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Yes, I have been influenced by my hero AlphaZero recently. Essentially, I have become a 

very different player in terms of style than I was before, and it's been a great ride. 

Magnus Carlsen, June 2019
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Abstract

Advances in Artificial Intelligence (AI) have made signifi-

cant strides in recent years, often supplementing rather than 

replacing human performance. The extent of their assistance 

at the highest levels of human performance remains unclear. 

We analyse over 11.6 million decisions of elite chess players, 

a domain commonly used as a testbed for AI and psychology 

due to its complexity and objective assessment. We investi-

gated the impact of two AI chess revolutions: the first in the 

late 1990s with the rise of powerful PCs and internet access 

and the second in the late 2010s with deep learning- powered 

chess engines. The rate of human improvement mirrored 

AI advancements, but contrary to expectations, the quality 

of decisions mostly improved steadily over four decades, ir-

respective of age, with no distinct periods of rapid improve-

ment. Only the youngest top players saw marked gains in 

the late 1990s, likely due to better access to knowledge and 

computers. Surprisingly, the recent wave of neural network- 

powered engines has not significantly impacted the best 

players – at least, not yet. Our research highlights AI's po-

tential to enhance human capability in complex tasks, given 

the right conditions, even among the most elite performers.

K E Y W O R D S

AI, Bayesian analysis, generalized additive models (GAM), longitudinal 

study, multiple change point (MCP)
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BACKGROUND

Technology has always played a pivotal role in reshaping the way people live, from the inception 

of electricity, which brought light to homes and powered machinery, to the invention of personal 

computers, which revolutionized how we process information and communicate. Arguably, the 

most important recent technical development is the advent of Artificial Intelligence (AI), a set of 

procedures and rules that produce intelligent output not unlike what humans do, in the middle of 

the last century. A recent explosion in machine learning (Sarker, 2021) and large language models 

(Thirunavukarasu et al., 2023) has led to a paradigm shift in numerous sectors, making the influ-

ence of AI on human performance omnipresent. The benefits of AI are, however, debated as it is dif-

ficult to gauge the full extent of technology's impact on human behaviour. Here we demonstrate that 

AI has profoundly changed the behaviour of the best chess players, who markedly improved their 

performance at two points in history: (1) in the late 1990s with the availability of personal computers 

(PCs) and the advent of the internet and (2) in the late 2010s with the influx of chess engines based 

on deep neural networks. Differently aged and skilled players were, however, differently impacted 

by the two AI milestones. The findings in our study are a direct product of the AI- like procedures 

which have catalysed improvements in real- world domains. Our study not only reinforces our un-

derstanding of AI's impact on an intellectual realm but also provides an example of its prospective 

applications in the field of psychology.

AI advances and human performance

Technical advances are often followed by fear (Pycha et al., 1986). This is in particular the case with AI 

where even the name of the new technology states that it is about machine intelligence which matches 

human apparently intelligent output. We define AI here broadly as development of computer systems 

capable of doing tasks that are normally thought to require human intelligence, be it making decisions, 

solving problems, or recognizing speech (Nilsson, 1982). Recent technological advancements led to 

machines being able to generate text, understand images, and in general learn from available data (Wang 

et al., 2023). This inevitably led to a paradigm shift in numerous sectors and inevitable fear of whether 

the AI will replace humans as decision- makers (Mollick, 2024).

Here we are, however, more interested in exploring a less pessimistic, and we would argue more 

realistic, aspects of humans learning with and from AI. Successful learning normally requires imme-

diate feedback (Lipnevich & Panadero, 2021), a process that becomes more complex in fields where 

performance is interdependent on interactions with other actors (Levine et al., 2017). In such scenar-

ios, conventional methods like books, lectures, or even specialized coaching may not suffice (Gaessler 

& Piezunka, 2023). The alternative, involving interaction with a human training agent, though more 

efficient, often faces constraints due to availability (Gaessler & Piezunka, 2023). It is in this context 

that the latest advancements in AI prove invaluable. AI simulations, capable of dynamic adaptation to 

the learner's needs, offer a realistic emulation of training interactions. From medicine and healthcare 

to finance and business, AI's application extends to various domains for tailor- made, interactive, and 

effective learning experiences (for a review, see Lai et al., 2023).

For example, Noy and Zhang (2023) discovered that integrating ChatGPT significantly enhances 

productivity in college- educated professions by reducing the time needed for tasks by 40% and improv-

ing output quality by 18%. Similarly, Dell'Acqua et al. (2023) demonstrated that AI integration in a pro-

fessional's workflow, specifically for tasks within AI's capabilities, leads to notable performance gains. 

In an analysis of 18 realistic business tasks, AI utilization resulted in over 25% faster task completion, 

more than 40% improvement in human- rated performance, and a marked increase in task completion 

rates. These results highlight the transformative potential of AI in professional settings. Both stud-

ies, however, emphasized that AI's effectiveness depends on its alignment with task requirements and 

the skill level of the human participants. Lower- skilled individuals benefited most from AI assistance, 
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and performance sometimes even decreased when tasks exceeded AI's current capabilities (Dell'Acqua 

et al., 2023).

Statistically, highly skilled individuals are less likely to show significant improvement due to the 

ceiling effect. Their performance is already at a high level, leaving little room for further enhancement. 

This restriction in the range of data often leads to suppressed effects (Pearson, 1902; Vaci et al., 2014). 

Nonetheless, a key insight from these studies is that AI needs to be sophisticated enough for high- 

performing individuals to derive additional value. We now shift our focus to the realm of chess and elite 

chess players to explore whether AI can indeed offer value in such high- skilled environments if the level 

of AI matches or exceeds that of best human performers.

Chess as drosophila in both psychology and AI

Beginning with the investigations of intelligence pioneer Alfred Binet into mental imagery (Binet, 1894), 

and extending through Adriaan de Groot's seminal work on cognitive processes (Degroot, 1978), 

to Nobel laureate Herbert Simon's studies on decision- making (Chase & Simon, 1973a; Gobet & 

Simon, 1996), chess has often been used as a domain of research by psychologists. It presents a decep-

tively simple set of rules within a complex environment, making it a particularly suitable ground for 

experimental inquiry–so much so that it has been dubbed the ‘Drosophila of cognitive science’ (Chase 

& Simon, 1973b). One of its most attractive attributes is the existence of an objective metric of skill, the 

Elo rating system (Elo, 1978; Vaci & Bilalić, 2017), a feature unique to chess, where players' rankings are 

determined exclusively by their performance against other competitors. This characteristic has enabled 

researchers to utilize chess as a means to explore not only quintessential cognitive science themes such 

as cognitive processes (Bilalić et al., 2008b; Bilalić, McLeod, & Gobet, 2009; Campitelli et al., 2005, 

2007; Chassy et al., 2023; Gobet, 2000; Gobet & Simon, 1996; Moxley et al., 2012) but also broader psy-

chological phenomena including gender disparities (Arnold et al., 2023; Bilalić, Smallbone, et al., 2009; 

Vishkin, 2022), stereotype threat (Backus et al., 2023; Smerdon et al., 2020; Stafford, 2018), individual 

differences (De Bruin et al., 2005; Waters et al., 2002) and the enduring nature versus nurture debate 

(De Bruin et al., 2014; De Bruin et al., 2008; Vaci et al., 2019).

