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Brain age gap, dementia risk factors and 
cognition in middle age

James D. Stefaniak,1,2 Elijah Mak,1 Li Su,1,3 Stephen F. Carter,1 Maria-Eleni Dounavi,1

Graciela Muniz Terrera,4,5 Katie Bridgeman,4 Karen Ritchie,6 Brian Lawlor,7 Lorina Naci,7

Ivan Koychev,8 Paresh Malhotra,9 Craig W. Ritchie4,10 and John T. O’Brien1,2

Brain Age Gap has been associated with dementia in old age. Less is known relating brain age gap to dementia risk-factors or cognitive 

performance in middle-age. Cognitively healthy, middle-aged subjects from PREVENT-Dementia had comprehensive neuropsycho-

logical, neuroimaging and genetic assessments. Brain Ages were predicted from T1-weighted 3T MRI scans. Cognition was assessed 

using the COGNITO computerized test battery. 552 middle-aged participants (median [interquartile range] age 52.8 [8.7] years, 

60.0% female) had baseline data, of whom 95 had amyloid PET data. Brain age gap in middle-age was associated with hypertension 

(P = 0.007) and alcohol intake (P = 0.008) but not apolipoprotein E epsilon 4 allele (P = 0.14), amyloid centiloids (P = 0.39) or cog-

nitive performance (P = 0.74). Brain age gap in middle-age is associated with modifiable dementia risk-factors, but not with genetic 

risk for Alzheimer’s disease, amyloid deposition or cognitive performance. These results are important for understanding brain-age in 

middle-aged populations, which might be optimally targeted by future dementia-preventing therapies.
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Graphical Abstract

Introduction
Brain age gap (BAG) represents the difference between an in-

dividual’s predicted age, derived from machine learning 

models trained on magnetic resonance imaging (MRI) 

data, and their chronological age.1 BAG is increased in 

mild cognitive impairment (MCI) and dementia.2 In MCI, 

elevated BAG is associated with a greater risk of conversion 

to dementia3,4 and with poorer cognitive performance.4 In 

asymptomatic older people, BAG has been associated with 

cardiovascular risk-factors,5 alcohol consumption,6 cogni-

tive performance,7 amyloid deposition8 and an increased 

risk of subsequently developing dementia.9

While BAG has been extensively studied in clinical samples 

and healthy older people, little has been published relating 

BAG to dementia risk or cognitive performance in middle-age. 

One study reported an association between BAG and IQ in a 

cohort of individuals all aged 45 years.10 However, other 

studies have failed to find an association between BAG and 

cognition in healthy older people.4 It is important to clarify 

the relationship between BAG, dementia risk-factors and 

cognition in midlife in order to inform its putative role as a pre-

clinical biomarker. We therefore investigated BAG in the 

PREVENT-Dementia cohort of middle-aged individuals en-

riched for a family history of dementia.

This analysis was pre-registered and adequately powered 

to find an association between BAG and cognitive perform-

ance in middle age. However, statistical associations do not 

necessarily imply predictive value,11 and it is possible that 

any relationship between BAG and cognitive performance 

is non-linear and not adequately captured by standard linear 

models. This study therefore performed an additional set of 

predictive modelling analyses in which a variety of linear 

and non-linear machine learning algorithms tested whether 

BAG and cognitive performance can predict each other.

Materials and methods

Setting and participants

Full details of the PREVENT-Dementia programme are de-

scribed elsewhere.12 Participants were cognitively normal, 
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middle-aged (40–59 years) subjects recruited from multiple 

sources across five sites with a target of 50% participants 

having a history of parental dementia. The research was ap-

proved by the London–Camberwell St Giles NHS ethics 

committee. All subjects provided written informed consent 

according to the declaration of Helsinki. 702 participants 

were recruited from five study sites (West London (210), 

Edinburgh (224), Cambridge (100), Oxford (68) and 

Dublin (100)). After excluding participants without imaging 

(n = 56), incidental MRI findings (n = 11) or missing risk- 

factor (n = 74) or cognitive (n = 9) data, 552 participants 

were included. Ninety-five participants had florbetaben 

amyloid PET/CT imaging data.

