 , 𝑮𝑛) such that:

1. 𝐷
(
𝑮𝐻

𝑛

) ≤ 𝐷(𝐻)𝐷(𝑮𝑛).

2. If the permutations that define 𝑮𝐻
𝑛 are independent then so

are the permutations that define 𝑮𝑛.

3. If 𝑮𝐻
𝑛 is the duplicube with base graph 𝐻, then 𝑮𝑛 is also a

duplicube.

Proof Sketch. Consider the 𝜎-twist operation 𝑮𝐻
𝑘+1 = 𝑮𝐻,0

𝑘

𝜎𝑘

⋆

𝑮𝐻,1
𝑘
. By contracting each copy of𝐻 in 𝑮𝐻

𝑘+1 to a single vertex and

using Hall’s marriage theorem, there exists a set 𝑆 of 2𝑘 edges
induced by 𝜎𝑘 which comprise a perfect matching between the
copies of 𝐻 in the two instances of 𝑮𝐻

𝑘 . Such a set 𝑆 naturally

induces a permutation on {0, 1}𝑘 . For a given 𝜎𝑘 , let 𝜋𝑘 be cho-
sen uniformly at random among all such induced permutations.
Then if 𝜎𝑘 is chosen uniformly then 𝜋𝑘 is a uniform random per-
mutation on {0, 1}𝑘 . We can use these permutations to generate a
graph𝑮𝑛 which is coupledwith𝑮𝐻

𝑛 so that𝑮𝑛 is a subgraph of the

graph obtained by contracting every copy of 𝐻 in 𝑮𝐻
𝑛 to a single

vertex. Thus 𝐷
(
𝑮𝐻

𝑛

) ≤ 𝐷(𝐻)𝐷(𝑮𝑛). ◽

Thus, both Theorems 1 and 2 continue to hold with only a
constant-factor change in the diameter.

Remark 7. If 𝐻 is not connected, one may simply apply the
𝜎-twist operation several times first until 𝑮𝐻

𝑛 is connected (this
can be shown to happen with probability tending to 1 as 𝑛 → ∞),
then use that as the base graph.

Corollary 1. (Corollary to Theorem 3). Let 𝐻 be a finite

graph. For every 𝜂 ∈ (0, 1) there exists a constant 𝛼 > 0 such that
the

lim
𝑛→∞

ℙ[𝑮𝑛is a (𝜂, 𝛼)-vertex expander] = 1

The proof of the above corollary is essentially identical to that of
Theorem 3. The latter only uses the edges created by the last three
𝜎-twist operations, and so the statement still holds for𝑮𝐻

𝑛 as well.

Corollary 2. (Corollary to Theorem 4). Let 𝐻 be a finite

graph. Let 𝜇𝑛 = 𝜇𝐴(𝑮𝐻
𝑛 )∕

√
𝑛. Then 𝜇𝑛 converges weakly to the semi-

circle law𝜇circ in probability, that is, the absolutely continuousmea-

sure whose probability density function is

𝑓circ(𝑥) =

{
2

4𝜋2

√
4 − 𝑥2 𝑥 ∈ [−2, 2]

0 𝑥 ∉ [−2, 2]

Proof Sketch. We will assume for simplicity that |𝑉(𝐻)| = 2𝑑

for some integer 𝑑. We can couple 𝑮𝐻
𝑛 with 𝑮𝑛+𝑑 by observing

that𝑮𝑛+𝑑 = 𝑮
𝑮𝑑
𝑛 , and using the same permutations 𝜎𝑘 for𝑮𝐻

𝑛 and

𝑮
𝑮𝑑
𝑛 . Since all the edges due to the permutations are the same

for 𝑮𝐻
𝑛 and 𝑮

𝑮𝑑
𝑛 , their adjacency matrices differ by no more than

𝑐 ∶= |𝑉(𝐻)| entries at each row, and all the eigenvalues of the

matrix Δ = Adj
(
𝑮𝐻

𝑛

)
− Adj

(
𝑮

𝑮𝑑
𝑛

)
are bounded by 𝑐. Denoting

𝐴 ∶= Adj
(
𝑮

𝑮𝑑
𝑛

)
, for every integer 𝑘 > 0 we have

||||||

2𝑛+𝑑∑
𝑖=1

𝜆𝑖

(
𝑮

𝑮𝑑
𝑛

)𝑘

−

2𝑛+𝑑∑
𝑖=1

𝜆𝑖

(
𝑮𝐻

𝑛

)𝑘
||||||

=
|||Tr
(
𝐴𝑘
)

− Tr
(
(𝐴 + Δ)𝑘

)|||
= |Tr(𝑃(𝐴, Δ))|

where 𝑃 is a polynomial of degree 𝑘 for which in every mono-
mial, 𝐴 has total degree at most 𝑘 − 1. By Von Neumann’s trace
inequality [19, eq. H.10], if 𝐴1, . . . , 𝐴𝑚 are 𝑁 × 𝑁 symmetric
matrices, then

𝑁∑
𝑖=1

𝜆𝑖(𝐴1 · · · 𝐴𝑚) ≤
𝑁∑

𝑖=1

𝜆𝑖(𝐴1) · · · 𝜆𝑖(𝐴𝑚)

and so the trace of every monomial in 𝑃 is bounded above

by 𝑐𝑘∑2𝑛+𝑑

𝑖=1
||𝜆𝑖(𝐴)𝑘−1||. Thus the difference in the normalized

moments of 𝑮
𝑮𝑑
𝑛 and 𝑮𝐻

𝑛 is bounded by

(𝑛 + 𝑑)−𝑘∕2

2𝑛+𝑑

||||||

2𝑛+𝑑∑
𝑖=1

𝜆𝑖

(
𝑮

𝑮𝑑
𝑛

)𝑘

−

2𝑛+𝑑∑
𝑖=1

𝜆𝑖

(
𝑮𝐻

𝑛

)𝑘
||||||

≤ 𝐶(𝑘)
(𝑛 + 𝑑)−𝑘∕2

2𝑛+𝑑

2𝑛+𝑑∑
𝑖=1

|||𝜆𝑖(𝐴)𝑘−1|||
(Cauchy–Schwarz)

≤ 𝐶(𝑘)

√
1

2𝑛+𝑑
𝑛−1

∑
𝑖

𝜆𝑖(𝐴)2

√
1

2𝑛+𝑑
𝑛−(𝑘−1)

∑
𝑖

𝜆𝑖(𝐴)2𝑘−4
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By the proof of Theorem 4, 1

2𝑛+𝑑 𝑛−(𝑘−2)∑
𝑖 𝜆𝑖(𝐴)2𝑘−4 converges

to a constant in probability as 𝑛 → ∞, which means that the
sum on the right-hand side above converges to 0 in probabil-
ity. This implies that the 𝑘th moments of the empirical distribu-
tion of the eigenvalues of 𝑮𝐻

𝑛 converge to those of the semicircle
law. ◽

Corollary 3. (Corollary to Theorem 5). Let 𝐻 be a finite

graph. Then

lim
𝑛→∞

ℙ
[
Aut

(
𝑮𝐻

𝑛

)
= {Id}

]
= 1 − 𝑂

(
𝑛22− 𝑛

20

)

We omit the proof of Corollary 3 since it is similar to the proof of
Theorem 5.

3 | Remarks and Further Directions

1. In [20], Zhu gives a simple-to-define, deterministic
sequence of permutations 𝜎 = (𝜎𝑘)

∞
𝑘=1 for which the

twisted hypercube has asymptotically optimal diameter.
What can be said about the expansion, asymmetry, and
eigenvalues of this construction? If these properties differ
from those of a random twisted hypercube, find a deter-
ministic construction for which they agree.

2. Theorem 1 shows that the random duplicube has diameter
𝑛

log2 𝑛
(1 + 𝑜(1)). Is it true that for all random twisted cubes

the same result holds with high probability?2

3. Given a sequence of permutations 𝜎 = (𝜎𝑘)
∞
𝑘=1, is there a

good local routing scheme for the duplicube 𝐺𝑛(𝜎) that
gives a better approximation than Proposition 1 to the
shortest path between two vertices?

4. The twisted-hypercube model can be readily extended
to 𝑑-dimensional hypergraphs: at every step, create 𝑑

instances of the current hypergraph, and connect the
vertices of the 𝑑 instances by a perfect matching of
𝑑-hyperedges. What can be said about the resultant hyper-
graph?

5. The graph𝐺𝑛 is, in general, not a good edge-expander. One
reason for this are cuts across the matchings 𝜎𝑘 for large 𝑘.
For example, the two instances of 𝐺𝑛−1 in 𝐺𝑛 each have
2𝑛−1 vertices, and are connected by 2𝑛−1 edges, giving an
isoperimetric ratio of 1. This is not so large for a graph
whose degree is 𝑛. What can we say about the geometric
properties of a set with small edge boundary? For 𝑄𝑛 it is
known that sets that have small edge expansion are similar
to subcubes [21]. Do non-expanding sets in𝑮𝑛 have similar
structure?

6. We show that with high probability 𝑮𝑛 is a good vertex
expander. However, to our knowledge there is no effi-
cient way to verify that a given graph is a vertex expander:
assuming the small-set-expansion hypothesis, it is hard
to even approximate the vertex expansion of a graph in
polynomial time [22]. Is it possible to exploit the struc-
ture of the twisted hypercube to verify this property in time
poly(2𝑛)?

7. By using the same coupon-collector argument as for the
hypercube, the mixing time of the lazy simple random

walk of any twisted hypercube is 𝑂(𝑛 log𝑛). On the other
hand, if an 𝑛th generation edge is never refreshed, then the

random walk stays constrained to one half of the graph,
and so the mixing time must also be 𝜔(𝑛). What is the

mixing time for the lazy simple random walk on 𝑮𝑛? Is it
𝑜(𝑛 log𝑛) with high probability?

8. Is it possible to remove edges from 𝑮𝑛 and obtain a

(near) constant-degree graph, whilemaintaining good ver-
tex expansion? Is it possible to approach the vertex expan-

sion of a constant-degree random regular graph in this
way?

9. Replace every vertex of𝑄𝑛 by an 𝑛-cycle, obtaining a graph

𝐶𝐶𝐶𝑛; this is known as the cube-connected-cycle [23].
As 𝑛 → ∞, it is well known that 𝐶𝐶𝐶𝑛 converges in the

Benjamini–Schramm sense [24] to the lamplighter graph
ℤ2 ≀ ℤ. We conjecture that the Benjamini–Schramm limit

of the twisted cube-connected-cycle, obtained by replac-
ing every vertex of 𝑮𝑛 by an 𝑛-cycle, is the 3-regular tree:

as 𝑛 → ∞, a vertex chosen at random from this graph cor-

responds to a high-generation edge with high probability,

and these should not be part of many small cycles.

10. Although Theorem 5 shows that random permutations

lead to an asymmetric graph, in general different choices

of 𝜎 can lead to different automorphism groups. Can

we relate properties of the automorphism group of the

duplicube𝐺𝑛(𝜎)with properties of 𝜎? In particular, canwe

find large families of 𝜎 so that 𝐺𝑛(𝜎) is vertex-transitive?

As a non-trivial example, consider the permutations 𝜎𝑘 =

Id for 𝑘 ≠ 2. There are two essentially different possi-

bilities for 𝜎2: the first is 𝜎2 = Id, leading to the hyper-

cube 𝑄𝑛. The second is the matching between a pair of

4-cycles which sends an edge to a non-edge. This leads to

a vertex-transitive graph that is not isomorphic to 𝑄𝑛. Can

we find a (perhaps random) vertex-transitive 𝐺𝑛(𝜎) with

improved geometric properties over the hypercube?

11. The argument in Theorem 3 only uses the edges of the

last three generations of the twisted hypercube. On the

other hand, such an argument could not hold while using

only the edges of the last two generations, since the graph

induced by the edges of the last two generations is a

union of cycles. In fact, we believe that when 𝜎𝑖 = Id

for 𝑖 < 𝑛 − 2, the resultant graph does not have constant

vertex-expansion with high probability. In light of this, it

is natural to ask: for an integer 𝑘 > 0, what are the prop-

erties of the twisted hypercube graph, where 𝜎𝑖 = Id for
𝑖 < 𝑛 − 𝑘, and 𝜎𝑖 is uniformly random for 𝑖 ≥ 𝑛 − 𝑘? What

happens when 𝑘 grows slowly to infinity with 𝑛? This is
a natural interpolation between the hypercube 𝑄𝑛 and the

completely random twisted hypercube 𝑮𝑛.

12. The hypercube 𝑄𝑛 induces a partial order on its vertices in

a natural way: 𝑥 ≤ 𝑦 if 𝑥𝑖 ≤ 𝑦𝑖 for every 𝑖. This natural par-

tial order has applications (see e.g., [25, Chapter 6]). The

twisted hypercube induces a similar partial order induc-

tively: given the order on 𝐺𝑛−1, extend it to 𝐺𝑛 by having

(𝑥, 0) < (𝜎𝑛−1(𝑥), 1) for all 𝑥 ∈ 𝑉𝑛−1, and by keeping the

original order within 𝐺𝑛−1 in both instances. It can be ver-

ified that this is indeed a partial order. What are the prop-
erties of this partial order as a function of 𝜎? Are there any
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combinatorial applications to the partial order produced by
the twisted hypercube?

13. The hypercube 𝑄𝑛 is bipartite, and hence always
2-colorable. On the other hand, the chromatic num-
ber 𝜒 of random 𝑑-regular graphs (of constant degree 𝑑)
is known to take only one of two possible values with
high probability, and satisfies 2𝜒 log𝜒 ≈ 𝑑 [26]. What is
the chromatic number of 𝑮𝑛? It can be shown that it is
at least 3 with high probability, and so 𝑮𝑛 is in general
not bipartite (to see this, consider the case where 𝑮𝑛 is
bipartite, and look at the probability that 𝜎𝑛 induces an
odd cycle in 𝑮𝑛+1).

4 | Proofs

4.1 | Notation and Definitions

All logarithms are in base 𝑒 unless otherwise noted. For two
sequences 𝑓(𝑛), 𝑔(𝑛), we write 𝑓 = 𝑜(𝑔) if lim |𝑓(𝑛)|∕|𝑔(𝑛)| → 0.
For natural numbers 𝑛, 𝑘 ∈ ℕ, we set𝑁 = 2𝑛 and𝐾 = 2𝑘 . The set
of numbers 1, . . . , 𝑛 is denoted by [𝑛].