In recent years, scientists have begun to exploit a more granular aspect of chess–individual moves 

within each game. These discrete moves represent a sequence of individual decisions, the quality of 

which can be compared with an objective, context- independent benchmark: the superior decisions 

made by chess engines in analogous situations. This comparison affords a more precise and objective 

means of assessing the performance of players across different historical epochs. Utilizing this mi-

croanalytic approach, researchers have explored a variety of inquiries, such as the cognitive impact of 

wearing masks (Smerdon, 2022), the decision- making quality fluctuation over decades and the influence 

of emerging technologies on it (Gaessler & Piezunka, 2023), and whether gender- related disparities in 

error rates during play–potentially attributable to stereotype threats–exist between female and male 

opponents (Backus et al., 2023). Our current study contributes to this body of work by employing the 

micro- level analysis of chess moves to examine the effects of AI advancements on human performance.

The field of AI, since its inception, has frequently employed chess as a prototypical research domain, 

with some referring to it as the ‘Drosophila of AI’ (McCarthy, 1990). Its well- defined, simple rules 

and confined space allow for a clear mathematical formalization, as illustrated in the seminal works of 

Newell et al. (1958) and Shannon and Shannon (1950). Yet, beneath this facade of simplicity, chess is a 

game of immense complexity. It is postulated that the game's possibilities exceed even the number of 

atoms in the known universe, with the legal positions in chess estimated at 1040 and the number of dif-

ferent possible games at 10120, while the number of atoms in the universe is estimated at 1075. To draw 

a more vivid comparison, a player envisioning eight moves ahead is faced with a number of possible 

continuation equivalent to the stars in the galaxy (Rasskin- Gutman, 2009). Chess is thus acknowledged 

as an intellectual domain par excellence, demanding the full spectrum of higher- order cognitive func-

tions such as reasoning, thinking, and problem- solving–core attributes that define human intelligence. 
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Mastery of chess, and competent play, has been seen as a demonstration of human- like performance 

within a domain of great complexity. This challenge has positioned chess as the quintessential arena for 

the pursuit of AI's ultimate ambition (Ensmenger, 2012).

The fascination with chess as a means to conceptualize artificial intelligence is epitomized by the 

works of Alan Turing, widely regarded as the forerunner of theoretical computer science and artificial 

intelligence, and Claude Shannon, esteemed as the father of information theory. Turing envisioned a 

chess- playing machine as emblematic of a thinking machine (1946), and his subsequent conjectures re-

garding the potential for ‘machine intelligence’ predominantly revolved around the concept of a chess- 

playing computer (Turing, 1953, 2009). He was the first to theoretically articulate the concept of a 

computer capable of playing chess (Turing, 1946). Nonetheless, it was Shannon who undertook the 

initial comprehensive analysis of computer chess. He viewed the game as the quintessential test bed 

for AI, attributed to its simultaneous simplicity and complexity. Shannon's theoretical work marked a 

crucial turning point. Though Shannon acknowledged the objective of AI to emulate human cognition 

in intricate domains like chess, the hypothetical chess computer he proposed utilized a decidedly non- 

human, brute- force strategy. Unlike humans, who would concentrate on a limited set of promising pos-

sibilities (Bilalić et al., 2008a; Degroot, 1978), Shannon's theoretical machine was designed to perform 

an exhaustive, tree- like search (Shannon & Shannon, 1950). This model was refined by computer and 

cognitive science vanguards Newell, Shaw, and Simon, who developed the first functional computer 

(1958) capable of playing chess by enhancing Shannon's algorithms (for a review, see McCarthy, 1990), 

thus inspiring Simon's bold assertion that a digital computer would defeat the world chess champion 

within a decade (Simon & Newell, 1958). While this straightforward approach was enticing and mathe-

matically executable, it yielded suboptimal outcomes, a consequence of the limitations in hardware and 

the inherent complexity of the domain. As a result, Simon's late- 1950s predictions that computers would 

rival the finest human chess players within a decade proved to be excessively optimistic.

The brute- force approach held significant appeal for early AI developers. With progressively refined 

evaluation functions and advanced search algorithms, coupled with the burgeoning availability of com-

putational resources, Simon's prediction of machines surpassing human chess capability ultimately ma-

terialized in the late 1990s. In 1997, an IBM computer named Deep Blue, which incorporated algorithms 

akin to those proposed by Shannon and enhanced by Newell and Simon, triumphed over the reigning 

world chess champion, Garry Kasparov, in a historic six- game match (Hsu, 2002). The victory was 

largely attributed to the hardware's capability to calculate 200 million moves per second, showcasing a 

markedly non- human modus operandi. Thus, a pursuit quintessentially associated with human intellect 

was surmounted using a distinctly non- human strategy, characterized by profound search depth and 

rapid pruning techniques (Hsu, 2002; Kasparov, 2017).

In the domain of computer science, a paradigm shift occurred during the mid to late 2010s with the 

advent of deep neural networks based on deep reinforcement learning, marking a departure from tradi-

tional brute- force methods. This new breed of algorithms diverges significantly from its predecessors, 

such as the minimax and alpha- beta pruning techniques. While the latter rely on extensive search trees 

to anticipate opponent moves, deep neural networks operate on a different principle. They are designed 

to parse vast datasets, learning from a wealth of prior knowledge or completely from scratch, identifying 

patterns and strategies that even the most comprehensive brute- force searches may not uncover.

The prowess of deep reinforcement learning was epitomized by AlphaGo, an AI engine that uti-

lized this sophisticated learning approach to defeat the world's premier Go player (Silver et al., 2016). 

However, the innovation did not culminate with AlphaGo. The subsequent iteration, AlphaZero, em-

barked on learning the game of Go from the ground up, without any prior human knowledge, achieving 

even more remarkable results than its predecessor (Silver et al., 2018). Unlike specialized systems such as 

Deep Blue, which was tailored exclusively for chess, the learning mechanisms underpinning AlphaZero 

were generalized, enabling its application across various domains, not only chess and Go but also video 

games (Vinyals et al., 2019). This approach's versatility was further showcased by AlphaFold, an AI 

developed by the same principles, which has made significant strides in the field of biology ( Jumper 

et al., 2021).
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Human (chess) performance through history

In domains where knowledge grows and spreads, new generations may naturally outpace their forebears. 

Chess computers and engines epitomize tools for expedited knowledge sharing. They serve not merely 

as ever- available sparring partners but also as repositories of chess wisdom, particularly beneficial when 

human opponents are less skilled than the silicon training partners. It is a reasonable supposition that 

chess computers have enhanced the performance of the average player. A recent study (Gaessler & 

Piezunka, 2023) provided empirical support for this notion, indicating that West German chess players, 

who had consistent access to chess computers during the 1980s, exhibited greater improvement over 

this period compared to their Soviet counterparts, who lacked similar access to these digital training 

aids.

Initially, the impact of chess computers on top players was limited. Early models, available com-

mercially from 1977, were basic, offering only expert- level play and little value to elite players. The 

1990s changed this landscape as PCs became household items, capable of running increasingly powerful 

chess software. These engines, evolving in algorithms and computing strength, became indispensable 

to even the most skilled players. By the late 1990s, they rivalled the world's top players, and by the early 

2000s, top players reported their inability to outmatch the premier engines running on standard PCs 

(Kasparov, 2010).

