
This is a repository copy of Ring currents in the clar goblet calculated using configurational
state averaging.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/220342/

Version: Published Version

Article:

Dickens, T.K. orcid.org/0000-0003-0342-3597, Mallion, R.B. orcid.org/0000-0002-3642-
269X, Fowler, P.W. orcid.org/0000-0003-2106-1104 et al. (2 more authors) (2024) Ring 
currents in the clar goblet calculated using configurational state averaging. The Journal of 
Physical Chemistry A, 128 (47). pp. 10181-10192. ISSN 1089-5639 

https://doi.org/10.1021/acs.jpca.4c05393

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Ring Currents in the Clar Goblet Calculated Using Configurational
State Averaging

Timothy K. Dickens,* Roger B. Mallion, Patrick W. Fowler, Barry T. Pickup, and Joseph Mowll-Clarke

Cite This: J. Phys. Chem. A 2024, 128, 10181−10192 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The closed-shell Hückel−London−Pople−McWeeny formalism for ring currents is
extended to Aufbau configurations with open shells calculated as configurational averages. The method
is applied to the non-Kekulean benzenoid known as the Clar goblet, recently synthesized on the Au(111)
surface. Multiplicity of the ground state is a complication: for the Clar goblet, Hund’s rule of maximum
multiplicity implies a triplet whereas Ovchinnikov’s rule implies a singlet. This disagreement has little effect
on the predicted ring currents. Ring-current maps are calculated for the 36π dication, 40π dianion, and low-
lying states of the 38π neutral, using Hückel−London and Hubbard−London models. All show twin
diatropic perimeter currents on separate halves of the molecule. These are compared with ipsocentric
pseudo-π and ab initio maps of induced π-current for closed-shell singlet configurations of dianion,
dication, and neutral. Configurationally averaged Hückel−London calculations give a good account of the
consistent diatropic ring currents in the Clar goblet for the three charge states.

1. INTRODUCTION

Synthesis by in situ modification of a precursor adsorbed on
the Au(111) surface1 has given access to the elusive benzenoid
known as the Clar goblet (V in Figure 1), creating an
opportunity to compare theoretical predictions for this species
in different spin states with experimental results, and reopening
questions about the magnetic properties of non-Kekulean
benzenoids.2

The Clar goblet is the smallest concealed non-Kekulean
benzenoid.3,4 As we will show later, Ovchinnikov’s rule2

predicts a singlet ground state for every such benzenoid.3,4

Experiment supports this expectation, indicating that the
ground-state of the Clar goblet is an open-shell singlet that lies
23 meV (0.0085β) below a triplet.1 This energy is comparable
to the Landauer limit for single-bit erasure in computer
memory.5 Triangulene is another molecule famously hypothe-
sized by Clar and recently achieved by in situ surface
synthesis.6 For triangulene, in contrast to the goblet, absence
of a Kekule ́ structure is revealed by simple counting, and
Ovchinnikov’s and Hund’s rules agree in predicting the high-
spin (triplet) ground state.

Calculations on the electronic structure of the Clar goblet
had been published before,7 but the new experiment has
generated a flurry of theoretical studies using a variety of
techniques ranging from empirical to high-level ab initio.8−11

Our approach here is to work with the simplest models to gain
physical understanding of the magnetic properties of this
intriguing species. We begin with the simplest one-electron
model (Hückel theory) which requires nothing more than the
adjacency matrix of the graph, and in its Hückel−London

extension can be used to predict the current induced by an
external magnetic field.12 Next, we take the simplest model of
electron interaction, the Hubbard model.13 Ovchinnikov2

based his arguments on the Heisenberg−Dirac (HD)
Hamiltonian:14−16 the Hubbard model13 interpolates between
Hückel and HD limits as the Hubbard interaction parameter,
U, goes from zero to infinity.17 In the Hückel limit, the π-
electrons occupy delocalized orbitals that distribute electron
density around the system. In contrast, in the HD limit, each
site carries exactly one electron of up or down spin. All three
models can be considered as purely graph-theoretical when
they are applied to π systems of planar benzenoids under the
assumption of regular hexagonal ring geometry.

Results from the Hückel−London model and its “Hubbard−
London” extension will be interpreted here using the
symmetry-based selection rules for current that were originally
developed in ab initio ipsocentric18,19 approaches to
aromaticity of closed-shell systems. We confront the
predictions of the simple models with direct ipsocentric
calculations, albeit confined to closed-shell type: the Hückel−
and Hubbard−London current maps are compared to those
deduced from the pseudo-π method,20 a proxy for full ab initio
calculation, and maps from ab initio calculations themselves.
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It is important to note that the orbital ring-currents relevant
to aromaticity are associated with an interaction energy that is
of second order in the magnetic field; in systems of high
multiplicity such as triangulene, they will be masked by the
first-order interaction energy of electron spins. In this sense,
singlet Clar goblet is an ideal case for investigation of
aromaticity, which was a major interest of Clar.21 Before
presenting our results, we give some historical context.

More than 50 years ago, one of the present authors (RBM),
while at the Oxford University Mathematical Institute, had the
privilege to be in frequent communication with Professor Erich
Clar (1902−1987), the doyen of synthetic organic chemists in
the domain of the condensed benzenoid hydrocarbons, who
held a chair at the University of Glasgow. At the end of a long
and distinguished career, Clar was on the verge of publishing
his influential work, The Aromatic Sextet,21 which became his
monument in the field.22 At the time, RBM was making a
systematic experimental study of the 1H NMR spectra of
condensed benzenoid structures,23 alongside with calculation
of their theoretical ring-current properties by application of
McWeeny’s extension24 of the Hückel−London approach24 to
the magnetic properties of conjugated systems. This approach
was later formalized into the topological ring-current model,
the method of calculation being given the acronym HLPM
(Hückel−London−Pople−McWeeny).25,26

It was widely acknowledged that Clar could make benzenoid
hydrocarbons that nobody else was capable of synthesizing,
and he had built up a remarkable collection of samples. In
1971, RBM and Clar had an arrangement whereby they
regularly exchanged 1H NMR spectra of rare benzenoids for
calculations of their ring-current intensities and the contribu-
tions of these to calculated proton chemical shifts. In a letter
dated 8 July 1971,27 Clar sent an apparently routine request for
the ring-current intensities in a family of five structures, all
ostensibly related to perylene (whose central rings exhibit fixed
single bonds).21,28,29 These are I to V in Figure 1.