Risk-factors and cognition

Midlife risk-factors for dementia, established from previous 

research,13 included: hypertension, obesity or hearing dis-

order; alcohol intake (number of glasses of wine/beer per 

week), head trauma (lifetime number of head blows) and 

possession of the apolipoprotein E epsilon 4 (APOE4) allele 

(genotyping used QuantStudio12K-Flex).

Cognition was assessed using 17 variables from the 

COGNITO computerized test battery.14 Subsets of these 

variables represented: attention (visual attention, auditory 

attention, visual and auditory attention); language (sentence 

comprehension, verbal fluency and vocabulary test); mem-

ory (immediate recall, delayed recall, face recall and name- 

face association; narrative recall; implicit memory); and 

visuospatial function (form matching, visuospatial span, lo-

gical series, visuospatial construction and Stroop test). 

Principal component analysis (PCA) was used to reduce the 

number of variables for analysis. The first unrotated princi-

pal component (PC) was used to represent each aspect of 

cognition in statistical analyses (‘Cognition PC’ using PCA 

restricted to one component on all 17 variables or 

‘Attention PC’, ‘Language PC’, ‘Memory PC’ and 

‘Visuospatial PC’ using their respective variables).

BAG estimation

All included subjects had a T1-weighted magnetisation- 

prepared rapid gradient echo MRI scan with the following 

acquisition parameters: repetition time = 2.3 s, echo time =  

2.98 ms, 160 slices, flip angle = 9° and voxel size = 1mm3 

isotropic. All MRI scans were acquired on a 3T Siemens 

scanner with the following models: Verio (West London, 

Edinburgh); Prisma (Oxford, Edinburgh); Prisma fit 

(Cambridge); and Skyra (Dublin, Edinburgh).

Brain age was estimated from raw T1-weighted MRI scans 

using a publicly accessible model that had been developed 

using Gaussian process regression by an external party.15

Input to the model consists of raw T1-weighted MRI scans 

that have been segmented into white and grey matter and 

normalized using SPM12. The model was reported to have 

performed excellently in an independent validation dataset 

of 611 individuals aged 18–90 years (r = 0.95 between 

chronological and predicted age).15,16 None of the partici-

pants in the current study had been used to train the model. 

BAG was calculated as chronological age subtracted from 

brain age.

Pre-registration and power analysis

The analysis plan was pre-registered (https://aspredicted.org/ 

M88_D9H). Based on the standardized effect size of 0.2 

from a previous paper,10 an a priori power analysis sug-

gested that 343 participants were needed for 80% power 

to detect an association between BAG and cognition in mid-

dle age. A retrospective power calculation suggests our sam-

ple size of 552 had 96% power.

Statistical analysis

Statistical significance was defined as P < 0.05 and two- 

sided. Bonferroni correction was applied to the significance 

threshold whenever multiple unifactorial tests were per-

formed on the same dataset (reported P-values are uncorrect-

ed for transparency). Multiple linear robust regression 

models tested hypotheses that: BAG is positively associated 

with dementia risk-factors; and increased BAG is associated 

with worse cognition. Linear models controlled for sex, 

scanning site, years of education, age, age-squared15 and 

age*sex.17

Analyses were performed using python v3.8.16, with data 

handling using pandas v1.3.5 and numpy v1.21.6 and statis-

tical analyses using statsmodels v0.12.2 and sklearn v1.0.2. 

Robust linear regression models were implemented using 

‘statsmodels’ with default settings (Huber’s T norm and me-

dian absolute deviation scaling).

Predictive modelling

Statistical associations do not necessarily imply predictive 

value.11 Furthermore, it is possible that any relationship be-

tween BAG and cognition is non-linear (rather than linear). 