The arrival of the internet marked another significant transformation in the chess world around the 

same time. Previously, knowledge was transmitted via books or coaching, with electronic game records, 

available as chess databases, aiding training in the 1980s. However, PCs and the internet made this in-

formation widely accessible, breaking down traditional barriers. This change is reflected in the rise of 

Magnus Carlsen, the world's top player from Norway, a country with a limited chess history. Geographic 

constraints and the need for access to strong opponents or extensive chess libraries were eliminated. 

Now, with just a few clicks, players could access a wealth of chess games and analysis tools, revolution-

izing learning and improvement in chess across the globe.

Evidence of AI's influence on elite chess performance in the 1990s can be observed through the 

decreasing age at which players achieve the grandmaster (GM) title, which is the highest level of skill 

in chess, awarded solely on performance, and generally very rarely achieved. Attaining the GM title 

typically requires prolonged, intensive practice and is closely connected to knowledge resources such as 

available coaching or books (Gobet, 2018). The record set by the legendary Bobby Fischer, who attained 

the grandmaster status at age 15 and 6 months in 1958, stood unchallenged for over three decades, until 

1991, when Judith Polgar, a prodigious talent and a trailblazer in breaking gender barriers in chess, 

claimed the title at an even younger age (15 years and 4 months). Subsequently, throughout the 1990s, 

Polgar's record was surpassed nearly twenty times. By 2002, the record had been lowered to 12 years and 

7 months, almost full 3 years younger than Fischer and Polgar, with the current record now standing at 

12 years and 4 months (Mishra, 2022).

This rapid progression in the achievement of grandmaster status can be attributed to the combined 

impact of strong chess engines, widespread PC availability, and the proliferation of the internet, all of 

which significantly accelerated the accumulation of chess knowledge. More formal evidence support-

ing this trend was presented by Strittmatter et al. (2020), who demonstrated that the quality of play 

among world chess champions (and their opponents) has steadily improved over time, with a marked 

acceleration observed in the mid to late 1990s. This period of intensified progress aligns with the era of 

enhanced accessibility to advanced AI- driven chess tools and resources.

The newest AI development in the late 2010s sent shockwaves through the (Go and) chess game 

communities. The new learning mechanisms based on deep learning and convoluted neural net-

works were clearly a different beast from the previous rather domain- specific mechanisms relying 

on computation power mostly. Not only they could master complex domains such as Go, chess, 

and other games from the scratch with or no rules given, they were also markedly better than their 

predecessors. Initially, access to the groundbreaking self- playing engine AlphaZero was limited, and 

even the games it played were scarce. In December 2017, only 10 games were released to the public, 
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and it wasn't until a year later that an additional 200 games were made available. January 2019 saw 

the publication of a book containing many more games and detailed analyses of targeted experi-

ments with AlphaZero (Sadler & Regan, 2019). Furthermore, in the preceding year, the open- source 

engine LeelaChessZero brought the deep learning technology of AlphaZero within reach of chess 

practitioners. Soon after in 2020, one of the leading open- source engines, Stockfish, implemented 

some of the deep neural network mechanisms, regained its throne as the best engine. Systematic 

records of changes in performance are lacking, but top players like Magnus Carlsen have acknowl-

edged analysing games played by AlphaZero (Nielsen, 2019).

Recent studies have, however, demonstrated the impact of deep learning techniques, like those 

behind AlphaZero, in another complex game, Go. Choi et al. (2023) showed that the quality of 

individual decisions in Go games remained relatively stable until the release of a free source engine 

based on deep learning technology in early 2017. Subsequently, there was an improvement of over 

half a percentage point within a year, eventually plateauing at a two percentage point enhancement 

in less than 2 years. Notably, younger players exhibited considerably more improvement than their 

older counterparts. In another study, Shin et al. (2021) provided evidence that AI was indeed the 

driving force behind this enhancement in a natural experiment. Korean Army Go players, who were 

deprived of access to AlphaZero's open- source counterpart, did not show significant improvement 

compared to their pre- access performance, unlike their peers who had access to this new technol-

ogy. Lastly, Shin et al. (2023) found that an increase in novelty was positively associated with the 

quality of individual decisions following the advent of deep learning AI in Go. This suggests that 

the new AI technology enabled Go players to devise innovative, previously unexplored strategies, 

leading to improved gameplay.

Using AI techniques to uncover quantitative change in elite human 
performance

The influence of AI on human chess performance can be primarily attributed to two major advance-

ments: (1) the accessibility of knowledge via the internet, coupled with powerful PCs which allowed for 

rapid development of chess engines in the late 1990s, and (2) the advent of neural networks and deep 

learning technology in the late 2010s. While anecdotal evidence exists for both these developments af-

fecting top- level chess play–such as the age of the youngest grandmasters and personal accounts regard-

ing AlphaZero–a more systematic analysis is warranted. The study by Strittmatter et al. (2020) explored 

only world champions up until 2014, and while the impact of deep learning has been documented in Go 

(Shin et al., 2023), similar evidence in chess remains elusive.

Here we undertake a comprehensive examination of the performance of the top 20 chess players 

from 1985 to 2021. Our analysis focuses on their micro- decisions, specifically individual moves 

within games, and compares them to the recommendations of the best chess engines available, thus 

providing an objective measure of their performance. Additionally, we contrast this elite group 

with two other samples: the top 20 young players (under 20 years old) and the top 20 senior players 

(over 65 years old). Drawing on previous research (Choi et al., 2023), we hypothesize that both the 

top- tier and junior players will have benefitted more substantially from advances in AI than their 

senior counterparts. This hypothesis forms the basis of our study, detailed in our pre- registration 

document (https:// osf. io/ tg6um ).

Importantly, we adopt AI techniques analogous to those underpinning renowned chess engines like 

AlphaZero and Deep Blue to ascertain whether the shifts in performance, post- technological advance-

ments, are not merely quantitatively but qualitatively different, indicating a substantial deviation from 

previous levels of play. We use Multiple Change Points (MCP) analysis (Graf et al., 2023), a sophisticated 

statistical approach that excels in identifying significant departures from established trends (Raftery & 

Akman, 1986). In that sense, MCP mirrors the pattern recognition capability and dynamic adjustability 

based on given data central to the AI mechanisms behind chess engines.
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METHODS

Sample

We provide all our data and the code necessary for the reported analyses at: https:// osf. io/ 4k52p/ ? view_ 

only= 9737a 724f4 ca4d2 0af78 5c4a8 af54c8e

Pre-registration can be found at: https:// osf. io/ tg6um . We focus on three groups: (1) top 20 players 

regardless of their age, (2) top 20 junior (under 20) players, and (3) top 20 seniors (above 65). The top 

players were chosen based on their Elo rating at the end of each year (September FIDE Elo list) for the 

top 20 in that year in their specific groups (top, junior, and senior). We focus on a span from 1985 to 

2021 as this span includes both technological AI chess revolutions. The players were chosen based on 

their Elo ratings by using the official archive of the World Chess Federation, FIDE (https:// ratin gs. 

fide. com/ downl oad. phtml ). We included all games played by the chosen players in individual years from 

1985 until 2021 from the commercially available ‘Mega database 2023’ with almost 10 million games 

from ChessBase (https:// en. chess base. com). Only tournament games under normal conditions, that is, 

not rapid, speed, or blitz chess, were included. These games were then analysed for individual moves. 

We excluded the first ten moves as they tend to be a well- known theory at this level, as well as moves 

beyond move 60 where the small number of pieces presents considerable challenge for humans (for a 

similar approach and justification, see Smerdon, 2022). Overall, we analysed over 11.6 million individual 

decisions (half of them from the top 20 best players, 20 best juniors, and 20 best seniors, the other half 

coming from their opponents). If some of the top players, elite, junior, or senior, were not active in that 

particular year, that player had missing values.