Calculations for structures I to IV were straightforward, but
when an attempt was made to find ring-current intensities for
structure V a difficulty arose: the frontier orbitals turned out to
be a degenerate nonbonding pair, each of which would be
singly occupied, if the standard Aufbau principle were used and
Hund’s rule applied. Accordingly, the structure labeled as V in
Figure 1 was predicted to be an open-shell species. At the time,
the reason that the open shell of V created a problem when it
came to calculating ring currents was that the expressions that
arise in the McWeeny formalism24 were presented24 only for
closed-shell systems. Clar was, therefore, informed30 that the
ring currents for V were not available.

2. METHODS

2.1. Graph Theory. The methods employed in this work
span a range of mathematical and quantum chemical models.
The first component of the mathematical toolkit is graph
theoretical, specifically the spectral graph theory of benzenoids.

As pointed out by Dewar and Longuet−Higgins,31 species
such as V cannot be drawn with a classical Kekule ́ structure.
Radical and non-Kekulean character are related by the
mathematical fact that, for all benzenoids, there is a simple
link between Kekule ́ count (number of perfect matchings of
the molecular graph) and the determinant of the adjacency
matrix (essentially, the tail coefficient of the characteristic
polynomial of the molecular graph).32 The Kekule ́ count is the
square root of the tail coefficient taken without sign. Graph V
has vanishing adjacency determinant, i.e., the matrix has some
eigenvalues equal to zero, and is therefore singular. A
benzenoid that has a singular molecular graph has no Kekule ́
structures, and vice versa.

A singular benzenoid also has a specific electronic structure.
For bipartite graphs, the order of the graph (i.e., the number of
carbon centers participating in the π system), n, and the nullity
of the graph (the number of nonbonding π orbitals), η, have
the same parity (by the Coulson-Rushbrooke Pairing
Theorem33). From the combination of Aufbau and Pauli
principles and Hund’s rule, in the absence of Jahn−Teller
distortion, the ground-state of a neutral system with a bipartite
graph, treated in the simple Hückel model, has the so-called
natural configuration,34 with all bonding MOs doubly occupied
and a nonbonding shell occupied by a number of electrons
equal to the degeneracy of the nonbonding level (number of
zero eigenvalues of the adjacency matrix). In general, the
natural configuration may give rise to a number of states of
various spin multiplicity, all with equal π energy within the
Hückel model, but averaging over these states gives invariant
results for charges, bond orders, bond numbers, polarizabilities
and induced currents, within the Hückel and Hückel−London
models. These averages are subject to caveats discussed below.

The Clar goblet is the first of the infinite class of concealed
non-Kekulean benzenoids.35 Necessary conditions for exis-
tence of a Kekule ́ structure/perfect matching, i.e. even number
of vertices of the molecular graph, and equal numbers of peaks
and valleys in the canonical drawing of the graph,35 are
satisfied by this graph, but in fact no such matching exists. By
parity, all concealed non-Kekulean benzenoids have a
degenerate nonbonding shell consisting of an even number
of nonbonding orbitals (NBMOs). The number of NBMOs
(η) is revealed by direct construction.36,37 or from vertex and
edge independence numbers.32

A useful way to classify the NBMOs of a benzenoid comes
from the definition of the color excess of a bipartite graph. In a
bipartite graph, the vertices can be divided into two sets (say

Figure 1. Carbon skeletons25 of five structures ostensibly related to perylene, whose ring currents were requested by Clar.
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black and white) such that every edge of the graph has one
vertex in each set. Then the color excess, Δ, is just the
difference in size of the two sets. Let the adjacency matrix of
graph G be A(G). With an appropriate ordering of vertices,
A(G) for bipartite G has all its nonzero entries in one off-
diagonal block (and its transpose). Consideration of the rank
of this block shows that the number of zero eigenvalues of
A(G) is at least Δ. Clearly, the color excess of a bipartite graph
has the same parity as n and therefore η. Hence, the nullity of
G is restricted to values η = Δ, Δ + 2, ···. The difference η − Δ
is the count of supernumerary zeros36 of the adjacency matrix.
(See also discussion in refs 38 and 39).

The pairing theorem for bipartite graphs,33 implies that for
each eigenvalue λ of A(G) for graph G there is an eigenvalue
−λ, and that an eigenvector x′ corresponding to −λ can be
produced by taking an eigenvector x corresponding to λ and
reversing the signs of entries on one partite set. Hence,
NBMOs (the kernel vectors) of the bipartite graph can be
described in a basis consisting of Δ orbitals that are localized
on the larger partite set of vertices, plus (η − Δ)/2 pairs of
supernumerary vectors of which one is localized on the larger
set, and one on the smaller. In such a basis, each kernel vector
is self-paired under the pairing theorem.

By definition, every concealed non-Kekulean benzenoid has
Δ = 0 but η ≠ 0, and all NBMOs are supernumerary. In the
case of the Clar goblet, there are two supernumeraries, which
can be represented in several ways: (i) in a basis where each
has density on only one partite set, (ii) by symmetry-pure
linear combinations, where each basis function belongs to an
irreducible representation D2h, or (iii) as functions respectively
localized on upper or lower “triangulene” motifs.