We denote the vertex set of 𝐺𝑛 by 𝑉𝑛 ∶= {0, 1}𝑛. For two sets
𝑆1, 𝑆2 ⊆ 𝑉𝑛, write 𝑆1 ∼ 𝑆2 if there are 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2 with
{𝑥, 𝑦} ∈ 𝐸(𝐺𝑛), and 𝑆1 ≁ 𝑆2 otherwise. We say that the edges
between two disjoint sets of vertices 𝐴, 𝐵 ⊆ 𝑉𝑛 constitute a
matching if every vertex in 𝐴 ∪ 𝐵 is adjacent to at most one such
edge. The set of neighbors of a vertex 𝑥 ∈ 𝑉𝑛 are denoted by
𝑁(𝑥), and the set of neighbors of a set of vertices 𝑆 ⊆ 𝑉𝑛 by
𝑁(𝑆) = ∪𝑥∈𝑆𝑁(𝑥).

Let 𝑥, 𝑦 ∈ 𝑉𝑛. The generation number of 𝑥 and 𝑦, denoted by
𝛾(𝑥, 𝑦), is defined as

𝛾(𝑥, 𝑦) ∶= 𝑛 −max {1 ≤ 𝑠 ≤ 𝑛|𝑥𝑖 = 𝑦𝑖∀𝑖 ≥ 𝑠}

that is, 𝑛 minus the longest common suffix of 𝑥 and 𝑦. If {𝑥, 𝑦} ∈

𝐸(𝐺𝑛) is an edge, then that edge is due to the permutation
𝜎𝛾(𝑥,𝑦)−1. Supposing that 𝛾(𝑥, 𝑦) = 𝑘, we then say that 𝑥 and 𝑦 are
𝑘-neighbors. Every vertex 𝑥 has exactly one 𝑘-neighbor for every
𝑘 ∈ [𝑛]; we denote it by 𝑁𝑘(𝑥).

For an integer 𝑟 > 0 and vertex 𝑣 ∈ 𝑉𝑛, denote by

𝐵(𝑣, 𝑟) ∶= {𝑧 ∈ 𝑉𝑛|∃ a path of at most 𝑟 edges from 𝑣 to 𝑧}

the ball of radius 𝑟 around 𝑣, and by

𝐵<𝑘(𝑣, 𝑟) ∶= {𝑧 ∈ 𝑉𝑛|∃a path 𝑃 of at most 𝑟 edges from

𝑣 to 𝑧 s.t.𝛾(𝑥, 𝑦) < 𝑘∀{𝑥, 𝑦} ∈ 𝐸(𝑃)}

the 𝑟-neighborhood of 𝑣 obtained by paths which only use edges
of generations smaller than 𝑘.

For 1 ≤ 𝑠 < 𝑛, the graph 𝐺𝑛 contains multiple disjoint instances
of graphs 𝐺𝑠. Indeed, let 𝑧 ∈ {0, 1}𝑛−𝑠, and define

𝑉𝑧
𝑛 ∶=

{
(𝑦, 𝑧) ∈ 𝑉𝑛

||𝑦 ∈ {0, 1}𝑠
}

(4)

Then the induced graph on𝑉𝑧
𝑛 is an instance of𝐺𝑠 (when the con-

struction is deterministic, or in the case of the duplicube, these
instances are all isomorphic). The sets 𝑉𝑧

𝑛 are disjoint for differ-
ent 𝑧, and partition the vertices of 𝐺𝑛. For a vertex 𝑥 ∈ 𝑉𝑛, let
𝐼𝑠(𝑥) be the set 𝑉𝑧

𝑛 which contains 𝑥; it is the set of all vertices in
𝐺𝑛 which share a suffix with 𝑥 of size at least 𝑛 − 𝑠, that is,

𝐼𝑠(𝑥) ∶= {𝑦 ∈ 𝑉𝑛|𝛾(𝑥, 𝑦) ≤ 𝑠}

Note that ||𝐼𝑠(𝑥)|| = 2𝑠. See Figure 3 for a visual aid. Finally, for
a set 𝑆 ⊆ 𝑉𝑛, we denote by 𝜕𝑘𝑆 the boundary due to the first 𝑘

generations of edges, that is,

𝜕𝑘𝑆 = {𝑥 ∉ 𝑆|∃𝑦 ∈ 𝑆, {𝑥, 𝑦} ∈ 𝐸(𝐺𝑛), 𝛾(𝑥, 𝑦) ≤ 𝑘}

We often write 𝜕𝑆 instead of 𝜕𝑛𝑆 for brevity.

4.2 | The Diameter

The proof of Theorem 1 resembles the proof of Dudek et al. [4]
for the independent twisted hypercube.

Proof of Theorem 1. The main idea of the proof is to show
that with high probability, for every 𝑣 ∈ 𝑉𝑛, the ball around 𝑣

of radius 𝑛

2 log2 𝑛
+ 𝑂

(
𝑛

log22𝑛

)
contains ≥ 𝑛2𝑛∕2 vertices in the copy

of 𝑮𝑛−1 which contains 𝑣. If this holds, then the diameter is
𝑛

log2 𝑛
+ 𝑂

(
𝑛

log22𝑛

)
: for every 𝑣 ∈ 𝑉0

𝑛, 𝑢 ∈ 𝑉1
𝑛, denote by 𝑆𝑛−1

𝑣 , 𝑆𝑛−1
𝑢

the balls around 𝑣, 𝑢 in 𝑮𝑛−1. The probability that 𝑆𝑛−1
𝑣 , 𝑆𝑛−1

𝑢 are
connected by the last permutation is

1 −

(
2𝑛−1−𝑛2𝑛∕2

𝑛2𝑛∕2

)
(

2𝑛−1

𝑛2𝑛∕2

) ≥ 1 −

(
1 −

𝑛2(𝑛−1)∕2

2𝑛−1

)𝑛2(𝑛−1)∕2

≥ 1 − 𝑒−𝑛2

FIGURE 3 | Each large rectangle represents the same graph 𝐺𝑛 , with the same vertex 𝑥 highlighted. The partition into instances of 𝐺𝑠 is shown for

𝑠 ∈ {𝑛 − 1, 𝑛 − 2, 𝑛 − 3} while highlighting 𝐼𝑠(𝑥).
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By a union bound, with high probability every two such balls are

connected, so we can find a path of length 𝑛

log2 𝑛
+ 𝑂

(
𝑛

log22𝑛

)
from

𝑣 to 𝑢. If 𝑣, 𝑢 are in the same 𝑉𝑖
𝑛 then we use the path from 𝑣 to

𝜎𝑛−1(𝑢) and go from 𝜎𝑛−1(𝑢) to 𝑢 via one additional edge.

Hence we shall show that for any fixed 𝑣 ∈ 𝑉, the ball of radius
𝑛

2 log2 𝑛
+ 𝑂

(
𝑛

log22𝑛

)
contains ≥ 𝑛2𝑛∕2 vertices in the copy of 𝑮𝑛−1

which contains 𝑣, with probability 1 − 𝑜
(
𝑛2−2𝑛

)
. Beginning with

an empty graph on𝑉 = {0, 1}𝑛, we add edges by revealing the val-
ues of the permutations 𝜎𝑘 one-by-one, as follows. Set 𝑞 = 0.9𝑛.

1. Initiate a queue 𝑄 and insert 𝑣 ∈ 𝑄.

2. While 𝑄 ≠ ∅:
Take out the first𝑢 ∈ 𝑄 and for every 𝑖 = 𝑞, 𝑞 + 1, . . . , 𝑛 − 2:
a. Let 𝑢 = (𝑢1, 𝑏, 𝑢2) so that 𝑢1 ∈ {0, 1}𝑖 . If 𝑏 = 0, set 𝜋 = 𝜎𝑖 ,

and otherwise set 𝜋 = 𝜎−1
𝑖
; then, if 𝜋(𝑢1) wasn’t previ-

ously revealed, reveal it. This is called the revealing step.
b. For every 𝑢′ ∈ {0, 1}𝑛−1−𝑖 , we add all edges

{(𝑢1, 𝑏, 𝑢′), (𝜋(𝑢1), 1 − 𝑏, 𝑢′)}.
c. For every vertex 𝑤 that was connected to 𝑢 and was not
previously added to 𝑄, we add 𝑤 ∈ 𝑄.

3. After 𝑄 is empty reveal all other edges in an arbitrary order.

We note that when revealing an entry 𝜎𝑖(𝑢) or 𝜎−1
𝑖

(𝑢), we in fact

add 2𝑛−1−𝑖 edges to 𝑮𝑛 that come from the different copies of the
𝑖th generation duplicube. We say that a vertex 𝑢 is discovered at
step 𝑘, if one of the edges revealed in the 𝑘th step is the first edge
that is adjacent to 𝑢 (where 𝑘 refers to the number of times we
have done step (2a)). Let 𝐺′ be the subgraph of 𝑮𝑛 whose edges
are only the edges of generations 𝑖 ≥ 𝑞. Let 𝑆𝑗 be the set of ver-
tices 𝑢 ∈ 𝑉 so that 𝑑𝐺′ (𝑣, 𝑢) = 𝑗 and so that if 𝑢 was discovered
at step 𝑘, then no vertex with the same 0.9𝑛-prefix of 𝑢 was dis-
covered previously. Finally, fix 𝑟0 to be the smallest integer so that
𝑛𝑟0 ≥ 20.1𝑛 and let 𝑟1 be the smallest integer so that (𝑛∕1000)𝑟1 ≥
1000𝑛2𝑛∕2. Clearly 𝑟0 = 0.1𝑛

log2 𝑛
+ 𝑂(1) and 𝑟1 = 𝑛

2 log2 𝑛
+ 𝑂

(
𝑛

log22𝑛

)
.

We will analyze the growth of 𝐹(𝑗) =
|||𝑆𝑗
||| separately for 𝑗 ≤ 𝑟0

and 𝑟0 < 𝑗 ≤ 𝑟1 starting with 𝑗 ≤ 𝑟0. We say that the 𝑘th step is
bad if 𝑢 = (𝑢1, 𝑏, 𝑢2) was the vertex taken out of 𝑄, the value 𝑥 =

𝜎±1
𝑖

(𝑢1)was revealed, and there exists a vertex𝑤whose prefix is 𝑥

that was discovered in a previous step. At the first phase, we will
show that there are very few bad steps. First we calculate a bound
on the number of steps 𝑚 while the distance between 𝑣 and the
vertex that was taken out of the queue in the step is of distance
𝑗 ≤ 𝑟0. Namely,

𝑚 ≤ (𝑛 − 𝑞)

𝑟0∑
𝑗=1

(𝑛 − 𝑞 − 1)𝑗 ≤ 2𝑛(0.1𝑛)𝑟0 ≤ 20.11𝑛

Moreover, for the 𝓁th step for 𝓁 ≤ 𝑚, the probability that 𝓁 is a
bad step is at most

𝑝
𝓁
≤ 𝓁(𝑛 − 𝑞) + 1

20.9𝑛 − 1 − 𝓁(𝑛 − 𝑞)

where the numerator is the number of previously discovered ver-
tices (which upper bounds the number of prefixes discovered),
and the denominator is the number of choices left. We note that

the probability of choosing a given prefix is not uniform, but if a
given prefix has already been chosen it only decreases its proba-
bility to be chosen again. This is at most

𝑝
𝓁
≤ 𝑛20.11𝑛

20.899𝑛
≤ 2−0.78𝑛

As this bound is uniform for all 𝓁 and the same bound holds true
for the conditional probability subject to any way of revealing the
first (𝓁 − 1) edges, the probability 𝑝 of having 𝑐 bad steps in the
first phase is at most

𝑝 ≤ (𝑚

𝑐

)
2−0.78𝑛𝑐 ≤ 20.11𝑛𝑐−0.78𝑛𝑐 = 2−0.67𝑐𝑛

Taking 𝑐 = 4 we get that this probability is 𝑜
(
2−2𝑛

)
. Let 𝑘 be a

step where the vertex taken out of 𝑄 is in 𝑆𝑗−1. If this 𝑘th step
is not bad, then 𝑆𝑗 grows by 1 due to a new vertex discovered,
and if there is a bad edge then it reduces the size by at most 2
(since there were at most two prefixes involved in choosing the
bad step). Therefore,

𝐹(1) ≥ 𝑛 − 𝑞 − 2𝑐 ≥ (𝑛∕1000)

𝐹(2) ≥ (𝐹(1) − 2𝑐)(𝑛 − 𝑞) ≥ 0.1𝑛(0.001𝑛 − 8) ≥ (𝑛∕1000)2

. . .

𝐹(𝑟0) ≥ (𝐹(𝑟0 − 1) − 2𝑐)(𝑛 − 𝑞)

≥ ((𝑛∕1000)𝑟0−1 − 8
)
0.1𝑛 ≥ (𝑛∕1000)𝑟0

During the second phase, we don’t expect there to be no bad
steps, but as the set 𝑆𝑗 is already quite large, we expect that 𝑆𝑗

will still grow by an 𝑛

1000
-factor. Indeed, conditioned on 𝐹(𝑗) ≥

(𝑛∕1000)𝑗 ≥ 20.005𝑛,we show that 𝐹(𝑗 + 1) ≥ 𝑛

1000
𝐹(𝑗)with prob-

ability ≥ 1 − 𝑜
(
2−2𝑛

)
. When all these events occur, we can con-

clude that𝐹(𝑟1) ≥ 𝑛2𝑛∕2 with probability 1 − 𝑜
(
𝑛2−2𝑛

)
. Fix 𝑗 > 𝑟0

and let 𝑋 be a random variable counting the number of bad steps
exposed from the vertices of 𝑆𝑗 . The number of new vertices we

discovered up to this step is atmost 𝑛𝑗 (and this is also a bound for
the number of prefixes discovered). For every step in this phase,
the probability that it is bad is at most

𝑝′ ≤ 𝑛𝑗

20.9𝑛 − 𝑛𝑗

and as 𝑛𝑗 ≤ 𝑛𝑟1 ≤ 20.51𝑛, this is at most 𝑛𝑗

20.6𝑛
. We can bound 𝑋

from above with a
(
𝐹(𝑗), 𝑛𝑗

20.6𝑛

)
-binomially distributed random

variable. Thus𝔼[𝑋] ≤ 𝐹(𝑗) 𝑛𝑗

20.6𝑛
= 𝑜(𝐹(𝑗)). Furthermore, by Cher-

noff’s bound on binomial variables

ℙ[𝑋 ≥ 𝐹(𝑗)∕10000] ≤ 𝑒−Ω(𝐹(𝑗)) ≤ 𝑜
(
2−2𝑛

)

When this event doesn’t occur, then

𝐹(𝑗 + 1) ≥ (𝐹(𝑗) − 2𝑋)(𝑛 − 𝑞) ≥ 0.9998

⋅ 𝐹(𝑗) ⋅ 0.1𝑛 ≥ 𝐹(𝑗)
𝑛

1000

as required.
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Remark. As mentioned before, the proof of Theorem 1 is an
adaptation of the proof in Dudek et al. [4] for the small diam-
eter of the independent twisted hypercube. The main change
is that in this proof, revealing the value of a permutation
𝜎𝑘(𝑢1) (for 𝑢1 ∈ {0, 1}𝑘) reveals many edges between (𝑢1, 0, 𝑢2)
to (𝜎𝑘(𝑢1), 1, 𝑢2). Hence, instead of accounting for the number of
vertices already discovered,we account for the number of prefixes
already discovered.

