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Abstract: The generation of synthetic tabular data has emerged as a critical task in various fields,

particularly in healthcare, where data privacy concerns limit the availability of real datasets for

research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network

(GAN) architecture designed for generating high-quality synthetic tabular data, with a focus on

cardiovascular disease datasets that encompass mixed data types and complex feature relationships.

The proposed architecture employs specialized sub-networks to process continuous and categorical

variables separately, leveraging metadata such as Gaussian Mixture Model (GMM) parameters for

continuous attributes and embedding layers for categorical features. By integrating these specialized

pathways, the generator produces synthetic samples that closely mimic the statistical properties of the

real data. Comprehensive experiments were conducted to compare the proposed architecture with

two established models: Conditional Tabular GAN (CTGAN) and Tabular Variational AutoEncoder

(TVAE). The evaluation utilized metrics such as the Kolmogorov–Smirnov (KS) test for continuous

variables, the Jaccard coefficient for categorical variables, and pairwise correlation analyses. Results

indicate that the proposed approach attains a mean KS statistic of 0.3900, demonstrating strong overall

performance that outperforms CTGAN (0.4803) and is comparable to TVAE (0.3858). Notably, our

approach shows lowest KS statistics for key continuous features, such as total cholesterol (KS = 0.0779),

weight (KS = 0.0861), and diastolic blood pressure (KS = 0.0957), indicating its effectiveness in closely

replicating real data distributions. Additionally, it achieved a Jaccard coefficient of 1.00 for eight

out of eleven categorical variables, effectively preserving categorical distributions. These findings

indicate that the proposed architecture captures both distributions and dependencies, providing a

robust solution in supporting mobile personalized cardiovascular disease prevention systems.

Keywords: tabular data; generative adversarial networks; synthetic data generation; cardiovascular

disease; medical informatics; machine learning in healthcare

1. Introduction

In the healthcare domain, Electronic Health Records (EHRs) are considered as a
valuable resource that significantly contributes to research such as disease investigation
and preventive healthcare measures, thus helping in advancing medical informatics and
healthcare. These records are frequently organised in a tabular format, where each row rep-
resenting an individual patient and encompasses a broad range of health and demographic
details, such as name, address, weight, blood pressure, heart rate, among others. This
structure supports a wide variety of data types and allows for efficient management of large
volumes of information. The flexibility of tabular data allows it to exhibit diverse properties
depending on the specific information being stored and processed. However, using EHR
data for machine learning models is challenging due to issues introduced during data
collection, such as systematic errors, human factors, or inherent biases [1]. These problems
result in missing, imbalanced, or biased data, which introduce additional complexities to
the development and validation of predictive models. Machine learning models trained on
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such data are prone to producing biased classifiers, which can impact both the accuracy
and generalizability of the predictive models.

A viable solution to address these limitations is the generation of synthetic data [2].
This technique reduces issues related to missing or biased data, providing a robust founda-
tion for developing reliable predictive models in the medical domain. By replicating the
statistical properties of original data, synthetic data effectively captures distributions and
relationships within the data, making it a valuable substitute in various applications. It
plays a crucial role in medical research, especially when access to real datasets is restricted,
and is increasingly used for testing, evaluation, and statistical disclosure control. Gener-
ative Adversarial Networks (GANs), introduced in 2014 [3], have become significantly
influential in the field of medical informatics. GANs are deep learning models that capture
the complex multidimensional distribution of training data. This capability allows these
models to produce new synthetic data points that replicate the real data’s distribution.
GANs comprise two parts: a generator that produces realistic data, and a discriminator
that evaluates whether the data is real or fake. Through their adversarial interaction, the
generator learns to mimic the real data’s distribution effectively enough to deceive the
discriminator into accepting it as real data, while the discriminator becomes increasingly
adept at differentiating accurately between the real and synthetic samples. Although GANs
perform well in data generation tasks on homogenous data, such as images, audio and text,
generating high quality synthetic tabular data poses significant challenges.