Measures

The quality of decision- making will be measured by individual moves, more specifically, its quality 

as compared to the strongest chess engine, Stockfish. For comparison, the best human chess player, 

Magnus Carlsen, has an Elo rating of 2851 (the mean is around 1500, with a standard deviation of ap-

proximately 300–350 Elo points, see Vaci & Bilalić, 2017). The version of Stockfish 16 (with depth set 

at 15) we have used here has an Elo of over 3550 (https:// stock fishc hess. org/ about/  ). This 700- point 

rating difference corresponds to a win probability of about 99.9% for the open- source engine. This 

means that Carlsen would have to play about 1000 games against Stockfish to have a chance of winning 

one game.

We will pit every move of every game for a player against the engine benchmark. Normally, the 

‘centipawns’ deviation from the optimal move is obtained, indicating how much worse the chosen 

human move is, measured in hundredths of a pawn, from the engine move. The main problem with the 

use of centipawns is their heavy dependence on context. Losing 200 centipawns (around two pawns) 

in a balanced position is a significant blunder, but the same loss in centipawns in a situation where the 

game is already decided makes little difference and is irrelevant. There are ways around this problem, 

most notably by restricting the analysis to balanced, not already clearly decided, game portions (Backus 

et al., 2023; Guid & Bratko, 2007, 2011). Here, we adapt the approach currently favoured by the chess 

community, where the quality of play is expressed by accuracy for a single game. This essentially rep-

resents the deviation from the best decision (as benchmarked by a chess engine) or the percentage of 

optimal to good moves by the engine –100% means that all the chosen moves were those favoured by 

the engine. This approach avoids paradoxical situations where ‘mistakes’ of several hundred centipawns 

still lead to a won position because the advantage was already extremely high. We provide the code for 

calculating (an individual game's) accuracy based on chess engine evaluations in the online Data S1 

(oSI). A less technical explanation can be found here: https:// liche ss. org/ page/ accuracy.

Besides accuracy, we provide three other measures of decision quality–aforementioned centipawns, 

the percentage of optimal move (the move that matches the move chosen by the computer in the same 
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situation), and the percentage of win change compared to the engine move (how less likely in % is to 

win after the chosen move compared to the move chosen by the engine). Additionally, we also use cen-

tipawns to classify the errors players made within individual games. We are interested in three types of 

errors: (1) inaccuracies, which worsen the situation by more than 50 centipawns but less than 100; (2) 

mistakes, which lead to an evaluation of more than 100 centipawns worse than the optimal move but 

less than 200; and (3) blunders, which represent errors of a magnitude of 200 or more centipawns. The 

idea is to supplement the main accuracy measure with measures of another kind, which could addition-

ally capture the variability of play.

Finally, we used the Swedish Computer Chess Association list to obtain the estimated Elo score for 

the best available chess engine/computer for each year between 1985 and 2021 (https:// ssdf. bosjo. net/ 

list. htm). We excluded from the computer list the computers which were not publicly available, such 

as Deep Blue or AlphaZeroChess, as none of the players could practice with them (and potentially 

improve).

Analysis

We first average the accuracy scores for individual players for a given year across all the games in the 

given year. We do the same with the inaccuracies, mistakes, and blunders. All cases the number repre-

sents the average of the players in the given year across all games (per game, so to say).

We then correlated the Elo rating of the best AI with the averages of the dependent variables (e.g. ac-

curacy, optimal move, centipawns, win percentage, inaccuracies, mistakes, and blunders) for each of the 

three groups over the same years. This will allow to estimate whether the quality of decisions improves 

similar as the AI's strength improved through the last 40 years.

In the next step, we applied Generalized Additive Models (GAMs) to analyse the results. GAMs were 

selected because they are well- suited for capturing non- linear relationships, using a data- driven approach 

with non- linear mixed- effects regression (Wood, 2017). These models generate smooth curves for dif-

ferent groups, allowing for the assessment of group differences (see Graf et al., 2023; Vaci et al., 2019).

However, our goal here is not only to answer the hypothesis using classical methods employed in 

psychological research but also to illustrate how AI approaches, particularly machine learning, can be 

used to answer the same questions. We use change point analysis, which allows for the identification 

of abrupt changes in a sequence through significant deviations from established trends (Raftery & 

Akman, 1986). This differs from conventional linear regression analysis like ANOVA, Hierarchical 

Linear Modelling (HLM), or even non- linear approaches such as GAMs because it specifically de-

termines the exact moment of change in a function (Graf et al., 2023). It allows for the estimation of 

additional parameters, such as the intercept and slope before and after the change, and the exact time of 

the change. This is in contrast with other commonly used analysis for longitudinal data, HLM, which 

struggles to pinpoint the exact point when the performance curve changes (Gula et al., 2021; Long 

et al., 2024; Simonsohn, 2018).

The change point methodology is especially useful for identifying patterns of increase, where multi-

ple change points might indicate underlying qualitative and quantitative shifts in human performance.

In this context, we employ the Multiple Change Points (MCP) package (Lindeløv, 2020), which 

estimates change points in data using Bayesian methods. It uses Markov Chain Monte Carlo (MCMC) 

sampling to infer posterior distributions for the locations of change points, according to user- defined 

models. In a typical Bayesian approach, it combines prior knowledge with observed data and provides 

probabilistic estimates of change locations along with their associated uncertainties. This enables pre-

cise identification of change points and an assessment of their plausibility based on the data.

The MCP package also offers a way for evaluating both the plausibility of both individual pa-

rameters and the differences between models. The individual parameters are evaluated through 

the diagnostics of the MCMC sampling with Gelman- Rubin convergence indicators (Gelman & 
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Rubin, 1992). The difference between models is conducted by comparing models' predictive per-

formance, considering both fit and complexity. Here we employ Leave- One- Out Cross- Validation 

(LOO- CV) for model validation (Shao, 1993). In LOO- CV, each data point is sequentially excluded; 

the model is then retrained on the remaining data, and the prediction error for the excluded point 

is computed by averaging over all iterations. The resulting metric, the Estimated Log- Predictive 

Density (ELPD), reflects the model's predictive power, indicating the model's credibility in ac-

counting for out- of- sample data. When comparing two models, we consider the difference in their 

ELPDs, which includes the standard error (ELPD- SE). The ratio of the ELPD difference to the 

ELPD- SE serves as a Z- score analogue: a ratio greater than 1.96 suggests a 95% probability that one 

model has superior predictive accuracy over another. Normally, one considers the difference im-

portant when the ratio is above two, which essentially means that the 2SE credible intervals around 

the difference do not encompass zero (Sivula et al., 2020). For the sake of readability, we will mostly 

present only the ratio. The ELPD for differences and its SE which are necessary for drawing credible 

intervals can be found in the oSI.

The chosen analytical approach here shares several similarities with the workings of chess engines. 

Like machine learning algorithms, MCP identifies patterns in chess performance data, revealing sig-

nificant shifts akin to pattern recognition in AI. It adapts its model based on the data, much like 

machine learning algorithms adjust their parameters, ensuring precise identification of change points. 

Furthermore, MCP's Bayesian approach resonates with machine learning's principle of evolving under-

standing through new data, making it a potent tool for analysing complex patterns like those in chess 

performance.