Thus, a range of both linear and non-linear machine learning 

(ML) regression algorithms were used to examine the pre-

dictive relationship between BAG and cognition. Linear re-

gression algorithms included ordinary least squares, ridge, 

and least absolute shrinkage and selection operator, while 

non-linear regression algorithms included nu-support vector 

and extreme gradient boosting. Models were trained to pre-

dict BAG from cognition (the 17 raw COGNITO variables), 

and conversely, to predict cognitive performance (cognition 

PCs) from demographic/risk-factor data, with and without 

BAG included. Random-permutation nested cross- 

validation with hyperparameter optimisation was employed 

to provide unbiased estimates of model performance, using 

mean absolute deviation (MAD) as the metric of the mean 

generalisation error. Bootstrapping (1000 iterations) was 

used to obtain 95% confidence intervals (CIs) for the 

MAD estimates.
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Post hoc correction of brain age for 
site and age

Additional post hoc analyses were performed to remove re-

sidual scanning-site and age effects on the predicted Brain 

Ages.

To remove hypothetical scanning site effects, we em-

ployed the ComBat method for data harmonisation without 

the empirical Bayes function, in line with our recent stud-

ies.18 The default empirical Bayes option in ComBat esti-

mates parameters for the scaling and shifting of features 

based on all features in the dataset. Since only a single feature 

(brain age) was being harmonized, estimating distributional 

parameters from a single feature avoids potential issues with 

single-feature distributional parameter estimation and 

overfitting.

To remove residual age-bias effects, the ComBat site 

harmonized brain ages from the previous step were then 

age-bias corrected according to a previously published 

method.19 The dataset containing all included participants 

was split into 10 ‘folds’. For each fold, a linear regression 

model was trained to predict brain age from chronological 

age using the nine remaining folds as a ‘training dataset’, 

with the formula: brain age = alpha × chronological age +  

beta. The derived values of alpha and beta from each fold’s 

training dataset were then used to correct predicted brain 

age in the left-out fold with: age-bias corrected brain 

age = brain age + [chronological age—(alpha × chrono-

logical age + beta)]. This was repeated for each of the 

10-folds in turn. 

‘Age and Site Corrected Brain Age Gap’ (‘ASC-BAG’) was 

calculated as chronological age subtracted from Age-Bias 

Corrected, ComBat Site Harmonized Brain Age.

Post hoc analyses

All association analyses using BAG in the present study were 

then repeated using ‘ASC-BAG’, to confirm that the observed 

results were not due to scanning-site and age effects on the pre-

dicted brain ages.

Post hoc linear models with ‘ASC-BAG’ as the dependent 

variable, controlled for sex and years of education but not 

age, age-squared,20 age*sex17 nor scanning-site. Post hoc 

linear models used APOE4 homozygosity (homozygous ver-

sus not homozygous) instead of APOE4 carrier status, after 

reviewer comments.

We did not repeat predictive modelling analyses using 

‘ASC-BAG’ instead of BAG, because performing ComBat 

site harmonisation and then age-bias correction on the pre-

dicted brain ages caused information to ‘leak’ between 

training and testing datasets during subsequent predictive 

modelling analyses, which would have positively biased 

predictive performance of models on held-out testing 

datasets.

See the online supplement for additional methodological 

details.

Results
At the group level, this cohort’s brain ages were younger than 

their chronological ages (median 52.8 years), yielding a 

median (interquartile range) BAG of −2.0 (7.8) years 

(Supplementary Table S1). BAG varied between individuals, 

ranging from −21.2 years to +18.4 years. The median (inter-

quartile range) ‘ASC-BAG’ was −0.2 (8.1) years 

(Supplementary Table S2). Brain Age correlated with 

chronological age (Spearman’s rho = 0.60, P = 4.7 × 10−55) 

(Fig. 1), in keeping with previous literature.21 Age was nega-

tively associated with BAG (Spearman’s rho = −0.13, P =  

0.003), and there were significant differences in BAG be-

tween scanning sites (Kruskall–Wallis H test, χ2 
= 22.96, 

P = 0.0001) (Supplementary Table S1). As expected, age 

was no longer associated with ‘ASC-BAG’ (Spearman’s 

rho = −0.01, P = 0.86), and there were not significant differ-

ences in ‘ASC-BAG’ between scanning sites (Kruskall–Wallis 

H test, χ2 = 0.06, P = 0.99) (Supplementary Table S2).