The existence of supernumerary zeros is significant in the
theory of electronic structure of benzenoids, since Ovchinni-
kov’s rule,2,40,41 predicts that the spin multiplicity of the
ground state will be 2S + 1 = Δ + 1. We can interpret this rule
as saying that the multiplicity will be as predicted by Hund’s
rule of maximum multiplicity, if supernumerary NBMOs are
completely ignored. As the Clar goblet has only supernumerary
zeros, Ovchinnikov’s rule implies a singlet ground state for it,
and in fact for every concealed non-Kekulean benzenoid, rather
than the state of higher multiplicity predicted by direct
application of Hund’s rule. An open-shell singlet ground state
for the Clar goblet is consistent with the experimental
observations.1

2.2. Group Theory. The second component of the
mathematical toolkit is group theoretical, and refers to the
analysis of orbital symmetries and excitations that contribute to
induced current density.

As it will be useful in the discussion of the calculated
magnetic properties, a summary is given of symmetry aspects
of the π molecular orbitals and energy levels of the goblet.
Considered as a flat structure embedded in 3D space, the most
symmetric realization of V has D2h point-group symmetry. We
take x, y, z as short in-plane, long in-plane and out-of-plane
axes, respectively. Several versions of the character table of this
group appear in the literature; we take the ordering of columns
{E, C2(z), C2(y), C2(x), i, σ(xy), σ(xz), σ(yz)}.42 A minimal
basis of πpz functions spans the reducible representation

= + + +A B B B( basis) ( ) 8 11 8 11u 1u 2g 3g (1)

In Hückel theory of all-carbon frameworks, the π orbital
energies are related to eigenvalues of the adjacency matrix,
{λk}, by ϵk = α + λkβ for k = 1, ...n, where α and β are coulomb

and resonance integrals, respectively. This relation reduces to
ϵk = −λk when α and β are taken as the zero and unit of energy.
Hence, eigenspaces with positive, zero and negative
eigenvalues correspond to bonding, nonbonding and anti-
bonding orbitals, respectively. For the Clar goblet, the
characteristic equation of the adjacency matrix factorizes as

+ + + =x x x x x x(A ): ( 1)( 1) ( 7 11 4) 0u
2 5 3 2

(2)

+ + +

+ + =

B x x x x x x x x

x x x

( ): ( 1)( 2 13 25 54 100

83 151 35 66) 0

1u
9 8 7 6 5 4

3 2 (3)

+ + + =B x x x x x x( ): ( 1)( 1) ( 7 11 4) 02g
2 5 3 2

(4)

+ +

+ + + =

B x x x x x x x

x x x x

( ): ( 1)( 2 13 25 54

100 83 151 35 66) 0

3g
9 8 7 6 5

4 3 2
(5)

from which the reducible representations of nominal bonding,
nonbonding and antibonding subspaces are (by application of
the Descartes rule of signs)

= + + +b A B B B( bonding) ( , ) 4 5 4 5u 1u 2g 3g (6)

= +n B B( nonbonding) ( , ) 1u 3g (7)

= + + +a A B B B( antibonding) ( , ) 4 5 4 5u 1u 2g 3g

(8)

The Pairing theorem33 has an immediate group theoretical
corollary. If the set of MOs with eigenvalue λ and
representation Γ is paired with the set that has eigenvalue
−λ and representation Γ′, then Γ′ = Γ* × Γ, where Γ* is the
symmetry of the pairing operator, the 1-dimensional
irreducible representation of a vector with entries +1 on all
vertices in one partite set, and −1 on all vertices in the other.43

Γ and Γ′ may be reducible. For the Clar goblet in D2h

symmetry, Γ* is ungerade and corresponds to the symmetry
of a translation along the y-axis.

These reducible representations have implications derived
from the ipsocentric selection rules for the sense of molecular-
orbital contributions to π current. In the given setting of D2h,
translations in the molecular plane span the reducible
representation Γ(x) + Γ(y) = B3u + B2u, and the rotation in
the molecular plane has Γ(Rz) = B1g. Hence, the selection rules
for diatropic and paratropic current in terms of unordered pairs
of occupied and empty orbitals are

A B A B B B B B(diatropic): ( , )( , )( , )( , )u 2g u 3g 1u 2g 1u 3g

(9)

A B B B(paratropic): ( , )( , )u 1g 2g 3g (10)

Diatropic and paratropic excitations are mutually exclusive, by
the centrosymmetry of D2h, but a given occupied orbital can
give rise to contributions of both types, by excitation to
different target virtual orbitals.

It follows from these rules that if the NBMO pair of the Clar
goblet were split by Jahn−Teller interaction to give a closed-
shell singlet, for example, any contributions from excitations
within the HOMO − LUMO pair would be purely diatropic.
In fact, there is no indication prima facie of distortion in the
pristine Clar goblet. The two largest eigenvalues of the bond−
bond polarizability matrix (expressed in units of β−1) are
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≈0.9146 and 0.9141, which fall short of the threshold for
distortion of ≈1.8 given by the standard model due to Binsch
et al.44

2.3. Configurational State Averaging. The next
component of the toolkit of methods is quantum chemical
calculation of induced currents by the Hückel−London model.
This employs the expedient of configurational state averaging,
to allow for the fact that the ground state of the neutral Clar
goblet arises from partial occupation of the nonbonding shell.
The use of configuration state averages (CSA) goes back to the
earliest numerical quantum chemical work on atoms by
Hartree.45 The method circumvents the technical problems
arising from the existence of open shells (states where a
degenerate level is not fully occupied). Open-shell states give
rise to the possibility of different electronic spin arrangements,
some of which may have partially filled degenerate orbitals.
Orbitals within a degenerate shell, however, are only defined
up to a unitary transformation. The CSA approach takes an
average over all possible electronic arrangements within an
open shell, hence rendering the calculated properties invariant
to any unitary transformation among the degenerate set of
orbitals. The method of configurational state averages has been
used more recently in ab initio quantum chemistry,46 taking
into account two-electron interactions. Our interest here is
restricted to Hückel theory and extensions that allow electron
interactions via inclusion of a subset of two-electron integrals.