R ESULTS

Descriptive statistics

Figure 1 presents the four indicators of decision- making quality for the top players, juniors, and 

seniors from 1985 to 2021. In the first two indicators, Accuracy and Optimal Moves, the quality 

increases, indicating better overall decision- making across time. In the second set of predictors, 

Change in Centipawns and Change in Win %, the trend is the same, but this time smaller values 

indicate better decision- making as the differences between the best engine move and the moves 

chosen by players become smaller over time. The top players (red circles) demonstrate the high-

est accuracy, followed by juniors (blue triangles), while the seniors (green squares) have the lowest 

decision- making quality.

There are a few trends regarding the development of decision- making indicators in the three groups 

across the years. Top players tend to improve consistently over time, reaching peaks in the mid- 2000s 

and mid- 2010s. Juniors demonstrate a big jump in quality in the late 1990s, which is followed by a small 

but consistent increase in quality. The seniors have the most variation of all groups, reflecting the fact 

that many of the top 20 senior players did not play and consequently were not included in the analysis. 

Finally, in the top and junior players, there is a trend of worse decision- making in the last 2 years of the 

analysed period, 2020 and 2021.

Figure 2 illustrates the various types of errors committed by top players, top juniors, and top seniors 

between 1985 and 2021. We find the same patterns as with the quality of decisions–the top players made 

the fewest mistakes, followed by the best juniors, while the best seniors committed the most errors over 

the time period. We also find the same patterns when it comes to trends, where the top players made 

fewer and fewer errors, culminating in the mid- 2010s, while the best young players reduced the number 

of errors dramatically in the late 1990s. Top seniors did not exhibit noticeable changes in errors over 

time but did reduce their blunders.
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Impact of AI on performance–correlative analysis

We then check how these trends correspond with the AI improvements over the years. Figure 3 shows 

that AI improvements were particularly rapid until the early and mid- 2000s, reaching the level of the 

best human players. The mid- 2000s also saw a jump when the best AIs became too good even for the 

very best chess players. This jump in strength was followed by a relative stagnation for a few years, until 

the mid- 2010s, when there were sustained and constant small improvements.

Table 1 demonstrates that AI improvements coincided with the improvement in the quality of play 

among the top 20 players. The (Pearson's) correlation was highly positive for quality measures such as 

accuracy and optimal move share and negative for inaccuracies and mistakes, indicating overall better 

play with fewer errors. The correlation was particularly high in the very best players (All), somewhat 

weaker in junior players, and the weakest in senior players. However, when we formally compared the 

coefficients (see Section 1, in the SM), only the correlation between AI and optimal move share for all 

(.75) was significantly higher than the same correlation among the seniors (.18).

Generalized additive model (GAM) analysis

In the next step, we formally describe the trends in the quality of decisions across groups over time by 

using modelling data for non- linear trends with GAM. GAM allows us to estimate the trends over the 

years for each of the groups while capturing sudden changes such as improvements (Graf et al., 2023; 

Vaci et al., 2019). In all instances, we use models where both years (from 1985 to 2021) and age groups 

F I G U R E  1  Quality of decisions of the best players from 1985 to 2021. Accuracy indicates how accurate the players were 

compared to the best AI; Optimal Move indicates the percentage of times the players chose the identical move as the best AI; 

Centipawns represent the absolute difference in centipawns (100 centipawns equal one pawn) between the move chosen by 

the players and the move chosen by the best AI; the same difference can be expressed in how much less likely the player is to 

win the game (in %) by Change in Win %. The larger the numbers in Accuracy and Optimal Move, the better the quality of 

decisions. For the Change in Centipawns and Change in Win %, the opposite is true, as these measures indicate the distance 

from the optimal move chosen by the best AI. All (red circles) represent the top 20 players, Junior represents the top 20 

juniors (under 20 years of age, blue triangles), and Seniors are the top 20 seniors (over 65 years of age, green squares) if they 

played in that year. Error bars represent +/− 1 SE.
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(All, Junior, and Senior) were modelled non- linearly (using a smooth term). In addition, we also checked 

whether there is an interaction between years and age groups.

The models for each of the dependent variables are graphically presented in Figure 4 (left panel). In 

all instances, year and age group differences were significant, as well as the interaction between them. 

In other words, there were significant changes over the years, the age groups significantly differed from 

each other, and the differences between groups varied across the years (for more details, including spe-

cific significance tests, see the SM, Section 2). As can be seen in Figure 4 (left panels), all three groups 

F I G U R E  2  Errors made by the best players from 1985 to 2021. Average number of inaccuracies (more than 50 

centipawns difference between the engine and the player's decision), mistakes (more than 100 centipawns), and blunders (more 

than 200 centipawns) per 100 moves for the top 20 players (All, red circles), top 20 under 20- year- olds ( Junior, blue triangles), 

and the best 20 over 65- year- olds (Senior, green squares). Error bars represent +/− 1 SE.

F I G U R E  3  Elo rating of the best available chess AI (engine or computer) from 1985 to 2021. Deep Blue and 

AlphaZeroChess were excluded from the list, as they were not available to players. For comparison, the best human players 

had Elo ratings ranging from 2720 in 1985 (Garry Kasparov) to 2872 in 2013 and 2019 (Magnus Carlsen). The best AI 

matched these marks in 2002 (2712 Elo) and 2006 (2872 Elo).
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mostly improved their decision quality across the years. The top players were making better decisions 

than the best young and old players, while the best junior players were mostly better than the best senior 

players.

The best players maintained a consistent quality of decisions from 1985 until the mid-  and late 

1990s, when both their accuracy and percentage of optimal moves began to increase. This improvement 

continued until the early 2010s, when it plateaued, and then, towards the very end of the 2010s, there 

was a decline. The best young players followed a similar trajectory, with the slight difference that their 

improvement was already visible before the late 1990s, and then, in the late 1990s, they saw significant 

progress. This improvement lasted until the early 2010s, followed by a reversal towards the end of the 

decade. In contrast, the best seniors experienced some valleys and peaks before the 2010s, most likely 

due to the sparse dataset (as several of the best seniors did not necessarily play every year). However, 

towards the end of the period, from the mid- 2010s until 2021, the quality of their decisions improved.

GAM also enables us to formally test for differences between groups across all time periods. Figure 4 

(right panels) plots the differences between pairs of age groups, such as when we compare top players 

with junior players (red line in Figure 4, right panel), top players with senior players (green line), and 

junior players with senior players (blue line) between 1985 and 1991. Accompanying the differences are 

estimated 95% confidence intervals (CI) of the standard error of the differences (shaded areas). If these 

CIs do not encompass 0 (dashed black line in Figure 4, right panels), one can consider that the differ-

ence at that particular time point is significant. Consequently, we can see that for most of the time and 

in all quality of decision measures, the top players are significantly better at decision- making than the 

best junior and especially senior players. The same can be said of junior players over senior players, with 

the notable exception of the last few years when the senior players have significantly better indicators.

T A B L E  1  Association between the strength of the best AI and the quality of decisions of the best player for the period 

between 1985 and 2021.

Variable Age group Pearson's r

Accuracy All 0.75

Accuracy Senior 0.52

Accuracy Junior 0.57

Optimal Move All 0.7

Optimal Move Senior 0.18

Optimal Move Junior 0.49

CentiPawns All −0.71

CentiPawns Senior −0.62

CentiPawns Junior −0.49

Win % All −0.47

Win % Senior −0.57

Win % Junior −0.65

Inaccuracy All −0.69

Inaccuracy Senior −0.49

Inaccuracy Junior −0.57

Mistake All −0.44

Mistake Senior −0.38

Mistake Junior −0.41

Blunder All −0.29

Blunder Senior −0.45

Blunder Junior −0.14

Note: All r significant at p < .05, except for Optimal Move Senior, and Blunder for All and Junior.