Proof of Theorem 2. The proof is by induction. For the base
cases, let 𝛾 > 0 to be chosen later, and let 𝑘∗ = 𝛾 log𝑛 log log𝑛.
by Proposition 1, for all 𝑛 ≤ 𝑘∗ we have

𝐷(𝑮𝑛) ≤ 𝑛 ≤ log log 𝑘∗ 𝑛

log log𝑛

≤ 𝐶 log log log𝑛
𝑛

log log𝑛

and so (3) holds with probability 1 for𝐶 large enough (depending
on 𝛾).

For the induction step, let 𝑛 > 𝑘∗. By increasing 𝛾, we may
assume that 𝑛 is larger than any given global constant; this will
ensure that inequalities which hold only when 𝑛 is large enough
indeed hold. For an integer 𝑘 ≥ 1 and 𝑧 ∈ {0, 1}𝑛, let 𝑮𝑧

𝑘 be the
induced graph on 𝐼𝑘(𝑧); this is an instance of 𝑮𝑘 . Denote by 𝐸𝑧

𝑘

the event that 𝐷
(
𝑮𝑧

𝑘

) ≤ 𝐶𝑘
log log log 𝑘

log log 𝑘
, and assume that 𝐸𝑧

𝑘
holds

for every 𝑘 = 1, . . . , 𝑛 − 1 and every 𝑧 ∈ {0, 1}𝑛. Let 𝑥, 𝑦 ∈ 𝑉𝑛.
If 𝑥𝑛 = 𝑦𝑛, that is, the two vertices are in the same half of the
graph 𝑮𝑛, then by the induction hypothesis, 𝐷

(
𝑮𝑥

𝑛−1

) ≤ 𝐶(𝑛 −

1)
log log log(𝑛−1)

log log(𝑛−1)
, and we certainly have 𝑑𝑮𝑛

(𝑥, 𝑦) ≤ 𝐶𝑛
log log log𝑛

log log𝑛
.

For the case 𝑥𝑛 = 1 − 𝑦𝑛, that is, the two vertices are in opposite
sides of the graph 𝑮𝑛, we’ll show that for a not-too-large radius,
the spheres around 𝑥 and 𝑦 contain enough vertices, so that with
high probability there is an edge between them induced by 𝜎𝑛−1.

Given a vertex 𝑣 ∈ 𝑉𝑛 and any integers 𝑡 ≥ 𝑠 ≥ 0, let 𝑀(𝑣, 𝑠, 𝑡) =

{(𝑁𝑘(𝑣), 𝑘)|𝑠 ≤ 𝑘 ≤ 𝑡} be the set of neighbors of 𝑣 whose edge to
𝑣 was added at times 𝑠 ≤ 𝑘 ≤ 𝑡, along with their generation num-
ber. Note that for (𝑧, 𝑘) ∈ 𝑀(𝑣, 𝑠, 𝑡), the set 𝐼𝑘(𝑧) is contained
in 𝐼𝑡+1(𝑣), and that since each 𝑘-neighbor is added at a differ-
ent generation, the sets {𝐼𝑘(𝑧)}(𝑧,𝑘)∈𝑀(𝑣,𝑠,𝑡) are all mutually disjoint
(see Figure 4). We can therefore iteratively apply the function
𝑀(𝑣, 𝑠, 𝑡) to obtain a large set of disjoint vertices.

More formally, let 𝑠,𝓁 > 0 be integers, and consider a subset𝑆
𝓁
(𝑥)

of the sphere of radius 𝓁 around 𝑥, defined as follows:

𝑆0(𝑥) = {(𝑥, 𝑛 − 1)}

𝑆𝑖(𝑥) =
⋃

(𝑧,𝑡)∈𝑆𝑖−1(𝑥)

𝑀(𝑧, 𝑠, 𝑡 − 1)

By the remark above, the sets {𝐼𝑠(𝑧)}(𝑧,𝑡)∈𝑆
𝓁
(𝑥) are all disjoint,

and so the set 𝑈(𝑥) ∶= ∪(𝑧,𝑡)∈𝑆
𝓁
(𝑥)𝐼𝑠(𝑧) has cardinality 2𝑠||𝑆𝓁

(𝑥)||.
Define 𝑆

𝓁
(𝑦) and 𝑈(𝑦) similarly. Write the values of 𝑠 and 𝓁 as

𝑠 = 𝑛

2
− 1

2
𝛼(𝑛) and 𝓁 = 𝑛

𝛽(𝑛)
, for some functions 𝛼, 𝛽 ∶ ℕ → ℕ to

be chosen later. Assuming that there is a vertex 𝑢 ∈ 𝑈(𝑥) which
is connected to 𝑣 ∈ 𝑈(𝑦), the distance between 𝑥 and 𝑦 can be
bounded as follows:

FIGURE 4 | The entire rectangle represents the graph 𝐼𝑡+1(𝑣). Each

neighbor𝑁𝑘(𝑣) is contained in 𝐼𝑘(𝑁𝑘(𝑣)), and these 𝐼𝑘(𝑁𝑘(𝑣)) are all dis-

joint.

FIGURE 5 | If𝑈(𝑥) is connected to𝑈(𝑦), we have a path from 𝑥 to 𝑦.

The red dotted lines represent an optimal path within 𝑮𝑠 .

𝑑𝑮𝑛
(𝑥, 𝑦) ≤ 2𝓁 + 𝐷

(
𝑮𝑢

𝑠

)
+ 𝐷

(
𝑮𝑣

𝑠

)
+ 1 (5)

where 𝓁 bounds the distance to go from 𝑥 to a vertex 𝑧 in 𝑆
𝓁
(𝑥),

𝐷
(
𝑮𝑢

𝑠

)
bounds the distance from 𝑧 to 𝑢, and 1 is the distance from

𝑢 to 𝑣 (see Figure 5).

We now analyze 𝐷
(
𝑮𝑢

𝑠

)
+ 𝐷

(
𝑮𝑣

𝑠

)
. By choice of 𝑠, we have

2𝐶
𝑠

log log 𝑠
= 2𝐶

𝑛

2
− 1

2
𝛼(𝑛)

log log
(

𝑛

2
− 1

2
𝛼(𝑛)

)

(assume 𝛼(𝑛)≤ 1

2
𝑛)≤ 𝐶

𝑛 − 𝛼(𝑛)

log log
(

𝑛

4

)

= 𝐶
𝑛
(
1 − 𝛼(𝑛)

𝑛

)

log log𝑛 + log
(
1 −

log 4

log𝑛

)

≤ 𝐶
𝑛
(
1 − 𝛼(𝑛)

𝑛

)

log log𝑛 −
2 log 4

log𝑛

= 𝐶
𝑛

log log𝑛

1 − 𝛼(𝑛)

𝑛

1 −
2 log 4

log𝑛 log log𝑛

≤ 𝐶
𝑛

log log𝑛

(
1 −

𝛼(𝑛)

𝑛

)(
1 +

6

log𝑛 log log𝑛

)

≤ 𝐶
𝑛

log log𝑛

(
1 +

6

log𝑛 log log𝑛
−

𝛼(𝑛)

𝑛

)
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Since we assume that 𝐸𝑢
𝑠 and 𝐸𝑣

𝑠 hold, that is, that

𝐷
(
𝑮𝑣

𝑠

)
, 𝐷
(
𝑮𝑢

𝑠

) ≤ 𝐶𝑠
log log log 𝑠

log log 𝑠
≤ 𝐶𝑠

log log log𝑛

log log 𝑠
, we have

𝐷
(
𝑮𝑢

𝑠

)
+ 𝐷

(
𝑮𝑣

𝑠

)

≤ 𝐶𝑛
log log log𝑛

log log𝑛

(
1 +

6

log𝑛 log log𝑛
−

𝛼(𝑛)

𝑛

)

Choosing 𝛼(𝑛) = 17𝑛

log𝑛
then gives

𝐷
(
𝑮𝑢

𝑠

)
+ 𝐷

(
𝑮𝑣

𝑠

) ≤ 𝐶𝑛
log log log𝑛

log log𝑛

(
1 −

1

log𝑛

)

Choosing also 𝛽(𝑛) =
log 2

18
log𝑛 log log𝑛, so that 𝓁 =

18

log 2

𝑛

log𝑛 log log𝑛
, by (5) we have that

𝑑𝑮𝑛
(𝑥, 𝑦) ≤ 36

log 2

𝑛

log𝑛 log log𝑛

+ 𝐶𝑛
log log log𝑛

log log𝑛

(
1 −

1

log𝑛

)
+ 1

(for 𝐶 large enough) ≤ 𝐶𝑛
log log log𝑛

log log𝑛

All that remains is to bound the probability of the event

{𝑈(𝑥) ∼ 𝑈(𝑦)∀𝑥, 𝑦 ∈ 𝑉𝑛} from below. We do this using a union
bound. The number of vertices in 𝑆

𝓁
(𝑥) can readily be seen

to be

𝑛−1∑
𝑘1=𝑠

𝑘1−1∑
𝑘2=𝑠

𝑘2−1∑
𝑘3=𝑠

. . .

𝑘
𝓁−1−1∑
𝑘
𝓁
=𝑠

1 =

𝑛−𝑠−1∑
𝑘1=1

𝑘1−1∑
𝑘2=1

𝑘2−1∑
𝑘3=1

. . .

𝑘
𝓁−1−1∑
𝑘
𝓁
=1

1

This is the number of decreasing positive integer sequences of
length 𝓁, whose maximum entry is bounded by 𝑛 − 𝑠 − 1. Since
every choice of 𝓁 integers can be ordered in a unique fashion,
we have

||𝑆𝓁
(𝑥)|| =

(
𝑛 − 𝑠 − 1

𝓁

)

=

(
𝑛

2
+ 1

2
𝛼(𝑛) − 1

𝑛∕𝛽(𝑛)

)

≥
( 𝑛

2
+ 1

2
𝛼(𝑛) − 1

𝑛∕𝛽(𝑛)

)𝑛∕𝛽(𝑛)

≥
(

𝛽(𝑛)

2

)𝑛∕𝛽(𝑛)

= exp

(
(log 𝛽(𝑛) − log 2)

𝑛

𝛽(𝑛)

)

(Assume𝑛0 large so that log 𝛽(𝑛) ≥ 2 log 2)

≥ exp

(
𝑛 log 𝛽(𝑛)

2𝛽(𝑛)

)

The collection 𝑈(𝑥) = ∪(𝑧,𝑡)∈𝑆
𝓁
(𝑥)𝐼𝑠(𝑧) has size at least

|𝑈(𝑥)| = 2𝑠||𝑆𝓁
(𝑥)|| ≥ 2

𝑛

2
− 1

2
𝛼(𝑛)+

log 2

2

𝑛 log 𝛽(𝑛)

𝛽(𝑛)

Denoting𝑈 = |𝑈(𝑥)| = |𝑈(𝑦)|, the probability that the sets𝑈(𝑥)

and 𝑈(𝑦) are disconnected at the 𝑛th step is therefore bounded
from above by

ℙ[𝑈(𝑥) ≁ 𝑈(𝑦)]

=

(
2𝑛−1−𝑈

𝑈

)
(
2𝑛−1

𝑈

)

=

(
2𝑛−1 − 𝑈

)(
2𝑛−1 − 𝑈 − 1

)
· · ·

(
2𝑛−1 − 2𝑈 + 1

)

2𝑛−1
(
2𝑛−1 − 1

)
· · ·

(
2𝑛−1 − 𝑈 + 1

)

(AM-GM inequality)

≤
(
2𝑛−1 − 3𝑈−1

2

)𝑈

(
2𝑛−1 − 𝑈

)𝑈

=

(
1 −

1

2

𝑈 − 1

2𝑛−1 − 𝑈

)𝑈

≤ (1 −
𝑈 − 1

2𝑛

)𝑈

≤ exp
(
−𝑈2∕2𝑛 + 𝑈∕2𝑛

)

≤ exp

(
−2

−𝛼(𝑛)+log 2
𝑛 log 𝛽(𝑛)

𝛽(𝑛)
+𝑜(1)

)

Plugging in our choice of 𝛼(𝑛) and 𝛽(𝑛), we get

ℙ[𝑈(𝑥) ≁ 𝑈(𝑦)] ≤ exp
⎛⎜⎜⎝
−2

− 17𝑛

log𝑛
+log 2

𝑛 log( log 2
18 log𝑛 log log𝑛)

log 2
18 log𝑛 log log𝑛

+𝑜(1)⎞⎟⎟⎠
≤ exp

(
−2

− 17𝑛

log𝑛
+ 18𝑛

log𝑛
(1+𝑜(1))

)

= exp
(
−2

𝑛

log𝑛
(1+𝑜(1))

)

≤ exp
(
−2

𝑛

2 log𝑛

)

for 𝑛 large enough. As there are no more than 22𝑛 = 𝑒2𝑛 log 2

choices for the pairs 𝑥, 𝑦, this gives

ℙ[∃𝑥, 𝑦 s.t. 𝑈(𝑥) ≁ 𝑈(𝑦)] ≤ exp
(
−2

𝑛

2 log𝑛 + 2𝑛 log 2
)

≤ exp
(
−2

𝑛

4 log𝑛

)

for 𝑛 large enough. Let 𝐸𝑘 = ∪𝑧∈{0,1}𝑛 𝐸
𝑧
𝑘
. We have thus shown

that
ℙ[𝐸𝑛|𝐸1, . . . , 𝐸𝑛−1] ≥ 1 − exp

(
−2

𝑛

4 log𝑛

)

Since there are 2𝑛−𝑘 instances of 𝑮𝑘 in 𝑮𝑛, and recalling
that ℙ[𝐸𝑘] = 1 for 𝑘 ≤ 𝑘∗, by repeated conditioning we thus
have

ℙ[𝐸𝑛] ≥ 1 −

𝑛∑
𝑘=𝑘∗

exp
(
−2

𝑘

4 log 𝑘

)
2𝑛−𝑘

≥ 1 −

𝑛∑
𝑘=𝑘∗

exp
(
−2

𝑘

4 log 𝑘 + 𝑛 log 2
)
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By choosing 𝛾 large enough, for 𝑘 ≥ 𝑘∗ we have

𝑘

4 log 𝑘
≥ 𝑘∗

4 log 𝑘∗
=

𝛾 log𝑛 log log𝑛

4 log(𝛾 log𝑛 log log𝑛)

≥ 2 log2 𝑛

and so

ℙ[𝐸𝑛] ≥ 1 −

𝑛∑
𝑘=𝑘∗

𝑒−𝑛

4.3 | Vertex Expansion

The proof of Theorem 3 relies on the observation that a set 𝑆 ⊆ 𝑉𝑛

sampled uniformly at random will be an 𝛼-vertex expander with
high probability (for some small constant 𝛼 > 0), since a con-
stant fraction of the edges of 𝜎𝑛−1 will go from 𝑆 to its comple-
ment. This alone is not enough, since there are always sets of the
form 𝑆 = 𝑆0 ∪ 𝑆1, where 𝑆0 ⊆ 𝑉0

𝑛 (recall (4) for the definition of
𝑉𝑧

𝑛) and 𝑆1 = {𝑁𝑛(𝑥)|𝑥 ∈ 𝑆0}. To overcome this, we look at edges
coming from the last three permutations, 𝜎𝑛−1, 𝜎𝑛−2, 𝜎𝑛−3, and
bound the number of sets 𝑆 ⊆ 𝑉𝑛 so that the boundary that comes
from 𝜎𝑛−3-edges isn’t large enough. Afterwards we apply a union
bound over these sets to bound the probability that they have a
small 𝜎𝑛−1- and 𝜎𝑛−2-boundary.