We define shell components in terms of eigenstates of the
graph adjacency matrix. We distinguish three such shells. The
closed shell, C, has its constituent molecular orbitals (MOs)
doubly occupied. The open shell, O comprises a set of orbitals
with single eigenvalue λO, and degeneracy gO. The virtual shell,
V, includes all unoccupied MOs, i.e. all MOs not in C or O.
The respective shell MOs are defined so that their constituent
eigenvalues satisfy λc > λo > λv, for all c ∈ C, o ∈ O, and v ∈ V.
The electronic configuration implied by these definitions is
Aufbau, since the doubly occupied levels are lower in energy
than the open shell orbitals, which are lower in energy than the
empty ones. The assumption is that the electronic occupation,
nO, of the open shell is greater than zero, but less than 2gO. The
difficulty with partially filled open shells is that they imply a
choice of which orbitals within O are occupied. Such a
definition renders expectation values dependent on the exact
choice of MOs inside the degenerate shell and these are only
defined up to a unitary transformation. This difficulty is
circumvented by using a configurational average, which is a
mean value obtained by summing over all possible occupation
schemes within shell O. The effect is to introduce an average
occupation number, νO, for each MO in the open shell

= n g0 / 2O O O (11)

and therefore to render expectation values unitarily invariant
with respect to transformations within O. In general, νO may
take fractional values.46,47 The natural configuration,

nat
is an

Aufbau configuration such that shell C comprises the entire set
of positive-eigenvalue orbitals, and the shell O has a half
occupied null space (λO = 0), with νO = 1. If the graph has no
null space,

nat
is a closed shell.

We can now set up the scheme of calculation for induced
currents of general open-shell configurations by using the CSA
approach. We adopt a convention that labels MO coefficients
cpk by vertex (p) and eigenvector (k). Here, MO coefficients
can always be defined to be real, in which case it is convenient

to adopt a simplified notation for the antisymmetrised product
crs,jk = (crjcsk − csjcrk). The imaginary bond−bond polarizability
is then, in our notation (compare eq (3.15) of ref 24):

= +

+

c c c c

c c

2rs,tu
j C

k V

rs,jk tu,jk

j k
O

j C

k O

rs,jk tu,jk

j k

O
j O

k V

rs,jk tu,jk

j k

(12)

where π̅ is indexed by pairs of vertices, and = 2
O O

is the
average hole occupation of MOs in the open shell. Equation 12
is valid for both closed- and open-shell electron configurations.
Figure 2 represents eq 12 in terms of virtual particle-hole

excitations. Bond orders and imaginary bond−bond polar-
izabilities defined in this way can then be used to derive
currents, as in the standard implementation of the HLPM
approach.25 Step-by-step guides on how these calculations are
carried out are available,25,48 and they detail the roles of bond
order and imaginary bond−bond polarizability together with
the strategy for choice of idealized geometries (in this case
based on regular hexagons). The calculations produce ring
currents, which are used to deduce bond currents by
application of Kirchhoff conservation of current.

An equivalent strategy, used in the Sheffield programs, is to
use finite-field calculations of bond currents from numerical
diagonalization of the complex Hückel−London Hamiltonian
for the molecule in the external field, which can be performed
in real arithmetic,12 even though the Hamiltonian and MOs are
intrinsically complex for nonzero values of the magnetic
perturbation. This is achieved at the price of doubling all
matrix dimensions. Defining equations for the bond currents
are given, for example, in ref 49. The finite-field technique has
been used to find bond currents in benzenoids,50 fullerenes,12

and for anapole response of toroidal frameworks.49 When
fractional occupation is used with the finite-field approach, the
results correspond to the configurational state average. Ring
currents follow from the bond currents by a reverse application
of Kirchhoff’s law.

Figure 2. Particle-hole scheme for the virtual excitations in the
summations of eq 12.
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2.4. Hubbard Model. The next component of the
methods toolkit is designed to investigate the effect of two-
electron interactions in lifting the degeneracy of the Hückel
model. We chose a simple model that is again essentially graph
theoretical. This is the Hubbard model, introduced in 1963 as
a way of describing highly correlated states in solids with
narrow bands.13 The Hubbard Hamiltonian comprises the
Hückel Hamiltonian (essentially the adjacency matrix) with
addition of the Hubbard potential

=V U n n
Hub

p

p p

(13)

which is defined in the AO basis associated with graph vertices,
and the number operator

=
+

n a a
p p p (14)

counting electrons on vertex p with spin σ. The constant U is
specified in units of the Hückel β (known in the physics
context as the hopping integral, t), which is itself negative, and
the physical effect of a negative U is therefore to introduce a
repulsive two-electron potential that penalises electron pairs
residing on vertices. In terms of ab initio quantum chemistry,
this would amount to amounts to replacing the full collection
of two-electron AO basis integrals, { | }pq rs , by a single one-
center integral U = ⟨pp|pp⟩ that is independent of vertex p.

Mishra et al. used the mean-field approximation51 to the
Hubbard model (MFH), which replaces the two-electron
operator in eq 13 with

= +V U n n n n n n( )MF

p

p p p p p p

(15)

where the angle brackets indicate the state average
= | |n n

p p
. This is an SCF-like potential that contains

one-electron operators only, with expectation value

| | =V U n n
MFH

p

p p

(16)

There are advantages to using the MFH Hamiltonian for
systems with translational symmetry, since the expectation
value, n

p
, is then identical in each cell of the infinite system.

For finite systems, however, there is no reason not to use the
full Hubbard Hamiltonian, and that is what we do here.

The standard Hubbard model can be extended to cover the
case of molecules (molecular graphs) in external magnetic
fields. This is effectively an enhancement of the Hückel−
London model. This Hubbard−London model for current
maps can be implemented within the finite-field approach, by
combining the Hubbard SCF procedure with the Hückel−
London treatment of the magnetic perturbation. The
justification of the approach is that the magnetic field terms
are one-electron, whereas the Hubbard potential is purely two-
electron. It should be noted that, as with the Huckel−London
MOs, Hubbard−London MOs become complex in the
presence of the field.
2.5. Ipsocentric Current Maps. Finally, although

exhaustive ab initio treatment of induced currents in the
ground state of the Clar goblet is beyond the scope of the
present work, some coupled Hartree−Fock calculations were
performed for comparison with Hückel− and Hubbard−
London models, and proved to be informative. Calculations
were carried out at two levels. The pseudo-π model, using the

standard σ-only basis,20 was used to calculate π-current
maps.52 An idealized carbon framework based on regular
hexagons of side 1.4 Å was used in these calculations. In the ab
initio calculations,52 carried out in the 6-31G** basis, that
framework was extended to include CH bonds of length 1.09 Å
at 120° CCH bond angles.