 2
0

4
4

8
2

9
5

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
p

sp
sy

ch
u

b
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/b
jo

p
.1

2
7
5
0
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

9
/1

2
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



    | 13IMPACT OF AI ON ELITE HUMAN PERFORMANCE

F I G U R E  4  Modelling quality of decisions of the best players between 1985 and 2021. The left panel figures present 

non- linear (Generalized Additive Models–GAMs) models for the best overall 20 players (All, red line), the best 20 under- 20- 

year- old players ( Junior, blue line), and the best over- 65- year- old players (Senior, green line) for the period between 1985 and 

2021 for the measures of quality of decisions (Accuracy–how precise they played, Optimal Move–how often they matched the 

best AI choice, Change in Centipawns–how far the chosen move was in centipawns from the best AI move, Change in Win 

%–how much less likely the player's chosen move was to win the game compared to the AI move). Error bars are shaded areas 

around the mean and represent 95% CI. The right panel plots the differences between the best overall players and juniors 

(red line), the best overall players and seniors (green line), and between juniors and seniors (blue line) for each of the quality 

of decision measures across all years. Error bars are shaded areas around the mean difference and represent 95% CI–the 

differences are significant if the CIs do not encompass zero, which is indicated by the dashed black line.
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The magnitude of these differences, however, provides clues about the patterns of improvement. For 

example, we can see that the top players hold a relatively constant edge in the quality of decisions over 

the best young players, but the advantage becomes smaller and smaller in the 2000s. Similarly, the senior 

players mostly make inferior decisions compared to the best overall and junior players, but towards the 

very end of the time period, not only does their performance improve, but the performance of the best 

junior players decreases, resulting in significantly better performance from the best senior players and 

no significant difference with the performance of the overall best players.

We use the same GAM models for the errors in decision- making (see SM, Section 2). Figure 5 (left 

panel) demonstrates that all groups make fewer errors over time, with the top players making the few-

est, followed by juniors and seniors. The right panel of Figure 5 demonstrates that formal tests confirm 

F I G U R E  5  Modelling errors in decision of the best players between 1985 and 2021. The left panel figures present non- 

linear (Generalized Additive Models–GAMs) models for the best overall 20 players (All, red line), the best 20 under- 20- year- 

old players ( Junior, blue line), and the best over- 65- year- old players (Senior, green line) for the period between 1985 and 2021 

for the measures of errors in decision- making (Inaccuracy–how many times per 100 moves the chosen move was worse than 

50 centipawns/half a pawn compared to the best AI move; Mistake–how many times per 100 moves the chosen move was 

worse than 100 centipawns/a pawn compared to the best AI move; Blunder–how many times per 100 moves the chosen move 

was worse than 200 centipawns/two pawns compared to the best AI move). Error bars are shaded areas around the mean and 

represent 95% CI. The right panel plots the differences between the best overall players and juniors (red line), the best overall 

players and seniors (green line), and between juniors and seniors (blue line) for each of the error measures in decisions across 

all years. Error bars are shaded areas around the mean difference and represent 95% CI–the differences are significant if the 

CIs do not encompass zero, which is indicated by the dashed black line.
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this observation. We can again see that the advantage of the best players over the junior players be-

comes smaller over time, until the end of the period, when it is again large due to a considerable drop 

in performance among the junior players. This same drop towards the end is partly responsible for the 

significantly better performance of the seniors compared to the junior players. Mostly, however, it was 

the improved performance of the best senior players, who towards the end of the examined period made 

fewer and fewer errors.

Multiple change points (MCP) analysis

We now turn to the formal analysis of identifying change points using the Multiple Change Points 

(MCP). Initially, we fit a model under the assumption of no change–essentially, a linear model–which 

serves as a baseline for comparison with other models. Subsequently, we fit models that incorporate 

one, two, or three change points, which may or may not vary across the age groups (see Table 2). The 

models where there is no variation between age groups assume that all three groups have similar pat-

terns or results, i.e., represent the same population. While these models may not be plausible in this 

context, as we expect differences between the age groups, they are useful for comparison. These models 

are compared based on their fit, namely how well they describe the data, and the best is then chosen 

and presented here.

In the case of Accuracy and Optimal move (for other quality and error indicators, see SM Section 3), 

by far the best fitting model was the model with a single sudden jump which varies among the age 

groups, as well as the subsequent slope (Model 10 in Table 1). This model is markedly better than the 

next best fitting model, the same model but where the slope does not vary among groups; this is evi-

denced by the difference in ELPD, which is −40.3, with an ELPD- SE of 9.4, resulting in a ratio of 4.3 
(for the full LOO statistics, see SM Section 3).

Figure 6 provides a graphical representation of the MCP analysis, depicting the accuracy and optimal 

move percentage for all three groups of players over the period from 1985 to 2021. The strength of the 

MCP analysis lies in its ability to precisely identify the timing of the change. The blue lines in Figure 6 

depict the posterior distribution of the time at which the change occurs. For the top players, there is no 

significant change point for the accuracy, but the optimal moves percentage includes a single change 

point already at the beginning, around 1986 with over 90% of the estimates falling between 1985 and 

1987. In contrast, the change for the best junior players was estimated to have occurred around 1999 

in both accuracy and optimal move percentage, with the range between 1998 and 2000 encompassing 

nearly all the point change estimates (see the blue lines at the bottom of Figure 6). It is notable that the 

slope after the jump indicates consistent and constant increase in performance in the years after the 

jump. Finally, Figure 6 illustrates that the best seniors had a constant non- improving performance until 

the mid- 2010 when they experienced a jump with ever- increasing performance.

Despite GAM clearly identifying an improving quality of decisions since the mid- 1990s in the (over-

all) best players, it is notable that they did not have any significant break points. We also fitted individual 

MCP models only for the best players, which demonstrated that the significant breaks could be iden-

tified in particular in the mid- 2000s. However, none of the models was much better than the models 

when the (negative) change was for example in the late 2010s.

Multiple change points (MCP) robustness analysis

We corroborate the MCP results by performing out- of- sample validation. Chess is particularly suitable 

for these kinds of robustness checks because the same players play games with both white and black 

pieces/sides. We leverage this feature of chess and first model all 11 MCP models on the data for the 

white side. We then use the results of all the models to predict the same model outcomes on the data 

when the same players play with the black pieces. Finally, we also perform a reverse out- of- sample 
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validation where the black pieces were first modelled and then used to check how well they fit with the 

white pieces.

The best model was again the model with two intercepts (one jump) and a subsequent slope, where 

both the timing of the jump and the subsequent increase or decrease varied (Model 10 in Table 2). We 

provide Mean Square Error statistics for all the models and their predictions, from white to black, black 

to white, and the averages–see SM Section 4.

Figure 7 presents a graphical representation of the best fitting model for the white and black pieces, 

for all three age groups, on the quality indicators of accuracy and optimal move share. These results 

confirm the findings on the whole sample, where the jumps for the overall best players are either none 

or early in the time period, while the sudden jumps occur in the late 1990s and mid- 2010s for juniors 

and seniors, respectively.