More precisely, sets which have a small contribution to their
boundary at the 𝑘th generation are defined as follows.

Definition 4. (Badly-matched sets). Let 𝑥 ∈ {0, 1}𝑘 . Let
𝐴 ⊆ 𝑉0

𝑘
, 𝐵 ⊆ 𝑉1

𝑘
. We say that 𝐴, 𝐵 are (𝑘, 𝛼)-badly-matched if

2||𝑥 ∈ 𝐴|𝑁𝑘(𝑥) ∈ 𝐵||
|𝐴| + |𝐵| ≥ (1 − 𝛼)

Remark 8. If 𝐴, 𝐵 are badly-matched, then ||𝐴| − |𝐵|| ≤
𝛼(|𝐴| + |𝐵|). This is because if, say, |𝐴| > |𝐵| + 𝛼(|𝐴| + |𝐵|) then
even when all edges from 𝐵 go into 𝐴 there will still be 𝛼(|𝐴| +
|𝐵|) edges between 𝐴 and 𝑉1

𝑘
⧵ 𝐵. This implies that

2||𝑥 ∈ 𝐴|𝑁𝑘(𝑥) ∈ 𝐵|| ≤ 2|𝐵| < (1 − 𝛼)(|𝐴| + |𝐵|)

If𝐴, 𝐵 are not badly-matched, then ||𝜕𝑘(𝐴 ∪ 𝐵)|| > 𝛼|𝐴 ∪ 𝐵|, since
||𝜕𝑘(𝐴 ∪ 𝐵)|| = |𝐴| + |𝐵| − 2||𝑥 ∈ 𝐴|𝑁𝑘(𝑥) ∈ 𝐵||, so the set 𝐴 ∪ 𝐵

has 𝛼-expansion. If 𝐴, 𝐵 are (𝑘, 𝛼)-badly-matched, then they are
also (𝑘, 𝛼′)-badly-matched for every 𝛼′ ≥ 𝛼.

As alluded to above, we start by bounding the possible number
of badly-matched sets in generation 𝑛 − 2, for any permutation
𝜎𝑛−3; this is the content of Proposition 4. We then bound the
probability that said badly-matched sets are also badly-matched
in generations 𝑛 − 1 and 𝑛; this is the content of Proposition 5.
The last claim we need for the proof is that sets of size 𝑂(𝑛) have
non-trivial vertex expansion regardless of the permutation. The
proofs of all assertions are found at the end of the section.

Recall that for an integer 𝑘 > 0, we set 𝐾 ∶= 2𝑘 . In addi-
tion, denote by 𝐻(𝑥) = −𝑥 log𝑥 − (1 − 𝑥) log(1 − 𝑥) the binary
entropy function.

Proposition 4. There exists a function 𝛿 ∶ ℝ → ℝ with

lim𝑥→0 𝛿(𝑥) = 0, that depends on 𝜂, such that the following holds.
Let 0 < 𝛼 ≤ 1

2
, and let 𝑘, 𝑗 > 0 be integers so that 𝑗 ≤ 𝜂𝐾. For

any permutation 𝜎𝑘−1, the number of (𝑘, 𝛼)-badly-matched sets

𝐴 ⊆ 𝑉0
𝑘
and 𝐵 ⊆ 𝑉1

𝑘
such that (1 − 𝛼) 𝑗

2
≤ |𝐴|, |𝐵| ≤ (1 + 𝛼) 𝑗

2
is

smaller than

5𝛼3𝐾32
𝐾

2
(1+𝛿(𝛼))𝐻( 𝑗

𝐾
)+𝑗𝛿(𝛼)

Proposition 5. There exists a function 𝛿 ∶ ℝ → ℝ with

lim𝑥→0 𝛿(𝑥) = 0 that depends on 𝜂, such that the following holds.
Let 0 < 𝛼 ≤ 1

2
, and let 𝑘, 𝑗 > 0 be integers so that 𝑗 ≤ 𝜂𝐾. Let

𝐴 ⊆ 𝑉0
𝑘
and 𝐵 ⊆ 𝑉1

𝑘
be such that (1 − 𝛼) 𝑗

2
≤ |𝐴|, |𝐵| ≤ (1 + 𝛼) 𝑗

2
.

If the permutations 𝜎 are uniformly random, then

ℙ[𝐴, 𝐵 are (𝑘, 𝛼)-badly-matched] ≤ 3𝛼𝐾22− 𝐾

2
(1−𝛿(𝛼))𝐻( 𝑗

𝐾
)+𝛿(𝛼)𝑗

(6)

Claim 1. Let 𝑐 > 3. Then there is some 𝑛0 ∈ ℕ so that for every
𝑛 > 𝑛0 and every 𝑆 ⊆ 𝑉𝑛 so that |𝑆| ≤ 𝑐𝑛,

|𝜕𝑆| ≥ 1

𝑐2
|𝑆|

Proof of Theorem 3. Fix 𝜂 > 0 and let 𝛼 ∈ (0, 1∕2] be chosen
later. We define 𝐹𝑛 to be the event that 𝑮𝑛 is not an (𝜂, 𝛼)-vertex
expander. We will show that

lim
𝑛→∞

ℙ[𝐹𝑛] = 0

We will bound

ℙ[𝐹𝑛] ≤
𝜂𝑁∑
𝑗=0

ℙ[∃𝑆 s.t. |𝑆| = 𝑗 and |𝜕𝑆| < 𝛼|𝑆|] (7)

By Claim 1, it is enough to start this sum with 𝑗 = 𝑐𝑛, as long as
𝛼 ≤ 1

𝑐2
. The constant 𝑐 will be determined at the end of the proof.

Thus the right-hand side of (7) is equal to

𝜂𝑁∑
𝑗=𝑐𝑛

ℙ[∃𝑆 s.t. |𝑆| = 𝑗 and |𝜕𝑆| < 𝛼|𝑆|]

Let 𝑆 ⊆ 𝑉𝑛 with |𝑆| = 𝑗. For 𝑥 ∈ {0, 1}𝑘 , denote 𝑆𝑥 = 𝑆 ∩ 𝑉𝑥
𝑛 . If

the sets𝑆0, 𝑆1 are not (𝑛, 𝛼)-badly-matched, then byRemark 8, the
edges from 𝜎𝑛−1 are enough to guarantee a large boundary, that
is, the set 𝑆 has 𝛼-expansion. This happens in particular when
||||𝑆1|| − ||𝑆0|||| ≥ 𝛼|𝑆|. We may thus restrict ourselves to 𝑆 that sat-
isfy ||𝑆𝑖

|| ≥ 1

2
(1 − 𝛼)|𝑆|. Thus

(1 − 𝛼)
𝑗

2
≤ ||𝑆𝑖

|| ≤ (1 + 𝛼)
𝑗

2
(8)

for every 𝑖 ∈ {0, 1}. Similarly, if 𝑆𝑖0,, 𝑆𝑖1 are not (𝑛 −

1, 3𝛼)-badly-matched for any 𝑖 ∈ {0, 1}, then ||𝜕𝑛−1(𝑆𝑖0 ∪ 𝑆𝑖1)|| ≥
3𝛼||𝑆𝑖

|| ≥ 3

2
𝛼(1 − 𝛼)|𝑆|, which is larger than 𝛼|𝑆| for 𝛼 small

enough. This happens in particular when ||||𝑆𝑖1
|| − ||𝑆𝑖0

|||| ≥ 3𝛼||𝑆𝑖
||.

We may thus further restrict ourselves to 𝑆 that satisfy|||𝑆𝑖𝑗
||| ≥ 1

2
(1 − 3𝛼)||𝑆𝑖

||, which means that

(1 − 3𝛼)(1 − 𝛼)
𝑗

4
≤ |||𝑆𝑖𝑗

||| ≤ (1 + 3𝛼)(1 + 𝛼)
𝑗

4
(9)

for every 𝑖, 𝑗 ∈ {0, 1}.
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Finally, if there is are sets 𝑆𝑖𝑗0, 𝑆𝑖𝑗1 for some 𝑖, 𝑗 ∈ {0, 1} that are
not (𝑛 − 2, 5𝛼)-badly-matched, then for 𝛼 small enough we have|||𝜕𝑛−2

(
𝑆𝑖𝑗0 ∪ 𝑆𝑖𝑗1

)||| ≥ 𝛼|𝑆|, and we can assume that

(1 − 5𝛼)(1 − 3𝛼)(1 − 𝛼)
𝑗

8
≤ |||𝑆𝑖𝑗

||| ≤ (1 + 5𝛼)(1 + 3𝛼)(1 + 𝛼)
𝑗

8

In particular, this happens when

(1 − 10𝛼)
𝑗

8
≤ |||𝑆𝑖𝑗

||| ≤ (1 + 10𝛼)
𝑗

8

Thus, to bound ℙ[∃𝑆 s.t. |𝑆| = 𝑗 and |𝜕𝑆| < 𝛼|𝑆|], we only need
to consider sets 𝑆 whose all four pairs 𝑆𝑖𝑗0, 𝑆𝑖𝑗1 are (𝑛 − 2, 10𝛼)

badly-matched; any other set has 𝛼-expansion by Remark 8. By
Proposition 4, with 𝑘 = 𝑛 − 2, for each 𝑖, 𝑗 ∈ {0, 1} there are at

most 5000𝛼3𝑁32
𝑁

8
(1+𝛿(10𝛼))𝐻

(
𝑗

𝑁

)
+𝑗𝛿(10𝛼)

sets 𝑆𝑖𝑗 such that 𝑆𝑖𝑗0, 𝑆𝑖𝑗1

are (𝑛 − 2, 10𝛼)-badly-matched, so there are at most

(
5000𝛼3𝑁32

𝑁

8
(1+𝛿(10𝛼))𝐻

(
𝑗

𝑁

)
+𝑗𝛿(10𝛼)

)4

= 50004𝛼12𝑁122
𝑁

2
(1+𝛿(10𝛼))𝐻

(
𝑗

𝑁

)
+4𝑗𝛿(10𝛼)

possible sets to consider. Thus

ℙ[∃𝑆 s.t. |𝑆| = 𝑗 and |𝜕𝑆| < 𝛼|𝑆|]

≤ 50004𝛼12𝑁122
𝑁

2
(1+𝛿(10𝛼))𝐻

(
𝑗

𝑁

)
+4𝑗𝛿(10𝛼)

⋅

⋅max
𝑆

ℙ[𝑆 does not have 𝛼-expansion] (10)

where 𝑆 is restricted as above. To bound the probability, observe
that for any fixed 𝑆 ⊆ 𝑉𝑛,

ℙ[𝑆 does not have 𝛼-expansion]

≤ ℙ[𝑆0, 𝑆1 are (𝑛, 𝛼)-badly-matched

and 𝑆00, 𝑆01 are (𝑛 − 1, 3𝛼)-badly-matched]

As the event {𝑆0, 𝑆1 are badly-matched} depends only on the per-
mutation 𝜎𝑛−1 and {𝑆00, 𝑆11 are badly-matched} depends only on
the permutation 𝜎𝑛−2, these two events are independent. By the
relations (8) and (9), we can apply Proposition 5, yielding

ℙ[𝑆 does not have 𝛼-expansion]

≤ ℙ[𝑆0, 𝑆1 are not (𝑛, 𝛼)-badly-matched]

⋅ ℙ[𝑆00, 𝑆01 are not (𝑛 − 1, 3𝛼)-badly-matched]

≤ 3𝛼𝑁22
− 𝑁

2
(1−𝛿(𝛼))𝐻

(
𝑗

𝑁

)
+𝛿(𝛼)𝑗

⋅ 3𝛼𝑁22
− 𝑁

4
(1−𝛿(3𝛼))𝐻

(
𝑗

𝑁

)
+𝛿(3𝛼)𝑗

For simplicity, in the next inequalitieswe unify all the expressions
of the form 𝛿(𝑐𝛼) appearing in the exponents to 𝛿(𝛼) (that goes to
0 as 𝛼 → 0). Using (10), we get that,

ℙ[∃𝑆 s.t. |𝑆| = 𝑗 and |𝜕𝑆| < 𝛼|𝑆|]

≤ 9 × 50004𝛼14𝑁162𝛿(𝛼)𝑗(2
1

4
(1−𝛿(𝛼)))

−𝑁𝐻
(

𝑗

𝑁

)

Note that we abused notation. Plugging this back in (7) we get

ℙ[𝐹𝑛] ≤ 9 × 50004𝛼14𝑁16
𝜂𝑁∑

𝑗=𝑐𝑛

2𝛿(𝛼)𝑗
(
2

1

4
(1−𝛿(𝛼))

)−𝑁𝐻
(

𝑗

𝑁

)

(11)

We take 𝛼 so that 𝛿(𝛼) < 1

2
and get that 2

1

4
(1−𝛿(𝛼)) ≥ 2

1

8 . In addi-

tion, we use the well known inequality 𝐻(𝑥) ≥ 4𝑥(1 − 𝑥) to
bound the right-hand side of (11) from above by

9 × 50004𝛼14𝑁16
𝜂𝑁∑

𝑗=𝑐𝑛

2𝛿(𝛼)𝑗2− 𝑗

2
(1−𝜂)

= 9 × 50004𝛼14𝑁16
𝜂𝑁∑

𝑗=𝑐𝑛

2− 𝑗

2
(1−𝜂−2𝛿(𝛼))

Finally, by taking 𝛼 so that 1 − 𝜂 − 2𝛿(𝛼) ≥ 1−𝜂

2
and taking 𝑐 so

that 2
𝑐𝑛∕2

2
( 1−𝜂

2
) ≥ 𝑁16 = 216𝑛 we get that the sum on the right-hand

side is at most

9 × 50004𝛼14𝑁162−
𝑐𝑛∕2

2
( 1−𝜂

2
)

∞∑
𝑗= 𝑐

2
𝑛

2− 𝑗

4
(1−𝜂)

≤ 9 × 50004𝛼14
∞∑

𝑗= 𝑐

2
𝑛

2− 𝑗

4
(1−𝜂)

=
9

1 − 2−(1−𝜂)∕4
⋅ 50004𝛼142− 𝑐𝑛

8
(1−𝜂)

Thus,

ℙ[𝐹𝑛] ≤ 9

1 − 2−(1−𝜂)∕4
⋅ 50004𝛼142− 𝑐𝑛

8
(1−𝜂)

This tends to 0 as 𝑛 → ∞.