3. RESULTS AND DISCUSSION

Ring-current intensities calculated by the Hückel−London
method for the Clar goblet are displayed in Figure 3. The

intensities of the individual ring currents expressed as a ratio to
that calculated for benzene by the same method25 are written,
in the center of the appropriate ring. As is to be expected for a
condensed benzenoid hydrocarbon, all ring currents are
positive (that is, diatropic, and in our convention anticlock-
wise). Also presented in Figure 3 are the currents that may be
regarded as flowing along individual bonds, as if the carbon
framework were a classical electrical network,53 with currents
at junctions respecting Kirchhoff’s Current Conservation Law.
In this classical analogy (black) ring currents play the role of
classical loop currents53 while (red) bond-currents represent
flow in the wires of the network.53 In the original computer
code, ring currents are calculated first and bond currents are
(uniquely) constrained to be Kirchhoff-consistent with them.
Symmetry is not imposed but its emergence in the calculated
maps gives an extra check on the calculations.

The overall pattern seen in Figure 3 consists of two islands
of current, each diatropic and strong, located on the perimeter
of a 5-hexagon fragment, with only minor leakage across the
central isthmus.

Figure 3. HLPM ring- and bond-current map for the neutral Clar
goblet under configurational state averaging. Currents are expressed as
ratios to those for benzene. Ring-current intensities are in black, and
bond currents in red. This map is identical to those obtained for
dicationic and dianionic Clar goblet within the same model (see text).
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Relevant to the discussion is a specific mathematical
property of Hückel−London theory for bipartite graphs. It
can be proved that the contribution to current from an
electron in the nonbonding space of a bipartite system is
exactly zero. This has been demonstrated for the cycle-based
Aihara formulation of the Hückel−London model54,55 and is
also easy to see for the present formulation in terms of bond−
bond polarizabilities. Simply note that eq 12 for

pq,rs
is linear

in νO, and therefore for any graph the CSA interpolates linearly
between the electron counts corresponding to empty and full
O shells. For bipartite graphs, where the O shell is
nonbonding, the pairing theorem33 implies that

pq,rs
is the

same for νO = 0 and νO = 2, and hence there is no variation in
predicted current with νO. The chemical implication for the
Clar goblet is clear: identical current maps are found in the
Hückel−London model for dication, dianion and the CSA
neutral molecule.

At this level then, an answer to Clar’s request for
information on V could have been given using the closed-
shell maps. This short-cut would not apply for nonalternant
systems, such as fullerenes. Moreover, exact equivalence of
dication and dianion maps is not retained in treatments that
include explicit two-electron interactions. For example, the
pseudo-π maps discussed below are not identical for dicationic
and dianionic V, although they are similar, as are the full
coupled Hartree−Fock ipsocentric maps, a relic in both cases
of an exact property of the simpler model.

It should be noted here that occupied-orbital contributions
to current are defined differently in Hückel−London and
ipsocentric19 approaches: in Hückel−London theory the
contribution of a given set of orbitals depends only on their
occupation, and not on the occupation of any other set; in the
ipsocentric approach, the contribution of a given occupied
orbital or shell depends on the availability of empty orbitals of
appropriate symmetry and relative energy. Thus, occupied
nonbonding orbitals, even for a bipartite molecular graph, may
give rise to significant current. For interpretation, it has been
found useful to take the symmetries of frontier orbitals from
Hückel theory and then apply ipsocentric selection rules based
on symmetry products to rationalize current maps and the
orbital contributions derived from a calculation at a higher
level.56 If a π system is fully delocalized, this gives an account
of currents in terms of frontier orbitals. For large π systems,
this methodology extends to a band-contribution picture. In
such cases, features such as the intense diatropic perimeter
current of a carbon nanoflake are band-to-band and arise from
a group of several canonical molecular orbitals, but the
complex pattern of eddies in the flake interior is accounted for
by just a few electrons at the top of the occupied band.57 As we
shall see, perimeter patterns of this type are found in
ipsocentric calculations for the Clar goblet.

Hückel−London maps for benzenoids cannot distinguish
among different electron counts for the nonbonding space, nor,
as the calculation of total properties is essentially spin-free,
among the sheaf of spin states for the neutral. In this sense, the
CSA is the most appropriate treatment when working within
the Hückel−London model. However, experiments have been
interpreted in terms of a specific open-shell singlet state for the
Clar goblet.1 For this reason, we need to consider models that
include the two-electron interactions that lead to a separation
in energy of the spin states. The simplest of these is the

Hubbard model, and its “Hubbard−London” extension to
calculation of current as outlined in the methods section above.

We will consider low-lying states of the Clar goblet π-system
in the context of the Hubbard model. It is possible to construct
a core doubly occupied closed-shell state, |ΦC⟩, with 36 π-
electrons for the dication

| = |
+ +

A a a( ) vacg
1

C

k C

k k
(17)

where the operator akσ
+ creates an electron of spin σ in MO ψk.

There are several 38 π-electron states that can be constructed
for the neutral system, bearing in mind that NBMOs 6b3g and
6b1u (where we are using the standard notation of lower-case
letters for the irreps of MOs) span a doubly degenerate null
space. With the abbreviations a = 6b3g, and b = 6b1u, we can
define closed shell configuration state functions (CSF)

| = |
+ +

A a a( )
aag

1
a a C

| = |
+ +

A a a( )
bbg

1
b b C (18)

It is useful to define a further four 38 π-electron CSFs. They
have a 36 π-electron core, and 2 π-electrons placed in the
nonbonding shell in all possible ways. The states with MS = 0
comprise a triplet and three singlets. CSFs for these can be
written as

| = + |
+ + + +

B a a a a( ) ( ) / 22u
3

1 a b a b C

| = |
+ + + +

a a a a( B ) ( ) / 22u
1

2 a b a b C

| = |
+ + + +

A a a a a( ) ( ) / 2g
1

3 a a b b C

| = + |
+ + + +

A a a a a( ) ( ) / 2g
1

4 a a b b C (19)

The state |Φ1⟩ is the MS = 0 component of the open-shell
triplet, whereas |Φ2⟩ is the open shell singlet. The symmetry of
each CSF is indicated with its defining equation.