Case study: Magnus Carlsen

Finally, we evaluated the performance of Magnus Carlsen, arguably the greatest chess player of all time 

and an early adopter of the new generation of deep learning- based chess engines. Although Carlsen was 

beaten by Sergei Karjakin for the title of the youngest grandmaster by 10 months, he quickly ascended to 

the top 20 juniors in 2006, and by mid- 2011, he had become the world's number one rated chess player. 

He became the world chess championship in 2013 and successfully defended the title four times, most 

recently in 2021.

From July 2018 to October 2020, Carlsen remained unbeaten in 125 games, winning 42 and draw-

ing 83 against top- level opponents. This represents the record for the longest unbeaten streak in elite 

tournaments. What stands out during this period, particularly from 2018, is Carlsen's approach to the 

T A B L E  2  Summary of multiple change point (MCP) models applied.

Model number Model expression Description

Model 1 dep ~ 1 Overall mean (global intercept) without Year or Age Group effects

Model 2 dep ~ 1 + Year Overall mean (global intercept) with a slope for the Year variable

Model 3 dep ~ 1 + Year, ~ 1 Two intercepts (sudden jump in performance) with a slope for the 

Year variable before the sudden jump

Model 4 dep ~ 1, ~ 1 + Year Two intercepts (sudden jump in performance) with a slope for the 

Year variable after the sudden jump

Model 5 dep ~ 1, ~ 1 Two intercepts (sudden jump in performance)

Model 6 dep ~ 1, ~ 1, ~ 1 Three intercepts (two sudden jumps in performance)

Model 7 dep ~ 1 + sigma(1) Intercept model allowing for variance changes in decision quality

Model 8 dep ~ 1, 

1 + (1|AgeGroup) ~ 1

Two intercepts (sudden jump in performance), but time when jump 

occurs varies between Age groups

Model 9 dep ~ 1 + Year, 

1 + (1|AgeGroup) ~ 1

Two intercepts (sudden jump in performance) with a slope for the 

Year variable before the sudden jump, but time when jump occurs 

varies between Age groups

Model 10 dep ~ 1, 

1 + (1|AgeGroup) ~ 1 + Year

Two intercepts (sudden jump in performance) with a slope for the 

Year variable after the sudden jump, but time when jump happens 

and slope after varies for age groups

Model 11 dep ~ 1, 1 + (1|AgeGroup) 

~1, 1 + (1|AgeGroup) ~ 1

Three intercepts (sudden jump in performance) with a slope for the 

Year variable after the sudden jump, but time when jumps happens 

and slope after varies for age groups

Note: ‘dep’ indicates varying dependent variables for the quality and errors of decisions, such as Accuracy, Optimal Move, or Mistakes or 

Blunders. ‘Year’ represents the time period, i.e., years between 1985 and 2021, while ‘Age Group’ represents All, Senior, and Junior top 20 

players.
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game. He began to clearly favour activity over material, often opting for sacrifices for long- term ad-

vantages, a style typically avoided due to the uncertainty of outcomes (for a chess- specific analysis, see 

GothamChess, 2021; Harding, 2019; Nielsen, 2019). Carlsen himself acknowledged the influence of 

AlphaZero, going so far as to call it his ‘hero’ in a press conference at Norway Chess 2019 in Stavanger 

(Nielsen, 2019).

This particular trend was not especially visible in Figure 8, which illustrates Carlsen's quality of play 

and the number of errors since 2006. In every aspect, Carlsen has enhanced his quality of play and 

consistency. This may not be surprising, as in 2006, he was not yet among the world's best players and 

had considerable room for improvement. However, his performance continued to improve even after 

2011 when he reached the top ranking. There is a notable peak in his performance around 2012–2013. 

The performance in the record years 2018 and 2019 was among his best, but it did not quite reach the 

heights of the early 2010s (Figure 8).

DISCUSSION

We set out to investigate the impact of the two AI chess revolutions on the performance of the very best 

chess players: the first one in the mid to late 1990s when the availability and power of PCs, combined 

with access to the internet, made chess computers strong enough for the best players to utilize them; and 

the second in the late 2010s when advances in deep learning and neural networks allowed for not only 

stronger chess computers but also a different kind of style of play. We find, however, that the best play-

ers improved the quality of their decision over the last four decades irrespective of age (see Figures 3 and 

4). The improvement goes hand in hand with the improvement made in the chess AI domain, in par-

ticular for the very best players whose improvement rates were highly correlated with the improvement 

F I G U R E  6  MCP analysis on the quality of decision in top chess players from 1985 to 2021. The models with two 

intercepts and two slopes, both varying across all age groups, are depicted. Black dots represent raw data (individual players). 

Grey lines represent randomly chosen draws from the estimated posteriors. Blue lines at the bottom present the posterior 

distributions of the estimated change points (one line for each of the four chains).
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rates of the best available chess engines (see Table 1). Nevertheless, there were no discernable periods of 

time when the improvement rate was especially rapid in the case of the best players. Only the best young 

players improved significantly towards the end of the 1990s, indicating that they have benefited from 

the wide availability of PCs combined with access to chess knowledge through the internet. Finally, the 

new age of chess engines in the late 2010s does not seem to have impacted the quality of the best play-

ers, at least not yet.

First AI chess revolution–mid to end of 1990s

Our study demonstrates that the quality of decisions among the best players steadily improved over 

the last 40 years. More remarkably, it was associated, particularly strongly among the very best group of 

players, with the steady improvements in chess AI. The best players did not start improving until the 

mid- 1990s, which might not be surprising. It is not unreasonable to assume that, despite all the advances 

in the strength of engines and the availability of knowledge in the 1980s and early 1990s, not much 

changed for the best players compared to the previous decade. Access to chess knowledge, including 

chess databases, was certainly different in the 1990s than in the 1980s, but the top players in the 1990s 

had probably acquired their knowledge in the pre- internet era. The new access may have helped but 

likely not as much as it would have for other less knowledgeable players. Similarly, while chess engines 

in the early 1990s were improved over those in the 1980s, they were still not as strong as the best human 

players. As such, they were of limited use as sparring partners. Gaessler and Piezunka recently (Gaessler 

& Piezunka, 2023) found that access to chess computers has helped players improve their skills, but only 

for those who were weaker than the available chess computers. Only when the chess engine became 

good enough for use in training in the late 1990s and early 2000s, did the best players start improving.

F I G U R E  7  MCP robustness analysis on the quality of decisions in top chess players from 1985 to 2021. The models with 

two intercepts and two slopes, both varying across all age groups, are depicted for accuracy and optimal move share for the 

games played by white (left panels) and black pieces (right panel). Black dots represent raw data (individual players). Grey lines 

represent randomly chosen draws from the estimated posteriors. Blue lines at the bottom present the posterior distributions of 

the estimated change points (one line for each of the four chains).
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On the other hand, the best young players improved steadily from the beginning (1985), and then 

suddenly around 1999, as confirmed by formal MCP analysis. The early improvements in the 1980s 

and early 1990s indicate that the young players, who were significantly weaker than the best players 

(the gap is around 200 Elo points, or 2/3 of SD), had more ‘opportunity’ to improve their performance 

(Pearson, 1902; Vaci et al., 2014) even when the best chess AI was of not much use. The young play-

ers, however, were in their formative years during the mid-  and late 1990s, and the way they acquired 

F I G U R E  8  The quality of performance by the best world player (Magnus Carlsen) over the years. The fitted line is the 

non- linear loess function.
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knowledge would have been significant. This may have influenced their particularly sudden improve-

ment in the late 1990s, when they also could benefit from the best available chess AI.