In recent years, mobile sensing-based healthcare systems have emerged as critical
tools in personalized medicine, particularly for cardiovascular health. These systems utilize
data from wearable sensors, mobile devices, and EHRs to monitor patient health metrics
and deliver customized solutions. However, their effectiveness is often limited by the lack
of high-quality datasets required for training robust predictive models. Synthetic datasets
designed for these applications enable the integration of diverse data sources into sensing-
based systems. They play a crucial role in advancing cardiovascular disease management
by addressing this limitation. Such applications emphasize the importance of tackling
challenges in tabular data synthesis, particularly for capturing diverse distributions and
complex feature relationships.

In the context of data synthesis, tabular data presents significant challenges due to its
mixture of continuous and categorical data types. Additionally, the complex relationships
among columns add to the difficulty. Moreover, Non-Gaussian distributions in tabular
data, particularly those with heavy tails, can significantly contribute to the vanishing
gradient problem during the training process. These distributions often include extreme
values distant from the mean, posing substantial challenges during training. Furthermore,
highly imbalanced categorical columns present a significant challenge in the synthesis
of tabular data using GAN. These columns often exhibit strong imbalances where most
rows belong to one major category, while only a few are represented in one or more minor
categories. These minor categories may contain the most relevant information, and their
limited representation may result in fewer training opportunities, potentially causing mode
dropouts that might not be detected by the discriminator.

While GANs have shown potential in creating synthetic tabular datasets, challenges
persist in producing high-quality data, especially for datasets with missing values and
mixed data types. In this paper, we propose an enhanced conditional Tabular GAN
architecture designed to more accurately model complex data distributions. This is achieved
by leveraging Gaussian Mixture Model (GMM) parameters for continuous features and
embedding layers for categorical features, enabling the generator to produce synthetic data
that closely aligns with the statistical properties of cardiovascular disease datasets. These
enhancements to the generator component are expected to support the development of
reliable predictive models in cardiovascular healthcare. We demonstrate the effectiveness
of our approach by comparing it with state-of-the-art tabular generative models.
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2. Related Work

There are several models that use GAN for generating tabular data. The medGAN
model is amongst the baseline generative models designed for generating synthetic EHRs [4].
In medical records, each column exhibits a distinct distribution, which complicates the
training of GANs. Direct modelling approaches often fail to yield satisfactory outcomes.
Consequently, medGAN incorporates an autoencoder within the standard GAN framework
to transform raw data into a lower-dimensional representation. This modification enables
the effective generation of realistic high-dimensional discrete variables, including binary
and count features. It is particularly useful for EHR datasets, where each row corresponds
to a patient’s record and columns represent various disease codes.

In the medGAN framework, the generator and discriminator operate in distinct
spaces. Specifically, the generator produces a latent representation, while the discriminator
evaluates raw data. As a result, the generator’s output must pass through a decoder before
it is assessed by the discriminator. The generator and discriminator are trained using the
traditional loss function applied in vanilla GANs [3]. The evaluation of synthetic data
using univariate (dimension-wise statistics) and multivariate (dimension-wise predictions)
methods demonstrated promising results when compared to baseline models such as
Variational Autoencoder (VAE) and Stacked Restricted Boltzmann Machines [5].

The initial version of medGAN was designed exclusively for generating discrete
data, a restriction that persisted in many subsequent iterations of the model. Research
enhanced the medGAN model by incorporating nine demographic features across various
modalities, effectively preserving the quality of the generated synthetic data [6]. However,
this enhancement still did not include support for continuous data types. Additionally,
researchers have explored various GAN architectures to enhance the quality of synthetic
data (SD), including the application of Boundary Seeking GAN (BGAN) [7] to develop
medBGAN [8]. While BGAN is theoretically capable of handling mixed feature types,
medBGAN has primarily been assessed using only aggregated discrete data [8].