We note that the final two states in eq 19 are linear
combinations of the simple closed-shell CSF defined in eq 18.
However, in this definition, the states |Φ1⟩ and |Φ4⟩ are
invariant to unitary transformations between the MOs a and b,
whereas |Φ2⟩ and |Φ3⟩ mix. It follows that if we introduce two-
electron interactions, and conduct SCF procedures on |Φ1⟩
and |Φ4⟩, the energy functionals for these states will each have
three unitarily invariant shells of MOs: a doubly occupied core,
a two-electron open shell comprising MOs a and b, and a
virtual (empty) shell. The other two states, |Φ2⟩ and |Φ3⟩, will
have four shells, the core−shell, shell a, shell b, and the virtual
shell. The two states must lie on a single SCF optimization
surface, but may exhibit more than one stationary solution, as
we shall see.

We complete our list of states by defining a 40 π-electron
closed-shell state for the Clar goblet dianion

| = |
+ + + +

A a a a a( )
aabbg

1
a a b b C (20)

All CSFs defined in eqs 18−20 are degenerate at the Hückel
level of approximation. In the Hubbard approximation, the
diagonal matrix elements of the four CSFs defined in eq 19 are
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= + + + + +

= +

= +

= + + +

u

u

u

u

h R R R r r r r

r r

r r r r

r r r r

H tr (2 ) tr ( ),

H H 2 tr( ),

H H
1

2
tr( )( ),

H H
1

2
tr( )( ),

a b

a b

a b a b
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11
Hub C a b C C

22
Hub

11
Hub

33
Hub

11
Hub

44
Hub

11
Hub

(21)

where, allowing for the complex nature of the MO coefficients
in the finite-field Hubbard-London calculations that we use
later, the density matrices are

= * = * = *c c c c c cR R R( ) , ( ) , ( )a bC
pq

k C

pk qk pq pa qa pq pb qb

(22)

and the remaining quantities are diagonal parts of density
matrices

= | |

= | |

= | |

c

c

c

r

r

r

( ) ,

( ) ,

( )

a

b

C
pq pq k C pk

2

pq pq pa
2

pq pq pb
2

(23)

which are all positive. The equation for the configurational
state energy can be obtained from eq 21, recognizing the spin
multiplicities of each state, as

= + + +

= + + +

E

u r r r r

1

6
(3H H H H )

H
1

6
tr( )( )a b a b

ave
11
Hub

22
Hub

33
Hub

44
Hub

11
Hub

(24)

The full 4 × 4 CI matrix constructed using the CSF in eq 19
can be understood using the symmetry and spin designations.
It comprises 1 × 1 blocks for |Φ1⟩ and |Φ2⟩, and a full 2 × 2
block for the 1Ag CSFs, |Φ3⟩ and |Φ4⟩. For the latter pair, we
have a choice of performing SCF iterations for the separate

states, or a full MCSCF procedure. The CSFs in eq 19 allow
the use of multishell SCF theory as defined by McWeeny58 in
Sheffield, where the effective Fock operator for this is known as
the McWeenyan.59

Calculations used either symmetry-adapted linear combina-
tions of AOs (SALCs), explicitly blocking the Fock matrices
into the four blocks Au, B1u, B2g and B3g, or in an AO basis
without imposition of symmetry constraints. For consistency
with the work of Mishra et al.,1 we used β = −2.7 eV, and U =
3.5 eV, corresponding to U = −1.3β. These workers carried out
“spin polarized” calculations where different basis sets were
adopted for α and β spin orbitals. In quantum chemistry such
calculations would be termed unrestricted Hartree−Fock
(UHF), and we adopt this notation in our table of results.
All calculations denoted UHF involved single-determinant
CSFs.

The mean field Hubbard (MFH) and full Hubbard
formalisms are identical for single-determinant CSFs, but for
Φ1, Φ2, Φ3 and Φ4 they give different results. Each of these
four CSFs comprises two determinants, each a double
excitation with respect to the other. Nonzero double-excitation
matrix elements are obtained when a two-electron operator,
such as VHub, is used. The MFH potential, VMFH, does not fulfill
this criterion. For example, the B2u open-shell singlet and the
MS = 1 component of the B2u triplet are degenerate in the
MFH model

= = +H H
1

2
(H H )11

MFH
22
MFH

11
Hub

22
Hub

(25)

as the cross-determinant part of the expectation value vanishes.
However, the MS = 1 component of the triplet

| = |
+ +

a a
ab b a C (26)

gives a different energy

= | | = | |H H H H
11

Hub

ab

Hub

ab ab

MFH

ab 11

MFH
(27)

Table 1. Hubbard SCF Calculations for Electronic States of the Clar Goblet (U = −1.3β)a