BAG and dementia risk-factors

A multiple linear robust regression model including modifi-

able dementia risk-factors identified hypertension (B =  

2.31, P = 0.007) and alcohol intake (B = 0.11, P = 0.008) 

as being significantly associated with increased BAG 

(Table 1). A post hoc model including modifiable dementia 

risk-factors identified hypertension (B = 2.23, P = 0.01) 

and alcohol intake (B = 0.10, P = 0.01) as being significantly 

associated with increased ‘ASC-BAG’ (Supplementary 

Table S3).

A model investigating the genetic risk of Alzheimer’s dis-

ease did not find an association between APOE4 carrier sta-

tus and BAG (B = 0.79, P = 0.14) (Supplementary Table S4). 

A post hoc model did not find an association between 

Figure 1 Scatter plot of brain age versus chronological 

age. Scatter plot showing the relationship between brain age and 

chronological age for the 552 included participants. Brain age 

correlated with chronological age (Spearman’s rho = 0.60,  

P = 4.7 × 10−55).
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APOE4 homozygous status and ‘ASC-BAG’ (B = 0.48, P =  

0.68) (Supplementary Table S5).

A third model did not find an association between amyloid 

centiloids22 and BAG (B = −0.03, P = 0.39) (Supplementary 

Table S6). A post hoc model did not find an association 

between amyloid centiloids and ‘ASC-BAG’ (B = −0.04, 

P = 0.32) (Supplementary Table S7).

BAG and cognition

Virtually all COGNITO variables loaded negatively on 

‘Cognition PC’, ‘Attention PC’, ‘Language PC’, ‘Memory 

PC’ and ‘Visuospatial PC’ (Supplementary Table S8), mean-

ing that lower PC scores indicated better cognitive 

performance.

BAG was not significantly associated with ‘Cognition PC’ 

(B = 0.004, P = 0.74) (Table 2), ‘Attention PC’ (B = 0.005, 

P = 0.25) (Supplementary Table S9), ‘Language PC’ (B =  

0.01, P = 0.09) (Supplementary Table S10), ‘Memory PC’ 

(B = −0.01, P = 0.61) (Supplementary Table S11) or 

‘Visuospatial PC’ (B = 0.01, P = 0.18) (Supplementary 

Table S12). Similarly, ‘ASC-BAG’ was not significantly asso-

ciated with ‘Cognition PC’ (B = 0.004, P = 0.72) 

(Supplementary Table S13), ‘Attention PC’ (B = 0.004, P =  

0.28) (Supplementary Table S14), ‘Language PC’ (B = 0.01, 

P = 0.09) (Supplementary Table S15), ‘Memory PC’ 

(B = −0.01, P = 0.65) (Supplementary Table S16) or 

‘Visuospatial PC’ (B = 0.01, P = 0.20) (Supplementary 

Table S17). More years of education was associated with 

better cognitive performance on ‘Cognition PC’ (B =  

−0.14, P = 4.7 × 10−11) (Table 2), ‘Language PC’ (B =  

−0.13, P = 1.4 × 10−20) (Supplementary Table S10), 

‘Memory PC’ (B = −0.06, P = 0.003) (Supplementary 

Table S11) and ‘Visuospatial PC’ (B = −0.07, P = 1.2 ×  

10−5) (Supplementary Table S12).

Predictive modelling

COGNITO data could not be used to predict BAG more ac-

curately than a mean-predicting ‘Dummy’ baseline (Table 3). 