A related model, medWGAN [9], introduced by the same team, employed a Wasser-
stein GAN (WGAN) with Gradient Penalty (WGAN-GP) [10]. This adaptation was moti-
vated by the faster convergence and improved coverage of the sample space offered by
WGANs [10]. Comparative experiments indicated that medBGAN outperformed both
medGAN and medWGAN across all evaluation metrics. Another model, the Realistic
Synthetic Data Generation Method (RSDGM) [11], expanded upon the basic medGAN
framework. It incorporated lab test codes and enabled the synthesis of mixed feature types.
Nonetheless, the training dataset utilised for RSDGM was limited, containing only a small
number of instances and dimensions.

HealthGAN [12] builds on medGAN and Wasserstein GAN with gradient penalty
(WGAN-GP) to preserve privacy while maintaining data utility. The model employs a
transformation approach adapted from the Synthetic Data Vault (SDV) to handle the mixed
categorical and continuous. This transformation maps all features to a normalised range of
0 to 1 for synthesis, with the synthetic data subsequently transformed back to its original
scale using mappings derived from the real data. Continuous variables are scaled by
subtracting the minimum value and dividing by the range (max–min). For categorical
variables, categories are ordered by frequency from most to least common, then the range
from zero to one is divided into sections according to each category’s cumulative probability.
Each category is matched with its corresponding section, and samples are drawn from
these sections using a truncated Gaussian distribution. This process is then reversed to map
the synthetic data back to its original categories. In a comparison with different models
including medGAN, HealthGAN demonstrated higher overall quality.

Variational Encoder Enhancement GAN (VeeGAN) was developed to address chal-
lenges related to instability and mode collapse encountered during the training phase [13].
VeeGAN incorporates a reconstructor network, denoted as Rec(·), which operates in con-
junction with the generator to restore underrepresented modes. Unlike medGAN, VeeGAN
uses a variational principle to mitigate mode collapse by employing both a KL divergence
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term and an autoencoder-like reconstruction loss for the latent noise vector. The objective
function in VeeGAN [13] is shown in Equation (1):

O(γ, θ) = KL[qγ(x|z)p0(z) ∥ pθ(z|x)p(x)]− E[log p0(z)] + E[∥z − Fθ(Gγ(z))∥
2] (1)

where the first term represents the KL divergence between the approximate and true poste-
rior distributions, and the second term measures how well the reconstructor can recover
the latent vector z from the generated samples. This objective formulation helps VeeGAN
avoid mode collapse by enforcing consistency between the generated data and the true
data distribution. Additionally, it provides a reconstruction signal that guides both the
generator and reconstructor networks. VeeGAN shares similarities with medGAN as both
utilise an autoencoding approach for sample reconstruction. Conversely, there is a funda-
mental difference between the two models because VeeGAN applies variational inference
and incorporates a KL divergence loss, whereas medGAN relies solely on autoencoding
and cross-entropy loss. VeeGAN has been evaluated on several public databases, where
it demonstrated exceptional results, both in enhancing the accuracy of synthesis and in
stabilising the model throughout the training process [14]. However, its application is
limited to continuous data, and it lacks easy generalizability to discrete and binary types of
data [14].

TableGAN, an enhanced extension of the deep convolutional GAN (DCGAN), incor-
porates an additional classifier into the GAN architecture [15]. In addition to adopting
the adversarial loss function from DCGAN, TableGAN introduces two new loss func-
tions—information loss and classification loss—designed to improve the realism of the
synthetic data produced by the GAN. The standard GAN loss, which is used in most GAN
architectures, includes both the generator and discriminator loss functions. For a generator
G and discriminator D, the adversarial loss [3] is defined as shown in Equation (2):

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))] (2)

where x is data from the real distribution, z is the noise vector, and pdata and pz are the
distributions of real data and input noise respectively. The information loss, as defined in
Equation (3) [15], measures the difference between specific statistical characteristics of real
and synthetic records.

lG
info = max(0, lmean − δmean) + max(0, lsd − δsd) (3)

This loss uses a hinge loss function, implemented through the use of max(·), meaning
that no loss is registered until a specific threshold of quality degradation is reached. For
the information loss lG

info, zero loss is recorded as long as lmean or lsd remains below the
respective threshold δmean or δsd. These thresholds serve as adjustable parameters that
influence privacy levels in TableGAN. Smaller values for these parameters lead to less
privacy, and make the synthetic dataset more closely resemble the real dataset.