Proof of Proposition 4. We can count the subsets𝐴 ⊆ 𝑉0
𝑘
, 𝐵 ⊆

𝑉1
𝑘
by first choosing a set of edges of the 𝑘th matching that

are connected to 𝐴 ∪ 𝐵. For each chosen edge {𝑥, 𝑦} where 𝑥 ∈

𝑉0
𝑘
, 𝑦 ∈ 𝑉1

𝑘
we decide whether 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, or 𝑥 ∈ 𝐴, 𝑦 ∉ 𝐵 or

𝑥 ∉ 𝐴, 𝑦 ∈ 𝐵. For sets that are (𝑘, 𝛼)-badly matched, our count
yields the following.

1. The number of edges that are adjacent to 𝐴 ∪ 𝐵 is at least
(1 − 𝛼) 𝑗

2
(the lower bound is achieved when |𝐴| = |𝐵| =

(1 − 𝛼) 𝑗

2
and 𝑁𝑘(𝐴) = 𝐵). It is at most (1 + 𝛼) 𝑗

2
+ 2𝛼(1 +

𝛼) 𝑗

2
(since there could be at most (1 + 𝛼) 𝑗

2
that cross from

𝐴 to 𝐵, and no more than 2𝛼(1 + 𝛼) 𝑗

2
additional edges that

are adjacent to only one of 𝐴, 𝐵, since 𝐴, 𝐵 are supposed
to be (𝑘, 𝛼)-badly matched). Since (1 + 𝛼) 𝑗

2
+ 2𝛼(1 + 𝛼) 𝑗

2
≤

(1 + 4𝛼) 𝑗

2
for 𝛼 ≤ 1

2
, using the relation

(
𝑛

𝑘

) ≤ 2𝑛𝐻(𝑘∕𝑛), the

number of possible choices for edges adjacent to 𝐴 ∪ 𝐵 is
at most

(1+4𝛼) 𝑗

2∑
𝓁=(1−𝛼) 𝑗

2

(
𝐾

2

𝓁

)
≤

(1+4𝛼) 𝑗

2∑
𝓁=(1−𝛼) 𝑗

2

2
𝐾

2
𝐻( 𝓁

𝐾∕2
)

≤
(1+4𝛼) 𝑗

2∑
𝓁=(1−𝛼) 𝑗

2

2
𝐾

2
𝐻
(

𝑗

𝐾

)
+ 𝐾

2

(
𝐻
(

𝓁

𝐾∕2

)
−𝐻

(
𝑗∕2

𝐾∕2

))
(12)

By Lagrange’s mean-value theorem, 𝐾

2
(𝐻
(

𝓁

𝐾∕2

)
−

𝐻
(

𝑗∕2

𝐾∕2

)
) =

(
𝓁 − 𝑗

2

)
𝐻′(𝜉) = −

(
𝓁 − 𝑗

2

)
log 𝜉

1−𝜉
for some
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𝜉 between 𝓁

𝐾∕2
and

𝑗∕2

𝐾∕2
. Thus we can write 𝜉 = 𝑐′ 𝑗∕2

𝐾∕2
for

some (1 − 𝛼) ≤ 𝑐′ ≤ (1 + 4𝛼), and we have

|||||

(
𝓁 −

𝑗

2

)
𝐻′(𝜉)

|||||
≤ 4𝛼𝑗||𝐻′(𝜉)||
= 4𝛼𝑗| log 𝜉 − log(1 − 𝜉)| (13)

We now bound the logarithms. Since 𝜉 = 𝑐′ 𝑗

𝐾
≤ 𝑐′𝜂, we

have that − log(1 − 𝜉) ≤ − log(1 − 𝑐′𝜂); the quantity on the
right-hand side is just a constant (provided that 𝛼 is small
enough so that (1 + 4𝛼)𝜂 < 1). For | log 𝜉|, we have

4𝛼𝑗| log 𝜉| = 4𝛼𝑗
|||||
log

(
𝑐′ 𝑗

𝐾

)|||||
≤ 4𝛼𝑗||log 𝑐′|| + 4𝛼𝑗 log

𝑗

𝐾

= 4𝛼𝑗||log 𝑐′|| + 8
𝐾

2
𝛼

𝑗

𝐾
log

𝑗

𝐾

≤ 4𝛼𝑗||log 𝑐′|| + 8
𝐾

2
𝛼𝐻

(
𝑗

𝐾

)

Thus, there exists a constant 𝑐 > 0 (that depends on 𝜂)
such that

|||||

(
𝓁 −

𝑗

2

)
𝐻′(𝜉)

|||||
≤ 𝑐𝛼𝑗 + 𝑐𝛼

𝐾

2
𝐻

(
𝑗

𝐾

)

for some 𝑐 > 0 that depends on 𝜂. Thus the left-hand side in
(12) is at most

5𝛼𝐾2(1+𝑐𝛼) 𝐾

2
𝐻( 𝑗

𝐾
)+𝑐𝛼𝑗 (14)

2. Then we choose out of the edges adjacent to 𝐴 ∪ 𝐵 the
edges that touch 𝐴 only, and the edges that touch 𝐵 only.
As 𝐴, 𝐵 are (𝑘, 𝛼)-badly matched, at least a (1 − 𝛼)-fraction
of the edges must touch both 𝐴 and 𝐵, so no more than
an 𝛼-fraction of the edges are available to touch only one
of the sets. Assuming that 𝛼 < 1∕4, the number of possi-
bilities (for a given edge set chosen in the previous step) is
at most

𝛼(1+4𝛼) 𝑗

2∑
𝓁𝐴=0

(
(1 + 4𝛼) 𝑗

2

𝓁𝐴

)𝛼(1+4𝛼) 𝑗

2∑
𝓁𝐵=0

(
(1 + 4𝛼) 𝑗

2

𝓁𝐵

)

≤ (𝛼𝑗)2
⎛
⎜⎜⎝

(1 + 4𝛼) 𝑗

2

𝛼(1 + 4𝛼) 𝑗

2

⎞
⎟⎟⎠

2

≤ 𝛼2𝐾222𝑗𝐻(𝛼) (15)

Multiplying (14) and (15), and setting 𝛿(𝛼) = 2𝐻(𝛼) + 𝑐𝛼, the
number of badly-matched pairs is bounded by

5𝛼3𝐾32
𝐾

2
(1+𝛿(𝛼))𝐻( 𝑗

𝐾
)+𝛿(𝛼)𝑗

◽

Proof of Proposition 5. To bound the probability in (6), we go
over all possible subsets 𝐴′ ⊆ 𝐴 and sum the probability that the
set of outgoing edges from 𝐴′ is some set 𝐵′ ⊆ 𝐵. Since 𝐴 and

𝐵 both have sizes in the interval
[
(1 − 𝛼) 𝑗

2
, (1 + 𝛼) 𝑗

2

]
, the size of

𝐴′, 𝐵′ should be at least (1 − 𝛼)(1 − 𝛼) 𝑗

2
≥ (1 − 2𝛼) 𝑗

2
. The proba-

bility is bounded by

(1+𝛼) 𝑗

2∑
𝓁=(1−2𝛼) 𝑗

2

∑
𝐴′⊆𝐴,𝐵′⊆𝐵

|𝐴′ |=|𝐵′ |=𝓁

ℙ
[
𝑁𝑘(𝐴

′) = 𝐵′
]

=

(1+𝛼) 𝑗

2∑
𝓁=(1−2𝛼) 𝑗

2

∑
𝐴′⊆𝐴,𝐵′⊆𝐵

|𝐴′ |=|𝐵′ |=𝓁

1(
𝐾

2

𝓁

)

≤
(1+𝛼) 𝑗

2∑
𝓁=(1−2𝛼) 𝑗

2

∑
𝐴′⊆𝐴,𝐵′⊆𝐵

|𝐴′ |=|𝐵′ |=𝓁

𝐾

2
2

− 𝐾

2
𝐻( 𝓁

𝐾∕2
)

(
assuming 𝛼< 1

5

)

≤
(1+𝛼) 𝑗

2∑
𝓁=(1−2𝛼) 𝑗

2

⎛⎜⎜⎝
(1 + 𝛼) 𝑗

2

(1 − 2𝛼) 𝑗

2

⎞⎟⎟⎠

2

𝐾

2
2

− 𝐾

2
𝐻( 𝓁

𝐾∕2
)

≤ 22(1+𝛼) 𝑗

2
𝐻( 1−2𝛼

1+𝛼
) 𝐾

2

(1+𝛼) 𝑗

2∑
𝓁=(1−2𝛼) 𝑗

2

2
− 𝐾

2
𝐻( 𝓁

𝐾∕2
)

(16)

By Lagrange’s mean-value theorem, we write

𝐾

2
𝐻

(
𝓁

𝐾∕2

)
=

𝐾

2
𝐻

(
𝑗

𝐾

)
+

𝐾

2

(
𝐻

(
𝓁

𝐾∕2

)

−𝐻

(
𝑗∕2

𝐾∕2

))
=

𝐾

2
𝐻

(
𝑗

𝐾

)
+

(
𝓁 −

𝑗

2

)
𝐻′(𝜉)

for some 𝜉 between 𝓁

𝐾∕2
and

𝑗∕2

𝐾∕2
.As |𝓁 − 𝑗

2
| ≤ 𝛼𝑗, we bound (𝓁 −

𝑗

2
)𝐻′(𝜉) by 𝛼𝑗|𝐻′(𝜉)|. Write 𝜉 = 𝑐′ 𝑗

𝐾
for some 1 − 2𝛼 ≤ 𝑐′ ≤ 1 +

2𝛼. Then (similar to (13) in the proof of the previous proposition)

||||(𝓁 −
𝑗

2
)𝐻′(𝜉)

|||| ≤ 𝑐𝛼𝑗 + 𝑐𝛼
𝐾

2
𝐻

(
𝑗

𝐾

)

for some constant 𝑐 > 0 which only depends on 𝜂. Thus (16) is
at most

2
2(1+𝛼) 𝑗

2
𝐻
(
1−2𝛼

1+𝛼

)
𝐾

2

(1+𝛼) 𝑗

2∑
𝓁=(1−2𝛼) 𝑗

2

2− 𝐾

2
(1−𝛿(𝛼))𝐻( 𝑗

𝐾
)+𝛿(𝛼)𝑗

≤ 3𝛼𝐾22− 𝐾

2
(1−𝛿(𝛼))𝐻( 𝑗

𝐾
)+𝛿(𝛼)𝑗

where 𝛿(𝛼) = max
{

(1 + 𝛼)𝐻
(
1−2𝛼

1+𝛼

)
, 𝑐𝛼

}
. ◽

Proof of Claim 1. For every vertex 𝑣 ∈ 𝑉𝑛, the second neigh-
borhood of 𝑣, 𝐴𝑛(𝑣) ∶= {𝑢 ∈ 𝑉𝑛|𝑑(𝑣, 𝑢) = 2}, is of size at least(

𝑛

2

)
. This can be seen by induction. The base case for 𝑛 =

2 is clear. Assume without loss of generality that 𝑣 ∈ 𝑉0
𝑛 and

partition 𝐴𝑛(𝑣) =
(
𝐴𝑛(𝑣) ∩ 𝑉0

𝑛

)
∪
(
𝐴𝑛(𝑣) ∩ 𝑉1

𝑛

)
. Note that in the

instance of 𝐺𝑛−1 whose vertex set is 𝑉0, the second neigh-
borhood of 𝑣 is 𝐴𝑛−1(𝑣) = 𝐴𝑛(𝑣) ∩ 𝑉0

𝑛. Thus, by the induction

hypothesis, ||𝐴𝑛(𝑣) ∩ 𝑉0
𝑛
|| ≥

(
𝑛−1

2

)
. In addition, 𝐴𝑛(𝑣) ∩ 𝑉1

𝑛 con-

tains the neighborhood of𝑁𝑛(𝑣) inside𝑉1
𝑛, which is of size 𝑛 − 1.

Summing up sizeswe get ||𝐴𝑛(𝑣)|| ≥
(

𝑛−1

2

)
+
(

𝑛−1

1

)
=
(

𝑛

2

)
.Note

that for the hypercube 𝑄𝑛 we have strict equality.