This was shown by overlap between the 95% CIs of mean 

MAD for all regression algorithms and that of a mean- 

predicting ‘Dummy’ algorithm (Table 3). Similarly, BAG 

did not significantly improve the ability of any regression al-

gorithm to predict any of the cognition PCs when added to 

demographic/risk-factor data (Supplementary Tables S18– 

S22). This was shown by overlap between the 95% CIs of 

mean MAD when demographic/risk-factor data were the in-

dependent variables and when demographic/risk-factor plus 

BAG were the independent variables (Supplementary Tables 

S18–S22). Furthermore, non-linear regression algorithms 

were not significantly superior to linear regression algo-

rithms at explaining the relationship between BAG and cog-

nition (Table 3 and Supplementary Tables S18–S22). This 

was shown by overlap between the 95% CIs of mean 

MAD of linear (ordinary least squares, ridge, least absolute 

shrinkage and selection operator) and non-linear 

(nu-Support Vector, XGBoost) regression algorithms 

(Table 3 and Supplementary Tables S18–S22).

Discussion
This cohort had a negative median BAG, meaning their Brain 

Ages were younger than their chronological ages, on 

Table 1 Multiple linear regression model of participant 

characteristics and modifiable dementia risk-factors 

with BAG

Participant characteristic

Multiple linear regression with 

BAG

B (95% CI)

P 

value

Intercept −24.50 (−69.12 to 20.12) 0.28

Medical history of hypertension 2.31 (0.62 to 3.99) 0.007

Medical history of obesity 0.24 (−1.31 to 1.79) 0.76

Medical history of hearing 

disorder

0.33 (−1.19 to 1.86) 0.67

Sex—male −4.36 (−14.04 to 5.33) 0.38

Scanning site (compared to site 

A):

Site B 1.20 (−0.07 to 2.48) 0.07

Site C −2.62 (−4.24 to −1.01) 0.001

Site D −1.14 (−2.92 to 0.64) 0.21

Site E 0.77 (−0.94 to 2.48) 0.38

Alcohol 0.11 (0.03 to 0.19) 0.008

Head trauma 0.02 (−0.09 to 0.12) 0.76

Age 1.21 (−0.56 to 2.98) 0.18

Age*sex −0.08 (−0.26 to 0.11) 0.41

Years of education −0.08 (−0.24 to 0.08) 0.32

Age2
−0.01 (−0.03 to 0.004) 0.14

Robust multiple linear regression of participant characteristics and modifiable dementia 

risk factors against BAG. This analysis was performed on the 552 included participants. 

Statistically significant P-values are highlighted in bold. Abbreviations: B, unstandardized 

regression coefficient; CI, confidence interval.

Table 2 Multiple linear regression model of participant 

characteristics and BAG with ‘cognition PC’

Participant 

characteristic

Multiple linear regression with 

‘cognition PC’

B (95% CI) P value

Intercept 11.90 (−0.05 to 23.86) 0.05

Sex—male −0.84 (−3.44 to 1.76) 0.53

Scanning site (compared to 

site A):

Site B −0.20 (−0.54 to 0.14) 0.25

Site C 0.37 (−0.07 to 0.80) 0.10

Site D −0.03 (−0.51 to 0.45) 0.91

Site E 0.69 (0.24 to 1.14) 0.003

BAG 0.004 (−0.02 to 0.03) 0.74

Age −0.37 (−0.85 to 0.10) 0.13

Age*sex −0.03 (−0.08 to 0.02) 0.26

Years of education −0.14 (−0.19 to −0.10) 4.7 × 10−11

Age2 0.004 (−0.001 to 0.009) 0.09

Robust multiple linear regression of participant characteristics and BAG against 

‘Cognition PC’. This analysis was performed on the 552 included participants. 