The classification loss [15] measures the discrepancy between the classifier’s predicted
label and the synthesized label and is computed for both real and synthetic data. For
real data, it measures the mismatch between the actual label and the label predicted after
certain features are removed, reflecting the classifier’s ability to accurately predict labels
even when subjected to modifications. The classification loss for real data is defined in
Equation (4), while the classification loss for synthetic data is shown in Equation (5).

LC
class = E[ℓ(x)− C(remove(x))] where x ∼ pdata(x) (4)

This formula measures the expected value of the absolute difference between the true
label ℓ(x) and the classifier’s prediction after the alteration of x, across the distribution of
real data pdata. The C(remove(x)) indicates the classifier’s output when specific features
from x are removed.
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For synthetic data, the loss follows a similar pattern, evaluating the label accuracy
on synthetic data generated by the GAN after modifying the input to the classifier. The
classification loss [15] for synthetic data is defined in Equation (5):

LG
class = E[ℓ(G(z))− C(remove(G(z)))] where z ∼ pz(z) (5)

This equation calculates the expected value of the absolute difference between the true
label ℓ(G(z)) and the classifier’s prediction after modifying the synthetic data G(z), across
the distribution of noise pz. However, because TableGAN implements min-max normalisa-
tion across all variables, it encounters a limitation in accurately modelling columns with
complex multimodal Gaussian distributions [16].

Tabular Generative Adversarial Network (TGAN), is model specifically designed
to generate synthetic tabular data using GANs [17]. This model employs a Long Short-
Term Memory (LSTM) network architecture in the generator. This sequential modeling
approach captures dependencies between columns by treating each row of the tabular data
as a sequence of features. To handle continuous variables with multimodal distributions,
TGAN uses a technique called mode-specific normalization. This method identifies the
different modes within a continuous feature by clustering them using a Gaussian Mixture
Model (GMM) and normalizes the data within each mode separately, preserving the
underlying distribution more accurately than standard normalization techniques. For
categorical variables, TGAN converts them into one-hot-encoded vectors and adds noise
to handle the discrete nature of these variables, enabling the model to process mixed data
types seamlessly. The discriminator, on the other hand, is a Multi-Layer Perceptron (MLP)
that distinguishes real from generated data. While TGAN effectively handles mixed data
types, the use of LSTM networks may increase computational complexity. Additionally,
TGAN may not fully address issues related to highly imbalanced categorical variables and
missing data.

The Conditional Tabular GAN (CTGAN) represents an advancement over the TGAN
model, aiming to preserve the joint distribution across all columns of synthetic data [18],
rather than focusing on pairwise correlations as seen in TGAN [17]. CTGAN utilizes a
variational Gaussian mixture model (VGM) to transform numerical data, dynamically
determining the number of modes for each column. This contrasts with the TGAN model,
where the number of modes is predetermined and remains constant across all numerical
columns. Moreover, continuous values in CTGAN are represented using a one-hot vector
to indicate the mode and a scalar for the value within that mode, while categorical data are
one-hot encoded. A significant improvement in CTGAN is its conditional generator, which
addresses imbalanced discrete columns by producing synthetic rows based on a given
discrete column. This requires a conditional vector to represent specific categorical values.
Additionally, the generator loss is modified to enable learning the mapping between the
conditional vector and the one-hot-encoded values.