Ne state Etot/β ring current

A B C D

36 (1Ag, |ΦC⟩) RHF (SALC) 43.12409676997 0.7064 0.6277 0.7276 0.2116

38 (1Ag, ) RHF (SALC) 41.90270088783 0.7658 0.6481 0.8025 0.2121

(1Ag, |
aa

) UHF (loc) 42.03882640307 0.8144 0.6559 0.8663 0.2151

(1Ag, |
bb

) RHF (SALC) 41.90270088783 0.7658 0.6481 0.8025 0.2121

(3B2u, |Φab⟩) UHF (SALC) 42.03168231735 0.8229 0.6488 0,8837 0.2088

(3B2u, |Φ1⟩) RHF (SALC) 42.00035543807 0.8284 0.6460 0.8800 0.2126

(1B2u, |Φ2⟩) RHF (SALC) 41.81118679423 0.6991 0.6198 0.7173 0.2123

(1B2u, |Φ2⟩) RHF (loc) 42.00035543807 0.8284 0.6460 0.8800 0.2126

(1B2u, |Φ3⟩) RHF (SALC) 42.00035543807

(1B2u, |Φ3⟩) MCSCF (SALC) 42.00035544596

(1Ag, |Φ4⟩) MCSCF (SALC) 41.81118679416

(1Ag, |Φ4⟩) RHF (SALC) 41.81118679423

(CSA) RHF (SALC) 41.93438460925 0.7868 0.6515 0.8292 0.2122

40 (1Ag, |
aabb

) RHF (SALC) 40.52409676997 0.7064 0.6277 0.7276 0.2116
a(Ground-state data in bold.) Ne is the π electron number for the state. Converged total energies, Etot, are in units of β. SALC indicates calculations
using a symmetry basis; loc indicates a calculation resulting in localised (non-symmetry-adapted) MOs. RHF (UHF) indicate restricted
(unrestricted) SCF calculations. Ring currents for symmetry-distinct rings (A−D in V in Figure 1) are calculated using the Hubbard−London
method with the same U value, and expressed as ratios to the benzene standard. For comparison, the 38 π calculation (RHF or UHF) with U = 0 to
mimic a pure Hückel calculation gives a repulsion-free total π energy of 54.25270088783 β, and CSA ring currents for A, B, C, D of 0.7064, 0.6277,
0.7276, 0.2116, in benzene units.
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and so the mean field approximation does not reproduce the
correct degeneracy of the components of the triplet. For these
reasons, we have preferred to use the full Hubbard model.

Table 1 shows converged energies for a variety of states in
units of β, so for fixed electron count a larger value represents a
more stable state. At U = 0 all 38π-electron states that we have
defined are degenerate. Furthermore, the destabilizing effect of
a negative Hubbard parameter is clear from the table; for
constant U, the amount of destabilization rises with the
number of π-electrons.

Our main interest here is in the neutral 38 π-electron states,
and we first describe results of the RHF calculations. The
degeneracy of the 1Ag closed-shell singlets, |

aa
, and |

bb

follows from the degeneracy of 6b3g and 6b1u MOs. The 3B2u

open-shell triplet exhibits the most stable of the converged
RHF energies, in line with the expression for H11

Hubgiven in eq
21. The 1B2u open-shell singlet, on the other hand, has a

RHF(SALC) converged energy that is less stable than the
triplet, by 2Utr(rarb). However, the same calculation where the
SALC basis set is not used, converges to give MOs where a and
b are localized almost completely on the top and the bottom
halves of the molecules, respectively. The consequence is that
tr rarb ≈ 0, resulting in effective degeneracy with the B2u triplet.
The physical interpretation is that localization reduces
electron−electron interaction and enhances stability.

The SALC RHF converged energy for |Φ3⟩ is also
degenerate with the triplet, as symmetry implies that ra = rb

(c.f. eq 21). The SALC SCF calculation for |Φ4⟩ gives the least
stable result. We observe that |Φ3⟩, |Φ4⟩ are multidetermi-
nantal, and therefore we can conduct an MCSCF procedure
for the CI function

| = | + |A c c( )
aa bbg

1
MCSCF A B

Figure 4. Ipsocentric calculations of π-current induced in the Clar goblet for 36π, 38π, and 40π charge states. The first column shows pseudo-π
maps for cation, neutral, and anion; in this simulation of π-current with a σ-basis the plotting plane is the molecular plane. The second column
shows the π-current for the same systems derived by summing orbital contributions from all-electron calculations plotted at a height of 1 au above
the molecular plane. Arrows represent current per unit magnetic field projected onto the plotting plane; shading represents the modulus of current
per unit magnetic field. Filled circles mark positions of C centers, and dot-filled circles the positions of H and pseudo-C centers, all projected into
the plotting plane.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05393
J. Phys. Chem. A 2024, 128, 10181−10192

10188

https://pubs.acs.org/doi/10.1021/acs.jpca.4c05393?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05393?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05393?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05393?fig=fig4&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05393?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


by simultaneous orbital and CI optimizations, giving rise to
two converged states. Degeneracy of

aa
and

bb
implies that

the first CI iteration gives Φ3 and Φ4 as initial multiconfigura-
tional states. The CI interaction matrix element H34 ensures
that one MCSCF state is more stable than 3B2u on
convergence, and the other is less stable than 1B2u. The
splitting, however, is in the ninth decimal place, smaller by
orders of magnitude than the 23 meV (0.0085β) indicated by
Mishra et al.1 The ordering of states so far is thus in accord
with Ovchinnikov’s rule, but only by a whisker, and is revealed
only by calculations carried out with high precision.

We now discuss the UHF states, and immediately observe
that a symmetry unconstrained calculation on |

aa
produces

the most stable state of all, where orbitals a and b have become
localized. The degenerate 6b3g and 6b1u become nondegenerate
in the Hubbard field with a splitting of 0.271β = 0.73 eV. This
UHF state has MS = 0, but is not a pure singlet. Furthermore,
the MOs do not transform as irreducible representations of
D2h, although overall charge distributions follow the molecular
symmetry. The energy expression for the UHF CSF is

| | = + + +

+ + +u

h R R R R

r r r r

H tr ( )

tr( )( )

aa aa

Hub C C a a

C a C a
(28)

The localization of a and b to separate halves of the
molecule ensures that tr raαraβ = 0, and explains the stability of
the state. We have not been able to obtain an equivalent
localized UHF state for the |

bb
case.

The MS = 1 state, |Φab⟩, is also not a strict triplet in the UHF
approximation. We obtained the low energy result in the table
with a SALC basis set. It should be noted, however, that the a
and b orbitals belong to the α spin shell and the wave function
is invariant to a unitary transformation among this set. The
delocalized a and b MOs we have obtained, therefore, can be
rotated into localized form without affecting the energy and the
stationary properties of the wave function.