Now fix 𝑆 ⊆ 𝑉𝑛 of size at most 𝑐𝑛 and let 𝑣 ∈ 𝑆. If a 1

𝑐
-fraction of

the neighborhood of 𝑣 is not in 𝑆 then |𝜕𝑆| ≥ 1

𝑐
𝑛 ≥ 1

𝑐2
|𝑆|. Other-

wise, at least (1 − 1

𝑐
)-fraction of 𝑣’s neighbors are inside 𝑆. Denote
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these vertices as 𝑇 ∶= 𝑁(𝑣) ∩ 𝑆. Thus |𝜕𝑆| ≥ |𝑁(𝑇)| − |𝑆|. Since
the neighborhood of 𝑣 is 𝐴𝑛(𝑣) ∪ {𝑣}, the neighborhood of 𝑇 is of
size at least

||𝐴𝑛(𝑣)|| − 𝑛|𝑁(𝑣) ⧵ 𝑆| ≥ (𝑛

2

)
−
1

𝑐
𝑛2 ≥ 1

7
𝑛2

Hence |𝜕𝑆| ≥ 1

7
𝑛2 − 𝑐𝑛 ≥ 1

𝑐2
|𝑆| for a large enough 𝑛. ◽

4.4 | Eigenvalues

Proof of Proposition 3. Since 𝐺𝑛 is 𝑛-regular, its largest eigen-
value 𝜆1 is 𝑛, and its corresponding eigenvector 𝑓𝑛 ∶ {0, 1}𝑛 → ℝ

satisfies 𝑓𝑛(𝑥) = 1. To show that 𝜆2 ≥ 𝑛 − 2, let 𝑔𝑛 ∶ {0, 1}𝑛 → ℝ

be given by

𝑔𝑛(𝑥) = (−1)𝑥𝑛

that is, 𝑔𝑛 takes value 1 on the first instance of𝐺𝑛−1 in𝐺𝑛, and−1
on the second instance. Then 𝐴𝑛𝑔𝑛 = (𝑛 − 2)𝑔𝑛.

The proof that 𝜆2 ≤ 𝑛 − 2 is by induction. The claim clearly holds
for 𝑛 = 1, where 𝐺1 is just an edge. Assume it holds for all 𝑘 ≤
𝑛 − 1, and let ℎ ∶ {0, 1}𝑛 → ℝ be an eigenvector of 𝐴𝑛 that is
orthogonal to both 𝑓𝑛 and 𝑔𝑛. If we write

ℎ(𝑥) =

{
ℎ0(𝑥1, . . . , 𝑥𝑛−1) 𝑥𝑛 = 0

ℎ1(𝑥1, . . . , 𝑥𝑛−1) 𝑥𝑛 = 1

for some functions ℎ𝑖 ∶ {0, 1}𝑛−1
→ ℝ, then both ℎ0 and ℎ1 are

orthogonal to 𝑓𝑛−1, and by the induction hypothesis, we have

ℎ𝑇
𝑖
𝐴𝑛−1ℎ𝑖 ≤ (𝑛 − 3)‖‖ℎ𝑖

‖‖22. Using the recursive matrix representa-
tion (1) of the twisted hypercube graph, we can write

ℎ𝑇𝐴𝑛ℎ =
(
ℎ𝑇
0 ℎ𝑇

1

)(𝐴0
𝑛−1 𝑃

𝑃𝑇 𝐴1
𝑛−1

)(
ℎ0

ℎ1

)

where 𝑃 is the 2𝑛−1 × 2𝑛−1 permutation matrix representing
𝜎𝑛−1, and 𝐴0

𝑛−1 and 𝐴1
𝑛−1 are the adjacency matrices of the two

instances of 𝐺𝑛−1. Explicitly opening the products, we get

ℎ𝑇𝐴𝑛ℎ =
(
ℎ𝑇
0 ℎ𝑇

1

)( 𝐴0
𝑛−1ℎ0 + 𝑃ℎ1

𝑃𝑇ℎ0 + 𝐴1
𝑛−1ℎ1

)

= ℎ𝑇
0𝐴0

𝑛−1ℎ0 + ℎ𝑇
0 𝑃ℎ1 + ℎ𝑇

1 𝑃𝑇ℎ0 + ℎ𝑇
1𝐴1

𝑛−1ℎ1

≤ (𝑛 − 3)‖‖ℎ0‖‖22 + 2ℎ𝑇
0 𝑃ℎ1 + (𝑛 − 3)‖‖ℎ1‖‖22

= (𝑛 − 3)||ℎ||22 + 2ℎ𝑇
0 𝑃ℎ1 ≤ (𝑛 − 3)||ℎ||22 + 2‖‖ℎ0‖‖2‖‖ℎ1‖‖2

≤ (𝑛 − 3)||ℎ||22 + ‖‖ℎ0‖‖22 + ‖‖ℎ1‖‖22 = (𝑛 − 2)||ℎ||22
◽

Proof of Lemma 1. In the following,𝐶 is a constant depending
on 𝑘 whose value may change from instance to instance. A set of
edges 𝐹 ⊆ 𝐸(𝑮𝑛) is said to be “finalized at generation 𝑚” if for
every edge {𝑥, 𝑦} ∈ 𝐹, 𝛾(𝑥, 𝑦) ≤ 𝑚, and there exists at least one
edge such that 𝛾(𝑥, 𝑦) = 𝑚. For a given 𝑢 ∈ 𝑉𝑛, let𝑤 = 𝑁𝑚(𝑢) be
its 𝑚-neighbor, and let 𝐸𝑚(𝑢) be event that there exists a cycle
of length no more than 𝑘 which contains the edge {𝑢, 𝑤} and is
finalized at generation 𝑚.

We will now bound the probability of the event 𝐸𝑚(𝑢). Since
𝐼𝑚−1(𝑢) ≠ 𝐼𝑚−1(𝑤), that is, 𝑢 and 𝑤 are found on different copies
of𝑉𝑚−1, in order for a cycle of length≤ 𝑘 to exist, there must also
be an 𝑚-generation edge going from 𝐼𝑚−1(𝑤) back to 𝐵<𝑚(𝑢, 𝑘);
otherwise, any path starting with the edge {𝑢, 𝑤} cannot reach 𝑢

again. In fact, this edge must be reachable from 𝑤 in at most 𝑘

steps. Let 𝑊 be the set of all 𝑧 ∈ 𝐼𝑚−1(𝑤) such that there exists a
simple path 𝑃 = (𝑥1, . . . , 𝑥𝑡) with the following properties:

1. 𝑃 is a shortest path from 𝑤 to 𝑧, and 𝑡 ≤ 𝑘.

2. 𝛾
(
𝑥𝑖 , 𝑥𝑖+1

) ≤ 𝑚 for all 𝑖 = 1, . . . , 𝑡 − 1.

3. 𝛾(𝑥𝑡−1, 𝑥𝑡) < 𝑚.

4. 𝑃 does not contain the edge {𝑢, 𝑤}.

In other words, 𝑊 is the set of all vertices in 𝐼𝑚−1(𝑤) which can
be reached from 𝑤 by a path of at most 𝑘 edges of generation at
most𝑚, and which can still send out an𝑚-generation edge with-
out backtracking. If there are no edges from𝑊 to 𝐵<𝑚(𝑢, 𝑘), then
there is no cycle of length≤ 𝑘 which contains {𝑢, 𝑤} (see Figure 6
for a graphical depiction).

Given 𝑧 ∈ 𝑊, the probability that 𝑁𝑚(𝑧) ∈ 𝐵<𝑚(𝑢, 𝑘) depends
only on the 𝑚-generation edges used in the path 𝑃. Since 𝜎𝑚−1

is uniform, we can bound this probability by

ℙ
[
𝑁𝑚(𝑧) ∈ 𝐵<𝑚(𝑢, 𝑘)|𝑧 ∈ 𝑊

] ≤ ||𝐵<𝑚(𝑢, 𝑘)||
max

{
1, 2𝑚−1 − 𝑘

} ≤ 𝐶
𝑚𝑘+1

2𝑚

for some 𝐶 > 0 which depends on 𝑘 (we subtract 𝑘 in the denom-
inator, since in the worst case the path from 𝑤 to 𝑧 has at most 𝑘
𝑚-generation edges from 𝐼𝑚−1(𝑤) to 𝐼𝑚−1(𝑢) ⧵ 𝐵<𝑚(𝑢, 𝑘)). Since
there are at most 𝑚𝑘+1 vertices in 𝑊, taking the union bound
gives

ℙ[𝐸𝑚(𝑢)] ≤ 𝐶
𝑚2𝑘+2

2𝑚

Letting 𝐸𝑚 = ∪𝑢∈𝐵(𝑣,2𝑘)𝐸𝑚(𝑢), we then have

ℙ[𝐸𝑚] ≤ 𝐶
𝑚2𝑘+2

2𝑚 𝑛2𝑘+1

FIGURE 6 | There can be a cycle containing the edge {𝑢, 𝑤} only if

there is an 𝑚-generation edge crossing from some 𝑧 ∈ 𝑊 to 𝐵<𝑚(𝑢, 𝑘).

Since both 𝐵<𝑚(𝑢, 𝑘) and𝑊 are small in comparison to 𝐼𝑚−1(𝑢), the prob-

ability of this happening is small.
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In particular, there exists a constant 𝐶 > 0 such that

∑
𝑚>𝑚0

ℙ[𝐸𝑚] ≤ 𝐶2−𝑚0𝑚2𝑘+2
0 𝑛2𝑘+1

If a vertex 𝑧 ∈ 𝐵(𝑣, 𝑘) is part of a cycle of length at most 𝑘 which
is finalized at generation 𝑚, then necessarily there exists some
𝑢 ∈ 𝐵(𝑣, 2𝑘) such that 𝐸𝑚(𝑢) holds. Thus, if 𝐸𝑐

𝑚 holds for every
𝑚 > 𝑚0, then 𝑧 can only be contained in cycles of length at most
𝑘 which are finalized at generation ≤ 𝑚0. The number of such
cycles is bounded by

𝑚0∑
𝑚=1

𝑘∑
𝑖=1

𝑚𝑖 ≤
𝑚0∑

𝑚=1

𝑘𝑚𝑘 ≤ 𝐶𝑚𝑘+1
0

for some constant 𝐶 > 0. The probability of 𝐹𝑣 is then lower
bounded by

ℙ[𝐹𝑣] ≥ ℙ
[
∩𝑚>𝑚0

𝐸𝑐
𝑚

]

= 1 − ℙ
[
∪𝑚>𝑚0

𝐸𝑚

]

≥ 1 −
∑

𝑚>𝑚0

ℙ[𝐸𝑚]

≥ 1 − 𝐶2−𝑚0𝑚2𝑘+2
0 𝑛2𝑘+1

as needed.

Proof of Theorem 4. We use the moment method. While the
main technique is classical (see e.g., [17]), we write the proof in
full for completeness.

Proving that 𝜇𝑛 converges weakly to 𝜇circ in probability means
that for every continuous function 𝑓 ∶ ℝ → ℝ, we have conver-
gence in probability of the expected value of 𝑓:

∫
ℝ

𝑓𝑑𝜇𝑛

𝑃
−−→ ∫

ℝ

𝑓𝑑𝜇circ (17)

as 𝑛 → ∞. By the Weierstrass theorem, every continuous func-
tion on a closed interval can be arbitrarily well-approximated by
a finite-degree polynomial. Since 𝜇circ is supported on a bounded
interval, it suffices to show (17) for functions of the form 𝑓𝑘 = 𝑥𝑘 ,
that is, showing that the 𝑘th moments of 𝜇𝑛 converge the to 𝑘th
moments of 𝜇circ. These moments are known, and are given by

∫
ℝ

𝑥𝑘𝑑𝜇circ =

{
𝐶𝑘∕2 𝑘 is even

0 𝑘 is odd

where 𝐶𝑚 is the 𝑚th Catalan number, and is equal to the num-
ber of ordered rooted trees with 𝑚 edges. We will first show that
𝔼 ∫

ℝ
𝑥𝑘𝑑𝜇𝑛 → ∫

ℝ
𝑥𝑘𝑑𝜇circ, and then show that Var

(∫
ℝ

𝑥𝑘𝑑𝜇𝑛

)
→

0; byChebyshev’s inequality, this implies the desired convergence
in probability.

Since 𝜇𝑛 is just the empirical measure of the eigenvalues of

𝐴∕
√

𝑛, we have

∫
ℝ

𝑥𝑘𝑑𝜇𝑛 =
1

2𝑛

2𝑛∑
𝑖=1

(
𝜆𝑖√
𝑛

)𝑘

=
1

2𝑛 Tr

(
𝐴√
𝑛

)𝑘

=
1

2𝑛

1

𝑛𝑘∕2

2𝑛∑
𝑖1 , . . . ,𝑖𝑘=1

𝐴𝑖1𝑖2
𝐴𝑖2𝑖3

· · · 𝐴𝑖𝑘−1𝑖𝑘
𝐴𝑖𝑘 𝑖1

For a fixed 𝑖1, the sum
∑

𝑖2 , . . . ,𝑖𝑘
𝐴𝑖1𝑖2

· · · 𝐴𝑖𝑘 𝑖1
is the number of

walks of length 𝑘 in 𝑮𝑛 that start and end at the vertex 𝑖1. Let
𝑋𝑣(𝑡) be the simple random walk on 𝑮𝑛 which starts at vertex 𝑣.
Then, since 𝑮𝑛 is 𝑛-regular, the number of simple random walks
of length 𝑘 is 𝑛𝑘 , and we have

∫
ℝ

𝑥𝑘𝑑𝜇𝑛 =
1

2𝑛 𝑛𝑘∕2
2𝑛∑
𝑖=1

ℙ[𝑋𝑖(𝑘) = 𝑖] (18)

where the probability is over the randomness induced by the ran-
dom walk. Taking expectations over the measure induced by the
permutations, we thus have, for any 𝑣 ∈ 𝑉𝑛,

𝔼∫
ℝ

𝑥𝑘𝑑𝜇𝑛 =
1

2𝑛 𝑛𝑘∕22𝑛
𝔼[ℙ[𝑋𝑣(𝑘) = 𝑣]]

= 𝑛𝑘∕2
𝔼[ℙ[𝑋𝑣(𝑘) = 𝑣]]

In the following, 𝐶 is a constant depending on 𝑘 whose value
may change from instance to instance. Let 𝑚0 = 8(𝑘 + 1) log2 𝑛.
By Lemma 1, with probability greater than 1 − 𝐶𝑛−𝑘 , the event𝐹𝑣

holds, that is, every vertex in 𝐵(𝑣, 𝑘) is contained in nomore than
𝐶𝑚𝑘+1

0 cycles of length at most 𝑘. By conditioning on 𝐹𝑛, we have

𝔼[ℙ[𝑋𝑣(𝑘) = 𝑣]] = 𝔼[ℙ[𝑋𝑣(𝑘) = 𝑣]|𝐹𝑛]ℙ[𝐹𝑛]

+ 𝔼
[
ℙ[𝑋𝑣(𝑘) = 𝑣]|𝐹𝑐

𝑛

]
ℙ
[
𝐹𝑐

𝑛

]

The second term on the right-hand side is bounded below by 0
and above by

𝔼
[
ℙ[𝑋𝑣(𝑘) = 𝑣]|𝐹𝑐

𝑛

]
ℙ
[
𝐹𝑐

𝑛

] ≤ ℙ
[
𝐹𝑐

𝑛

] ≤ 𝐶𝑛−𝑘 = 𝑜
(
𝑛−𝑘∕2

)

Since ℙ[𝐹𝑛] = 1 − 𝑜(1), we then have

𝔼[ℙ[𝑋𝑣(𝑘) = 𝑣]] = (1 + 𝑜(1))

𝔼[ℙ[𝑋𝑣(𝑘) = 𝑣]|𝐹𝑛] + 𝑜
(
𝑛−𝑘∕2

)

To bound this term, we will count the number of random walks
that return to the origin.