A key approach in CTGAN involves using a sampling technique that ensures the
conditional vector is sampled correctly, allowing CTGAN to fully explore all potential
values in discrete columns. This technique involves randomly choosing a discrete column
and constructing a probability mass function based on the logarithm of its value frequencies.
Subsequently, the conditional vector is computed based on this distribution. As a result,
techniques such as mode-specific normalization, sampling-based training, and the condi-
tional generator in CTGAN are pivotal for producing high-quality tabular data [18]. Despite
these advances, CTGAN sometimes struggles to preserve the categorical dependencies
within the data [19]. Therefore, the inability to maintain these dependencies can impact the
utility and integrity of the generated datasets. Moreover, CTGAN tends to underperform
when working with a limited number of samples [20]. This issue arises because the model
may not have enough data to accurately learn the underlying distribution, which can result
in lower-quality synthetic data.

Building upon CTGAN, CTAB-GAN enhances the capability to handle mixed data
types, including continuous, categorical, and ordinal variables, and addresses challenges
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such as imbalanced data and complex feature distributions [21]. It incorporates techniques
like conditional generation and information loss to improve the fidelity of the generated
data. However, CTAB-GAN tends to overrepresent zero values, producing more than are
seen in the original data. This indicates that CTAB-GAN could still be improved to better
handle cases of extreme imbalance. CTAB-GAN+ further improves the synthesis of tabular
data with complex scenarios [16]. This model introduces advanced data transformations
and neural network architectures to better capture intricate data patterns, such as skewed
distributions and multimodal features. CTAB-GAN+ exhibits superior performance in
generating high-quality synthetic data that closely replicates the statistical characteristics
of real datasets.

A study presents an Electronic Medical Record WGAN (EMR-WGAN) framework [22].
In this model, the authors use the basic structure of the original GAN but eliminate the
autoencoder, arguing that it reduces synthetic data realism by introducing additional noise
and lowering performance. The study also introduced a conditional training strategy, inte-
grating concept labels of records within both the generator and discriminator. Additionally,
the model adopts Wasserstein divergence and normalization techniques to improve training
stability and utility. Moreover, utility measures including latent space representation and
first-order proximity are introduced to better capture the underlying data structure and
relationships. The study provided a comprehensive comparison of the proposed model,
yielded superior performance across realism metrics. However, a limitation of the model is
its focus solely on binary features.

Recent research introduces Anonymization Through Data Synthesis Using Generative
Adversarial Networks (ADS-GAN) [23]. This approach aims to enable data sharing by
generating synthetic datasets that closely match the joint distribution of original EHR data
while ensuring privacy through reduced identifiability. The model builds on WGAN-GP
and conditional GAN architectures, introducing an innovative ’identifiability’ metric within
the loss function to quantify and control similarity between synthetic and original data.
This metric enables setting an identifiability threshold to balance data utility and privacy
by maintaining a minimum distance between synthetic and real records. Embedding this
identifiability constraint within the generative model’s loss function ensures adequate
separation between synthetic and original data, thereby protecting against membership
and attribute disclosures. ADS-GAN was evaluated against various benchmark models,
including medGAN and WGAN-GP, across four real-world datasets. The findings showed
that ADS-GAN outperformed these benchmarks in preserving statistical and correlational
structures under privacy constraints. Moreover, utility evaluations demonstrated that
synthetic data generated by ADS-GAN offer predictive performance comparable to real
data in downstream machine learning tasks.

The Tabular Variational Autoencoder (TVAE) is a generative model designed for
producing tabular data [24]. It extends the traditional Variational Autoencoder (VAE)
architecture to handle the challenges associated with tabular datasets, such as mixed data
types and complex feature relationships. VAEs consist of two main components which
are an encoder and a decoder. The encoder maps input data to a latent space, producing
a distribution (mean and variance) rather than a single point. The decoder reconstructs
the data from samples drawn from this latent distribution. A significant innovation in the
TVAE model lies in the design of the output layer in the decoder network. This layer is
designed to generate a joint distribution of continuous variables and categorical variables.
This design choice is vital for effectively representing the complexities of mixed data types
within tabular datasets. TVAE is trained by maximizing the Evidence Lower Bound (ELBO),
which provides a lower bound on the log-likelihood of the observed data, guiding the
model to learn an accurate representation of the data distribution [24].