Statistically significant P-values are highlighted in bold. Abbreviations: B, unstandardized 

regression coefficient; CI, confidence interval; PC, principal component.
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average. This might indicate ‘healthier volunteer’ selection 

bias.23 Nevertheless, individual BAGs varied widely, indicat-

ing that even in middle-age, substantial inter-individual het-

erogeneity exists.

BAG in middle-age was associated with hypertension and 

alcohol intake, which is known midlife risk-factors asso-

ciated with later-life dementia.13 This suggests that BAG 

might be modifiable by taking action to address such lifestyle 

risk factors. It also indicates that BAG in middle age might 

prove to be associated with subsequent risk of dementia in 

future longitudinal studies.

BAG was not associated with genetic risk of Alzheimer’s 

disease (APOE4) or amyloid deposition in the present study. 

Previous studies in asymptomatic elderly individuals have 

found associations between BAG and amyloid deposition 

and APOE4 status,8 although an association between BAG 

and APOE4 status has not been found in other work.16

The present study’s lack of association between 

Alzheimer’s disease-specific risk factors (APOE4, amyloid 

deposition) and BAG, but the positive association between 

modifiable lifestyle risk factors and BAG, suggests that 

BAG in middle-age might be more related to risk factors 

for dementia and poor brain health ‘in general’ rather than 

being specifically associated with Alzheimer’s disease- 

specific risk factors in particular.24 The association also sug-

gests that lifestyle risk factor modification needs to start at, 

or before, mid-life in order to optimize brain health.

The lack of association between BAG and education sug-

gests that the protective effect of education against late-life 

dementia13 is mediated through mechanisms that operate in-

dependently of brain age in midlife.

A remarkably consistent finding from this pre-registered, 

well-powered study was the complete lack of any association 

between BAG in middle-age and cognitive performance. This 

was despite there being a plausible and expected association 

between more education and better cognitive performance, 

which suggested our measures of cognitive performance 

were valid. Furthermore, a wide range of both linear and 

non-linear ML algorithms found no predictive value between 

BAG in middle-age and cognitive performance. Taken to-

gether, these results suggest that BAG is not related to cogni-

tive performance in middle-age. This is important for better 

understanding brain age in middle-age populations who 

might be the target of future dementia-preventing therapies. 

It also suggests that BAG might provide information, in add-

ition to cognitive testing, when assessing mid-life dementia 

risk.

This study has limitations, including the lack of data about 

incident dementia and the lower sample size with PET. 

ComBat site harmonisation of brain age was performed after 

calculating brain age (rather than performing correction be-

fore computing brain age). The subjects included in this 

study were mainly Caucasian (Supplementary Table S2); 

future research might investigate whether the BAG 

results reported herein generalize to other racial groups. 

Longitudinal follow-up of subjects by the PREVENT- 

dementia study should seek to clarify whether BAG in 

midlife is associated with subsequent risk of developing all- 

cause or Alzheimer’s dementia. Future work should investi-

gate whether midlife risk-factor modification can improve 

midlife BAG and subsequent dementia risk.

Supplementary material
Supplementary material is available at Brain Communications 

online.
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Table 3 Multivariable regression models predicting BAG from cognitive data

Dependent variable Independent variables Regression algorithm Mean MAD 95% CI of mean MAD

BAG COGNITO Dummy 4.99 4.37 to 5.32

COGNITO OLS 4.81 4.46 to 5.44

COGNITO Ridge 4.85 4.41 to 5.34

COGNITO LASSO 5.00 4.43 to 5.37

COGNITO NuSVR 4.81 4.47 to 5.45

COGNITO XGBoost 4.78 4.94 to 5.89

Multivariable regression models predicting BAG from cognitive data. COGNITO represents the 17 COGNITO variables used to assess cognition. This analysis was performed on the 

552 included participants. Abbreviations: CI, confidence interval; LASSO, least absolute shrinkage and selection operator; MAD, mean absolute deviation; NuSVR, nu-support vector 

regression; OLS, ordinary least squares; XGBoost, extreme gradient boosting.
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