The UHF singlet in our calculations lies 0.007β = −19.3
meV lower than the UHF triplet, and this reproduces the
findings of Mishra et al.1 It has been stated that there are
apparently no exceptions to the Ovchinnikov rule,7,60,61 and it
seems that the Clar goblet is not an exception. Interestingly, at
one stage Clar himself put forward a speculative model by
which V could attain stability though Dewar-style “para” bonds
(see structure XXXIII in ref 24).

For energy functionals derived from kets
aa
,

bb
, Φab, Φ1,

Φ2, and aabb , we can conduct Hubbard−London finite field
SCF calculations using the McWeenyan many-shell SCF
method.58 For Φ3 or Φ4, more general MCSCF-type solution
techniques are required, as the CI interaction matrix element
for complex MOs cannot be written in terms of densities alone.

At this stage we have a favored candidate for the ground
state. What currents are to be expected for this state? Table 1
also gives Hubbard−London results for the symmetry-distinct
ring currents (rings A to D in structure V of Figure 1). There
are only minor differences between Hubbard−London maps
for different states. Rings A and C host the largest currents, and
D the smallest, with the ordering of A and C depending on the
state. Overall, however, the picture is very much the same as
was found with the Hückel−London model. Both models give
the same broad island-isthmus pattern of diatropic current for
all states considered. Figure 3 would describe the Hubbard−
London results for all states, with only minor modifications.

Finally, we compare the Hückel− and Hubbard−London
results with current-density maps from methods at higher
levels of theory. For this we use ab initio and Pseudo-π
calculations.

Maps for dication, neutral and dianion, obtained with both
methods all used these fixed geometries, for which the closed-
shell Hartree−Fock procedure generates a 1Ag state in all cases.
Figure 4 reports both sets of maps. Ab initio maps (Figure
4b,d,f) for all three charge states are broadly consistent with
the Hückel−London and Hubbard−London models, showing
well separated circulations on the two wings of the molecular
bow-tie, both diatropic in sense, and concentrated on the
carbon perimeter. Maps of σ-current in the same plotting plane
(not shown here) exhibit the usual paramagnetic vortices at
ring centers and an exterior diatropic circulation around the H
perimeter, characteristic of a localized σ-bond framework.62

The pseudo-π maps (Figure 4a,c,e) are consistent with the full
ab initio maps, giving the same pattern of twin diatropic
perimeter circulations, relatively minor variation with total
charge, and similar strength to the benzene π ring current. The
maximum value of the induced current per unit field in the
plotting plane, jmax, is 0.080 for benzene, and 0.087, 0.073, and
0.069 for V2+, V0 and V2− respectively at the pseudo-π level.
The ab initio π maps have jmax values of 0.078 for benzene, and
0.093, 0.070, and 0.073 for V2+, V0 and V2− respectively. Again,
the overall pattern of π-current is remarkably consistent across
methods, charge, and states.

In ipsocentric methods, total π maps of induced current
density can be partitioned into additive occupied-orbital
contributions that individually obey the selection rules
described earlier. The pattern of perimeter current and relative
inactivity in the interior of each wing is similar to that found in
large nanographenes, as mentioned earlier. A similar analysis in
terms of constructive and destructive interference of
contributions57 applies here. Four canonical molecular orbitals
(CMOs), each at the top of its symmetry stack in the 36π
cation, and also occupied in the 38π and 40π systems, account
for the majority of current in the total π maps for the dication.
The contributions of the four CMOs remain important for the
neutral and dianion maps, but a further orbital contributes
significantly on each addition of two π electrons to the total
count. For full detail, contributions from more orbitals lower
down the stacks are needed. Interestingly, the CMOs
corresponding to the nonbonding shell contribute only weakly
when occupied. The balance of localized and delocalized
effects on currents in medium-sized benzenoids would repay
further study.

4. CONCLUSIONS

Accounting for the ground state of the Clar goblet in terms of
qualitative models is clearly a delicate matter, but the
prediction of its ring current map proves to be more robust.
To a first approximation, at all levels the map for the neutral is
essentially the average of the closed-shell maps for the dication
and the dianion. All indications from the calculations presented
here are that the Clar goblet supports a diatropic/aromatic
perimeter π-current on each wing of the molecular bow-tie,
with only minor leakage across the central ring.

Indications from calculations at other levels of theory
support this claim for insensitivity of the maps. For example, an
ACID plot for the singlet open-shell Clar goblet at the π-
UB3LYP/6-31G(d,p) level9 is consistent with localization of
diatropic current on the wing perimeters and minimal
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communication across the isthmus. The sharp separation of
properties of the central hexagonal ring and rings in the wings
is also evident in various measures of aromaticity obtained
from all-electron and π-only UB3LYP and CASSCF(2,2)
calculations, as reported in the same reference. In general,
diatropic currents seem not to be sensitive to moving from the
CHF to the DFT levels of theory.63

In fact, pseudo-π maps (not shown here) for charge states
+1, 0, −1 of the trapezoidal five-ring benzenoid C19H11

corresponding to half of the goblet. Are essentially identical
to the maps for one lobe of the current in the goblet itself. This
is as expected from the magnetic passivity of the central
hexagonal ring of V, and from the easy graph-theoretical
observation that the bridging bonds in that hexagon are
formally single in all diradical resonance structures of V. (See
Figure 5 for the pattern of bond orders in the neutral Clar

goblet, where a Pauling bond order for each edge is defined by
the number of times the edge appears as a double bond in a
maximum matching expressed as a fraction of the total number
of maximum matchings). A similar argument, based on
conventional Pauling Bond Order, has been advanced to
rationalize the separation of the π-map of closed-shell perylene
into naphthalene-like islands64 (but see ref 65).

For practical purposes, the Hückel−London approach with
the adaptation for open shells described here gives a
qualitatively correct picture of the ring currents for this iconic
system. Calculations of this type are easy to carry out and
require no more than the molecular graph, and an estimate of
either atomic coordinates or ring areas.25,48
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