Our study only partly confirms the main conclusions from another study investigating a similar phe-

nomenon. Strittmatter et al. (2020) found that individual decisions markedly improved in the mid to late 

1990s, with over 8% in the share of optimal moves from mid- 1995–2010 (see Figure 2 in Strittmatter 

et al., 2020). This is a far cry from our results, where the top 20 players improved only by around 2% 

in the same time frame. One possible reason for this discrepancy is the differing designs. Our study 

included all the best players throughout the period, whereas Strittmatter and colleagues had a somewhat 

narrow focus on world champions (and their opponents in individual games) only.

Second AI chess revolution–mid to end of 2010s

Unlike the first AI revolution, there is little evidence that the second AI revolution in the late 2010s 

played a role in affecting elite human performance. The players were not performing better, with the 

notable exception of the best senior players. However, even they started improving rapidly before the 

new chess AI became available in the mid- 2010s. It should also be noted that the average number of in-

dividual decisions in the early years was rather small for the senior players. However, from those couple 

of hundreds, it grew to almost one thousand decisions by the time the shift happened in the mid- 2010s. 

The shift may then simply reflect a more reliable dataset.

There are a number of possible reasons for the lack of effect of the new age chess AI on the best 

performers. Already by mid- 2000s, older chess engines had matched and surpassed any human player 

in terms of consistent performance throughout entire games (Elo of over 3000, while the best players 

had Elo over 2800, almost an SD gap). Consequently, even top players found these engines invalu-

able for training and preparation before the second AI chess revolution. While the new age engines 

further enhanced chess engine performance, the increase of less than 30 Elo points–arguably not 

really a significant leap over what was already a superior performance compared to the best humans 

(amounting to 700- Elo gap or around two SDs)–may not have been large enough to impact top play-

ers' performance.

Similarly, the new style and ideas pioneered by the new chess engines may not lead immediately to 

visible improvement, at least on a consistent basis. We have seen that even in early adopters like Magnus 

Carlsen, who claimed to be greatly inspired by AlphaZeroChess, there were no visible objective im-

provements in the quality of decisions. As a matter of fact, Magnus Carlsen, as well as other top adult 

and youth players, experienced a considerable decline in the quality of decisions in the last two data 

points, 2020 and 2021, exactly when the AlphaZeroChess clone, LeelaChessZero, became available. 

This drop was not identified as a significant shift by the MCP analysis, but it is large enough to raise 

questions. We have taken great care to exclude the rapid and blitz tournaments, which could explain 

the sudden drop in performance. By that time, however, much shorter control times became prevalent. 

Having less time for making complex decisions may have negatively impacted the quality of those de-

cisions. Another possible reason is the recent pandemic and the unusual tournament play from home, 

which was found to be a significant, if not to this extent, deteriorator of performance (Smerdon, 2022).

Shortcomings and future directions

We are aware that our evidence for the impact of the first major AI chess revolution is largely circum-

stantial. We do observe the influence of AI on chess performance, particularly for the top juniors in 

the 1990s, and these findings are robust, as evidenced by our leave- one- out sample approach. However, 

it is undeniable that other factors might also be at play, and not only that AI advances were available at 

that particular point in time. Ideally, one would require a natural experiment (see Vaci et al., in press) 

similar to the one described in Shin et al. (2021), which took advantage of the lack of access to new AI 
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technologies and its impact on the improvement of Go players who were serving in the Korean army at 

the time of the new Go engine's release. A more feasible approach, however, might involve expanding 

the scope and sample size of the current study. For instance, one could test the assumption that only top 

players benefit from the new age chess engines by examining a broader spectrum of high- level players. 

At a certain skill threshold, one might expect the benefits of these engines to diminish or disappear 

entirely. Likewise, the accessibility of knowledge in the 1990s may have aided junior players due to their 

youth, rather than their skill level. Broadening the focus to include players of similar skill but older age 

could help determine the validity of this assumption.

The AI's effects on the performance of the best chess players of all ages were statistically significant 

and reliable, but they were not substantial. These effects were certainly less pronounced than those 

observed in Go studies (Choi et al., 2023; Shin et al., 2021, 2023), where the impact of freely available 

engines based on AlphaZero was quite dramatic immediately following their release. There are poten-

tially two mechanisms at play here. Firstly, the Go studies encompassed a broad spectrum of players 

and employed different measures of decision quality. It is possible that the inclusion of a wider range of 

player skill levels is significant.

Secondly, Go is inherently more complex than chess due to, among other things, larger search space. 

As a result, even the best Go players arguably had more to learn compared to chess players, where 

the engines had already achieved a very high level of play. For instance, the top Go computer before 

AlphaZero, CrazyStone, was rated at only 2000 Elo with the best human Go player having almost 4000 

Elo. The AlphaZero pushed the level of play above 5000 Elo (Choi et al., 2023). In chess, the top en-

gines were already rated much higher than the best human players (around 3050 vs. 2850 Elo). We are 

not aware of available accuracy measures for Go, but it is reasonable to assume that they would be lower 

than those achieved by the best chess players, some of whom have reached a 97% accuracy rate over the 

course of a year. This difference in game complexity and player learning potential may account for the 

more pronounced effects observed in the Go studies.

Finally, our study offers limited insight into the specific mechanisms behind the performance im-

provements of the best chess players in the era of advanced chess engines. We had hoped that analysing 

the number of errors might shed light on the underlying processes. While most elite groups reduced 

their errors, there were no clear patterns of sudden improvement, especially none directly linked to the 

two AI chess revolutions. Similarly, our case study did not provide new insights either. Future research 

could adopt a more systematic and quantitative method to explore how AI influences human perfor-

mance in chess.

For instance, a commonly cited explanation for the enhanced performance of top players is the intro-

duction of new ideas and inspiration. Investigating this in chess is challenging, but there are promising 

methods. One such approach is illustrated by Shin et al. (2023), who found that an increase in perfor-

mance quality in Go was associated with novelty, that is introduction of previously unseen continua-

tions. Similar research in chess could yield further insights.

Another approach could involve examining the cultural evolution of chess play and how it has been 

shaped by external factors. For example, Lappo and colleagues (2023) demonstrated how factors like 

familiarity, reputation, and personal success have influenced the decision- making (move choices) of 

top players. They also showed how analysis with chess engines led to a deeper understanding of certain 

types of positions, influencing their frequency of use in practice. Such studies could provide a more 

fine- grained understanding of the AI's impact on chess.

Conclusions

Our study established an association between the performance improvements of the best chess players 

and advancements in chess AI. While the overall progress was gradual, the youngest top players never-

theless displayed accelerated gains during a key AI breakthrough. Our findings demonstrate that even 

the most elite performers can benefit from AI developments when the conditions are right–a conclusion 
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that has remained elusive in recent research on AI's impact on human performance (Dell'Acqua 

et al., 2023; Noy & Zhang, 2023). Our results align well with the perspective (Kasparov, 2017; Mollick, 

2024) that recent AI advancements offer a unique opportunity for collaboration, rather than competi-

tion, even at the pinnacle of chess–a game long regarded by the AI field as a quintessential example of 

human intelligence. This underscores the potential for AI to enhance human ability in complex tasks, 

rather than simply competing against or replacing human skills.
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