A step (𝑋𝑣(𝑡), 𝑋𝑣(𝑡 + 1)) is said to be a forward step if
𝑑𝑮𝑛

(𝑣, 𝑋𝑣(𝑡)) < 𝑑𝑮𝑛
(𝑣, 𝑋𝑣(𝑡 + 1)), and a backward step if

𝑑𝑮𝑛
(𝑣, 𝑋𝑣(𝑡)) ≥ 𝑑𝑮𝑛

(𝑣, 𝑋𝑣(𝑡 + 1)). By analyzing the combina-
torics of forward and backward steps, it was shown by McKay
[17, Lemma 2.1] that in an 𝑛-regular graph where every ball
𝐵(𝑣, 𝑘) has no cycles at all,

#{Walks of length 𝑘 which return to the origin}

= (1 + 𝑜(1))𝑛𝑘∕2𝐶𝑘∕2 (19)

We now show that under 𝐹𝑛, the number of walks in 𝑮𝑛 is of the
samemagnitude. Let𝓁 be the number of forward steps of thewalk
𝑋𝑣(𝑡) which are part of a cycle of length no larger than 𝑘, and
suppose that 𝑋𝑣(𝑘) = 𝑣.

If 𝓁 = 0, then the walk must make 𝑘∕2 forward steps and 𝑘∕2
backward steps, since it returns to the origin. This means that
𝑘 must be even, and the walk traces out a rooted tree with 𝑘∕2
edges. Since the number of cycleswith atmost 𝑘 edges is no larger
than𝐶(log𝑛)𝑘+1, there are at least 𝑛 − 𝐶(log𝑛)𝑘+1 − 1 choices for
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every forward step. By (19), the total number of walks with 𝓁 = 0
is then equal to

(1 + 𝑜(1))𝑛𝑘∕2𝐶𝑘∕2

when 𝑘 is even, and 0 when 𝑘 is odd.

If 𝓁 > 0, then the walk makes 𝓁 forward steps which are part of
a cycle, and no more than 𝑘∕2 − 𝓁 forward steps which are not
part of a cycle. There are no more than 𝑘 backward steps, and
each such step has no more than

(
𝐶(log𝑛)𝑘+1 + 1

)
options. In

total, the number of such walks is then bounded above by

(1 + 𝑜(1))𝑛𝑘∕2−𝓁
(
𝐶(log𝑛)𝑘+1

)𝑘+𝓁

= 𝑂
(
𝑛𝑘∕2−𝓁(log𝑛)4𝑘

)

Altogether, since the total number of walks of length 𝑘 is 𝑛𝑘 ,
we have

𝑛𝑘∕2
𝔼[ℙ[𝑋𝑣(𝑘) = 𝑣]]

= 𝑛𝑘∕2(1 + 𝑜(1))
1

𝑛𝑘

(
𝑛𝑘∕2𝐶𝑘∕2 +

𝑘∕2∑
𝑙=1

𝑂
(
𝑛𝑘∕2−𝓁(log𝑛)4𝑘

2
))

= (1 + 𝑜(1))𝐶𝑘∕2

as needed.

All that is left is to show that the variance is small. By (18), the
second moment of ∫ 𝑥𝑘𝑑𝜇𝑛 is given by

𝔼

[(
∫
ℝ

𝑥𝑘𝑑𝜇𝑛

)2
]

= 𝔼

⎡⎢⎢⎣

(
1

2𝑛 𝑛𝑘∕2
2𝑛∑
𝑖=1

ℙ[𝑋𝑖(𝑘) = 𝑖]

)2⎤⎥⎥⎦

= 𝔼

[
1

22𝑛
𝑛𝑘

2𝑛∑
𝑖,𝑗=1

ℙ[𝑋𝑖(𝑘) = 𝑖]ℙ
[
𝑋𝑗(𝑘) = 𝑗

]]

Set 𝑚0 = 16(𝑘 + 1) log2 𝑛. Recall that for a vertex 𝑣 ∈ 𝑉𝑛, 𝐹𝑣 is
the event that each vertex in 𝐵(𝑣, 𝑘) is contained in no more than
𝐶(𝑚0 + 1)𝑘+1 cycles of length no more than 𝑘. Denote 𝐹𝑖,𝑗 = 𝐹𝑖 ∩

𝐹𝑗 . By Lemma 1, ℙ
[
𝐹𝑖,𝑗

] ≥ 1 − 2𝐶2−𝑚0𝑚2𝑘+2
0 𝑛2𝑘+1. By the law of

total probability, we have

𝔼

[(
∫
ℝ

𝑥𝑘𝑑𝜇𝑛

)2
]

=
1

22𝑛

2𝑛∑
𝑖,𝑗=1

𝔼
[
𝑛𝑘

ℙ[𝑋𝑖(𝑘) = 𝑖]ℙ
[
𝑋𝑗(𝑘) = 𝑗

]|𝐹𝑖,𝑗

]
ℙ
[
𝐹𝑖,𝑗

]

+
1

22𝑛

2𝑛∑
𝑖,𝑗=1

𝔼

[
𝑛𝑘

ℙ[𝑋𝑖(𝑘) = 𝑖]ℙ
[
𝑋𝑗(𝑘) = 𝑗

]|𝐹𝑐
𝑖,𝑗

]
ℙ

[
𝐹𝑐

𝑖,𝑗

]

The second term on the right-hand-side is bounded below by 0
and above, due to the choice of 𝑚0, by 𝑜(1). Thus

𝔼

[(
∫
ℝ

𝑥𝑘𝑑𝜇𝑛

)2
]

= (1 + 𝑜(1))
1

22𝑛

×

2𝑛∑
𝑖,𝑗=1

𝔼
[
𝑛𝑘

ℙ[𝑋𝑖(𝑘) = 𝑖]ℙ
[
𝑋𝑗(𝑘) = 𝑗

]|𝐹𝑖,𝑗

]
+ 𝑜(1)

Using the same path-counting argument as above, by (19) we
have that under 𝐹𝑖,𝑗 ,

𝔼𝑛𝑘
ℙ[𝑋𝑖(𝑘) = 𝑖]ℙ

[
𝑋𝑗(𝑘) = 𝑗

]
= (1 + 𝑜(1))𝐶2

𝑘∕2

and taking the sum overall 𝑖 and 𝑗 shows that

𝔼

[(
∫
ℝ

𝑥𝑘𝑑𝜇𝑛

)2
]

= (1 + 𝑜(1))

(
𝔼∫

ℝ

𝑥𝑘𝑑𝜇𝑛

)2

which implies that Var
(∫

ℝ
𝑥𝑘𝑑𝜇𝑛

)
→ 0.

4.5 | Asymmetry

The proof of Theorem 5 relies on the following lemma, whose
proof we postpone to the end of this section.

Lemma 3. There exists a universal constant 𝐶 > 0 such that
the probability that there exists a decomposition of 𝑉𝑛 into two dis-

joint subsets other than 𝑉0
𝑛 ⊔ 𝑉1

𝑛 such that the edges between them

form a matching is smaller than 𝐶𝑛2−𝑛.

Proof of Theorem 5. Let 𝑋𝑛 be the number of automorphisms
of 𝑮𝑛. We partition these permutations into three kinds:

1. Automorphisms of𝑮𝑛 that swap between𝑉0
𝑛 and𝑉1

𝑛. Let𝑊𝑛

be the number of these automorphisms.

2. Automorphisms of 𝑮𝑛 that preserve both 𝑉0
𝑛 and 𝑉1

𝑛. Let 𝑌𝑛

be the number of these automorphisms. Note that 𝑌𝑛 ≥ 1,
since it always counts the trivial automorphism.

3. Automorphisms of 𝑮𝑛 that replace a proper subset 𝐴0 ⊆ 𝑉0
𝑛

with a proper subset 𝐴1 ⊆ 𝑉1
𝑛 of the same size (so that 𝑉0

𝑛 ⧵

𝐴0 and 𝑉1
𝑛 ⧵ 𝐴1 stay inside 𝑉0

𝑛 and 𝑉1
𝑛, respectively). Let 𝑍𝑛

be the number of these automorphisms.

If 𝜑 is a non-trivial automorphism of the third kind, then the
edges between 𝐴0 and 𝑉0

𝑛 ⧵ 𝐴0 form a matching, and the edges
between 𝐴1 and 𝑉1

𝑛 ⧵ 𝐴1 form a matching (since, e.g., if there
is a vertex 𝑣 ∈ 𝐴0 connected by more than one edge to 𝑉0

𝑛 ⧵

𝐴0, then 𝜑(𝑣) will have more than one edge across the main
cut). But then, letting 𝐴 ∶= 𝐴0 ⊔ 𝐴1 and 𝐵 = 𝑉𝑛 ⧵ 𝐴, we get
that the edges between 𝐴 and 𝐵 form a matching as well, giv-
ing a partition 𝑉𝑛 = 𝐴 ⊔ 𝐵 with a matching between them. By
Lemma 3, the probability that such a matching exists (and there-
fore, that there is a non-trivial automorphism swapping 𝐴0 and
𝐴1) is bounded by 𝑂(𝑛2−𝑛). Thus, denoting by 𝐹 the event 𝐹 ∶=

{∃𝑚 ∈ [𝑛∕20, 𝑛 − 1] s.t. 𝑍𝑚 > 0}, we have

ℙ[𝐹] = 𝑂
(
𝑛22−𝑛∕20

)
(20)

We turn to bound 𝑌𝑛, 𝑊𝑛. For brevity, we abbreviate 𝜎 ∶= 𝜎𝑛−1.
In the first two types, the values of an automorphism 𝜑 on 𝑉0

𝑛

determines the value of 𝜑 on all 𝑉𝑛. Explicitly, in the first case,
for every 𝑣 ∈ 𝑉𝑛−1, if we denote 𝜑(𝑣, 0) = (𝜑0(𝑣), 1) and 𝜑(𝑣, 1) =

(𝜑1(𝑣), 0), then we must have 𝜑0(𝑣) = 𝜎𝜑1𝜎(𝑣). For automor-
phisms of the second kind, we have similarly 𝜑0 = 𝜎−1𝜑1𝜎. In
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both cases it must be that 𝜑0, 𝜑1 ∈ Aut(𝑮𝑛−1). So in particular,
𝑊𝑛, 𝑌𝑛 ≤ 𝑋𝑛−1, and

𝑊𝑛 + 𝑌𝑛 ≤ 2𝑋𝑛−1 (21)

We first bound ℙ[𝑊𝑛 ≥ 1|𝑋𝑛−1]. By Markov’s inequality, this
is at most 𝔼[𝑊𝑛|𝑋𝑛−1]. Write out 𝑊𝑛 =

∑
𝜑0

∑
𝜑1

𝟏𝜑0∈Aut(𝑮𝑛−1)
⋅

𝟏𝜑1∈Aut(𝑮𝑛−1)
⋅ 𝟏𝜑0=𝜎𝜑1𝜎

, and in particular we have

𝔼[𝑊𝑛|𝑋𝑛−1]

≤ 𝑋2
𝑛−1max𝜑0 ,𝜑1

{ℙ𝜎[𝜑0 = 𝜎𝜑1𝜎]|𝜑0, 𝜑1 bijections of 𝑉𝑛−1}

Sowe need to boundℙ𝜎[𝜑0 = 𝜎𝜑1𝜎]. Denote𝐴0 = 𝑉𝑛−1. For 𝑣0 ∈

𝐴0, let 𝐸𝑣0
be the event that 𝜑0(𝑣0) = 𝜎𝜑1𝜎(𝑣0). In order for 𝐸𝑣0

to
hold,wemust have either i)𝐸𝑣0

∩ {𝜑1𝜎(𝑣0) = 𝑣0}holds, or ii)𝐸𝑣0
⧵

{𝜑1𝜎(𝑣0) = 𝑣0} holds. The probability of the first event is at most
the probability of 𝜑1𝜎(𝑣0) = 𝑣0, which equals 1∕2

𝑛−1, while the
probability of the second given that 𝜑1𝜎(𝑣0) ≠ 𝑣0 is

1

2𝑛−1−1
. In par-

ticular 𝐸𝑣0
holds with probability no greater than 2∕

(
2𝑛−1 − 1

)
.

Conditioned on 𝐸𝑣0
, the permutation 𝜎 is a uniform permuta-

tion over the set 𝐴1 = 𝐴0 ⧵ {𝑣0, 𝜑1𝜎(𝑣0)}, with ||𝐴1
|| ≥ ||𝐴0

|| − 2.
By iteratively conditioning on 𝐸𝑣0

, 𝐸𝑣1
, . . . , where 𝑣𝑖 ∈ 𝐴𝑖 , 𝑖 =

0, . . . , 2𝑛∕3 − 1, we have thatℙ[𝜑0 = 𝜎𝜑1𝜎] ≤ ( 2

2𝑛−1−21+(𝑛∕3)−1
)2

𝑛∕3 ≤
2−(𝑛−7)2𝑛∕3

. Hence

𝔼[𝑊𝑛|𝑋𝑛−1] ≤ 2−(𝑛−7)2𝑛∕3

⋅ 𝑋2
𝑛−1 (22)

Next we bound ℙ[𝑌𝑛 > 1|𝑋𝑛−1, 𝐹
𝑐]. Although the equation 𝜑0 =

𝜎−1𝜑1𝜎 seems similar to the analogous equation 𝜑0 = 𝜎𝜑1𝜎 for
𝑊𝑛, we shouldn’t expect the same argument to hold, since (for
example) even if 𝑋𝑛−1 = 1, we expect 𝑊𝑛 = 0, whereas 𝑌𝑛 ≥ 1
always since it counts the identity. The problem lies with auto-
morphisms with small conjugacy classes. For a given 𝜑1 and uni-
formly random 𝜎, the element 𝜎−1𝜑1𝜎 is a uniform element in the
conjugacy class of 𝜑1. The probability ℙ𝜎

[
𝜑0 = 𝜎−1𝜑1𝜎

]
is then

bounded by one over the size of the conjugacy class of 𝜑0 (it is 0 if
𝜑0 and 𝜑1 are not conjugate). The following claim, whose proof is
found at the end of the section, shows that under𝐹𝑐, these classes
must be large.

Claim 2. Assume that 𝐹𝑐 occurs. Then the conjugacy class for

every Id ≠ 𝜑 ∈ Aut(𝑮𝑛−1) has size at least 2
1

4
𝑛2𝑛∕4

.

As in the case of 𝑊𝑛, we have

ℙ[𝑌𝑛 > 1|𝑋𝑛−1, 𝐹
𝑐]

≤ 𝔼[𝑌𝑛 − 1|𝑋𝑛−1, 𝐹
𝑐]

≤ 𝔼
[
𝑋2

𝑛−1|𝐹𝑐
]

max
𝜑0 ,𝜑1∈Aut(𝑮𝑛−1)⧵{Id}

ℙ𝜎

[
𝜑0 = 𝜎−1𝜑1𝜎

]

≤ 𝔼
[
𝑋2

𝑛−1|𝐹𝑐
]
2− 1

4
𝑛2𝑛∕4

where the last inequality is due to Claim 2, since the maximum is

taken over elements with a conjugacy class of size at least 2
1

4
𝑛2𝑛∕4

.

Finally, under 𝐹𝑐, the only possible automorphisms for 𝑚 ∈

[𝑛∕20, 𝑛 − 1] are of the first two kinds, and by (21) we have

𝑋𝑛−1 ≤ 2𝑛−𝑛∕20−1𝑋𝑛∕20 ≤ 219𝑛∕20
(
2𝑛∕20

)
! ≤ 2𝑛+ 1

20
𝑛2𝑛∕20

(23)

Thus

ℙ[𝑋𝑛 > 1]

≤ ℙ[𝐹] + ℙ[𝐹𝑐 ∩ {𝑋𝑛 > 1}]

≤ ℙ[𝐹] + ℙ[𝑍𝑛 > 0] + ℙ[𝐹𝑐 ∩ {𝑊𝑛 > 0}] + ℙ[𝐹𝑐 ∩ {𝑌𝑛 > 1}]

≤ ℙ[𝐹] + ℙ[𝑍𝑛 > 0] + ℙ

[
𝑊𝑛 > 0, 𝑋𝑛−1 ≤ 2𝑛+ 1

20
𝑛2𝑛∕20

, 𝐹𝑐
]

+ ℙ

[
𝑌𝑛 > 1, 𝑋𝑛−1 ≤ 2𝑛+ 1

20
𝑛2𝑛∕20

, 𝐹𝑐
]

≤ ℙ[𝐹] + ℙ[𝑍𝑛 > 0] +
22𝑛+ 1

10
𝑛2𝑛∕20

2(𝑛−7)2𝑛∕3
+
22𝑛+ 1

10
𝑛2𝑛∕20

2
1

4
𝑛2𝑛∕4

= 𝑂
(
𝑛22−𝑛∕20

)

as needed.

Proof of Lemma 3. We start with some preliminaries which
will be of use later on in the proof. Let𝑉𝑛 = 𝑨 ⊔ 𝑩 be a uniformly
random partition of𝑉𝑛 into two halves of equal size, and let𝑉𝑛 =

𝑨′ ⊔ 𝑩′ be a partition where𝑨′ is a binomial random subset of𝑉𝑛

with success probability 1∕2. The difference between these two
random partitions can be quantified as follows: for any arbitrary
set Σ of equal-sized partitions of 𝑉𝑛, we have

ℙ[(𝑨, 𝑩) ∈ Σ] = ℙ
[(

𝑨′, 𝑩′
)

∈ Σ|||𝑨′|| = 2𝑛−1
]

(24)

≤ ℙ
[(

𝑨′, 𝑩′
)

∈ Σ
]

ℙ
[||𝑨′|| = 2𝑛−1

] (24)

The denominator in the right-hand side can be approximated by
the de Moivre–Laplace limit theorem, which states that

ℙ
[||𝑨′|| = 2𝑛−1

]
=
1 + 𝑜(1)√

𝜋
2(1−𝑛)∕2 (25)

Note that 𝑉𝑛 contains a vertex-disjoint union of 2𝑛−2 copies of
𝑃3, the 3 vertex path, and let Σ be the set of all equal-sized par-
titions which do not separate the middle vertex from the other
two vertices of any of these paths. When the vertices are parti-
tioned randomly and independently, the number of paths split
this way is a binomial random variable with parameters 2𝑛−2 and

1∕4, and thus ℙ
[(

𝑨′, 𝑩′
)

∈ Σ
] ≤ 𝑒− ln 4

3
⋅2𝑛−2

, and so by (24) and
(25), we have

ℙ[(𝑨, 𝑩) ∈ Σ] ≤ 𝑒− ln 4

3
⋅2𝑛−2

√
𝜋

1 + 𝑜(1)
2(𝑛−1)∕2 ≤ 𝑐 ⋅ 𝑒𝑛−ln 4

3
⋅2𝑛−2

(26)

for some constant 𝑐 > 0. Let us now choose 𝐶 so large that the
lemma is true for all 𝑛 ≤ 𝑛0 for some large enough 𝑛0. We pro-
ceed by induction on 𝑛. Assume that the lemma is true for 𝑮𝑛−1.
For a decomposition𝑉𝑛 = 𝐴 ⊔ 𝐵 other than𝑉0

𝑛 ⊔ 𝑉1
𝑛, let 𝐸𝑛(𝐴, 𝐵)

be the event that the edges between 𝐴 and 𝐵 form a match-
ing. Let 𝑝𝑛 ∶= ℙ[∃𝐴, 𝐵 s.t. 𝐸𝑛(𝐴, 𝐵)]. We will show that 𝑝𝑛−1 ≤
𝐶(𝑛 − 1)2−(𝑛−1) implies 𝑝𝑛 ≤ 𝐶𝑛2−𝑛.

Fix a decomposition 𝑉𝑛 = 𝐴 ⊔ 𝐵 and set 𝐴𝑗 = 𝑉
𝑗
𝑛 ∩ 𝐴 and 𝐵𝑗 =

𝑉
𝑗
𝑛 ∩ 𝐵 for 𝑗 = 0, 1, so that 𝐴0 ⊔ 𝐵0 = 𝑉0

𝑛 and 𝐴1 ⊔ 𝐵1 = 𝑉1
𝑛. We

consider three cases.

1. If both cuts coincide with the cuts of the (𝑛 − 1)th gener-
ation (i.e., 𝐴0 ⊔ 𝐵0 = 𝑉00

𝑛 ⊔ 𝑉10
𝑛 and 𝐴1 ⊔ 𝐵1 = 𝑉01

𝑛 ⊔ 𝑉11
𝑛 ),

then for 𝐴 ⊔ 𝐵 to induce a matching, all vertices of 𝐴0
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should send the edges of the last generation to 𝐴1, and all
vertices of 𝐵0 should send the edges of the last generation to

𝐵1. The probability of this event is exactly
(
2𝑛−1

2𝑛−2

)−1

.

2. If both cuts differ from the (𝑛 − 1)th generation cuts, then
assume first that𝐴0 is empty. By connectivity of 𝑮𝑛−1, there
exists an edge between some vertex 𝑎 ∈ 𝐴1 and a vertex
𝑏 ∈ 𝐵1. Since 𝑎 also sends an edge to 𝐵0 (induced by 𝜎𝑛−1),
in this case, the edges do not form amatching.We can there-
fore assume that all of𝐴0, 𝐵0, 𝐴1, 𝐵1 are non-empty. Assume
without loss of generality that ||𝐵1

|| ≥ ||𝐴1
||. Let 𝑎 ∈ 𝐴0 be a

vertex that sends an edge to 𝐵0 (again, such a vertex exists
by connectivity of 𝐺𝑛−1). Since ||𝐵1

|| ≥ ||𝐴1
||, the probability

that there are no edges from 𝑎 to 𝐵1 induced by 𝜎𝑛−1 is at
most 1∕2, so with probability greater than 1∕2 we do not get
a matching. We get that

ℙ
[
∃𝐴, 𝐵 s.t.

{
𝐴0 ⊔ 𝐵0 ≠ 𝑉00

𝑛 ⊔ 𝑉10
𝑛 , 𝐴1 ⊔ 𝐵1 ≠ 𝑉01

𝑛 ⊔ 𝑉11
𝑛

}

∩ 𝐸𝑛(𝐴, 𝐵)] ≤ 1

2
𝑝𝑛−1

3. Finally, if, say, the cut 𝐴0 ⊔ 𝐵0 coincides with the respective
(𝑛 − 1)th generation cut 𝑉00

𝑛 ⊔ 𝑉10
𝑛 , and 𝐴1 ⊔ 𝐵1 ≠ 𝑉01

𝑛 ⊔

𝑉11
𝑛 , then 𝐴1 ⊔ 𝐵1 should divide the set 𝑉1 into halves; oth-

erwise (say, if ||𝐴1
|| > ||𝐵1

||), 𝐵0 sends at least one 𝑛th gen-
eration edge to 𝐴1, and so there is a vertex in 𝐵0 with at
least two neighbors in 𝐴, and we do not get a matching.
Moreover, we may also claim that the 𝑛th generation edges
form a matching between 𝐴0 and 𝐴1, and between 𝐵0 and
𝐵1 (since there is a matching between𝐴0 and 𝐵0,𝐴0 cannot
have an edge with 𝐵1, and 𝐵0 cannot have an edge with𝐴1).
Then the desired probability is exactly the probability that
the cut 𝐴1 ⊔ 𝐵1 of 𝑮𝑛−1 forms a matching. Since the ends of
the edges of the matching between𝑉0

𝑛 and𝑉1
𝑛 with first ver-

tices in sets 𝑉00
𝑛 and 𝑉10

𝑛 form a decomposition of 𝑮𝑛−1 into
halves which is independent of 𝑮𝑛−1 itself, the sets 𝐴1 and
𝐵1 are a uniformly random partition of 𝑉1

𝑛. The probability
that a uniformly random balanced cut of𝑮𝑛−1 is a matching
is at most the probability that this cut does not separate the

middle vertex of any 𝑃3, which is bounded by 𝑐 ⋅ 2𝑛−1−2𝑛−3

due to (26).

Putting all these together, we get

𝑝𝑛 ≤ 1

2
𝑝𝑛−1 +

(
2𝑛−1

2𝑛−2

)−1

+ 𝑐 ⋅ 𝑒𝑛−1−ln 4

3
⋅2𝑛−3

< 𝐶𝑛2−𝑛

for 𝑛 > 𝑛0 large enough.

Proof of Claim 2. Assume that 𝐹𝑐 holds, that is, every
automorphism of 𝑮𝑚 either swaps or preserves 𝑉0

𝑚, 𝑉1
𝑚 for

𝑚 ∈ [𝑛∕20, 𝑛 − 1]. We first show that every non-identity 𝜑 ∈

Aut(𝑮𝑛−1) has at least 2
19𝑛∕20 points that are not fixed.

Let 𝑚 ∈ [𝑛∕20, 𝑛 − 1], and let q ∈ Aut(𝑮𝑚). Since 𝐹𝑐 holds, q

either swaps or preserves 𝑉0
𝑚 and 𝑉1

𝑚, and so can be represented
by the pair (q0, q1) as above. If it swaps𝑉0

𝑚 and𝑉1
𝑚, then it has no

fixed points. Hence, if q has any fixed points, it must be preserv-
ing, and its fixed points are a union of the fixed points of q0 and
q1. In this case, q0 and q1 are conjugate, so they have the same
number of fixed points; in particular, the number of fixed points

(resp. non-fixed points) of q is equal to twice the number of fixed
points (resp. non-fixed points) of q0.

Thus by induction, if𝜑 ∈ Aut(𝑮𝑛−1)has any fixed points, then the
number of non-fixed points is equal to 2𝑛−1−𝑛∕20 times the num-
ber of non-fixed points of any of its restrictions q ∶= 𝜑|𝑉𝑧

𝑛
, where

𝑧 ∈ {0, 1}𝑛−1−𝑛∕20. If q is the identity, then 𝜑 is the identity also.
Otherwise, q has at least 2 non-fixed points, and so 𝜑 has at least
219𝑛∕20 non-fixed points on 𝑮𝑛−1.

Next we get our bound for the size of the conjugacy class of 𝜑.
Recall that we can express 𝜑 as a composition of disjoint cycles.

1. If 𝜑 has a cycle of length𝑚 ≥ 22𝑛∕5 + 1, then the number of
conjugacy classes is bounded below by the number of con-
jugacy classes where (say) 1 is in such a cycle. The number

of such permutations is at least
(
2𝑛−1−1

𝑚−1

)
⋅ (𝑚 − 1)! (since

we need to choose 𝑚 − 1 more elements, and then order
them in a cycle together with 1). This is (2𝑛−1 − 1) ⋅ (2𝑛−1 −

2) · · · (2𝑛−1 − 𝑚) ≥ 2(𝑛−2)22𝑛∕5

.

2. Otherwise, the maximal cycle length is at most 22𝑛∕5. We
have at least 219𝑛∕20 points which are not fixed, so there are
at least 𝑟 = 211𝑛∕20 cycles. The number of conjugacy classes
is then lower-bounded by the number of conjugacy classes
where all the elements 1, 2, . . . , 𝑟 are in distinct cycles, and
𝑟 + 1, 𝑟 + 2, . . . , 2𝑟 are in the same distinct cycles. For every
fixed choice of cycles for the first 𝑟 elements, there are 𝑟!

ways to choose where to put 𝑟 + 1, 𝑟 + 2, . . . , 2𝑟. This is at

least 211𝑛∕20! ≥ 2
1

4
𝑛2𝑛∕4

. ◽
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Endnotes

1 In Question 2 of Section 3, we ask whether the bound in Theorem 2
can be improved to 𝑛

log2 𝑛
(1 + 𝑜(1)) for general random twisted hyper-

cubes. After the submission of thismanuscript, Aragão et al. [15] indeed
proved that 𝐷(𝑮𝑛) = (1 + 𝑜(1)) 𝑛

log2 𝑛
with high probability, regardless of

the joint distribution of the copies.

2After the submission of our manuscript, this question was solved in the
affirmative by Aragão et al. [15].
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