3. Architecture of a Tabular Generative Adversarial Network

In our approach to creating synthetic tabular data, we build a Conditional GAN, as
shown in Figure 1, which is inspired by CTGAN [18]. This architecture consists of two
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main components: a generator, which receives a noise vector z∼pz and a condition vector
C, and a discriminator, which evaluates whether the generated data x̃d is real or synthetic.
The generator learns the distribution of the real dataset xd∼pd and produces synthetic data
x̃d∼pG. The discriminator assigns a label y to each input to indicate whether the data is
real or generated: y = 1 for real data xd and y = 0 for generated data x̃d. The objective is to
reduce the difference between the distributions of the real and synthetic data.

Figure 1. Conditional GAN.

The generator in our architecture, referred to as the synthesizer S, is specifically trained
on existing tabular data T to generate synthetic data T̃ that retains the statistical properties
of the original table T. The synthesizer S produces T̃, consisting of n rows and m columns,
where m is the sum of k continuous and l categorical columns. Each column corresponds
to a random variable Xd,j, following the original data’s joint probability distribution pd.
During training, the synthesizer builds a model pG, aiming to match pG with pd. Once
trained, synthetic data T̃ is generated by sampling from xd ∼ pG, and its quality is assessed
using metrics for both continuous and categorical columns.

3.1. Data Transformation

The objective of this step is to prepare the data for processing by the generator and dis-
criminator. This typically involves normalizing numerical columns to ensure they fall within
similar ranges, commonly either [0, 1] or [−1, 1], and encoding categorical columns in a format
suitable for GANs. For numerical columns, as mentioned before, these attributes may include
multiple modes and follow non-Gaussian distributions. In CTGAN, a Variational Gaussian
Mixture Model (VGM) is used to model continuous variables. The VGM applies variational
inference to estimate the parameters of each mixture component and the probabilities of each
mode, dynamically determining the number of modes based on the complexity of the data.
This allows CTGAN to efficiently handle multimodal and non-Gaussian continuous distribu-
tions, with each value in a continuous feature represented by a one-hot vector indicating the
sampled mode and a scalar normalized to the range of that mode.

In contrast, our approach employs a Bayesian Gaussian Mixture Model (GMM), which
uses Bayesian inference to dynamically adapt the number of mixture components based on the
data. While variational inference as used in CTGAN is computationally efficient, it may trade
some accuracy for speed due to the approximations involved. On the other hand, Bayesian
inference provides more comprehensive estimate of the posterior distribution, which can
be particularly valuable for capturing uncertainty and modeling datasets with complex or
multimodal distributions. This allows our architecture to more effectively adapt to the data
by dynamically determining the optimal number of components, potentially leading to more
accurate modeling of datasets with varying levels of multimodality. Capturing uncertainty
can be valuable for complex or critical datasets, like those in healthcare, where understanding
confidence in predictions can improve the reliability of synthetic data and its applications.

The Bayesian GMM [25] clusters each continuous data point into multiple Gaussian
distributions, representing the distribution of Ci as a weighted sum of n Gaussian com-
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ponents. For each component, this model calculates the means (µ1, . . . , µn), standard
deviations (σ1, . . . , σn), and the weights of each Gaussian component. For each observation
ci,j in the variable Ci, the probability of originating from each Gaussian component is
calculated. The value ci,j is then standardized using the mean and standard deviation of
the Gaussian component that has the highest likelihood of generating ci,j. The normalised
value, denoted as vi,j, is computed as shown in Equation (6):

vi,j =
ci,j − µ

(k)
i

σ
(k)
i

(6)

where k is determined by using arg maxk p
(k)
i,j . Then, to maintain numerical stability and

prevent extreme outliers, the normalised value is clipped to the range [−0.99, 0.99]. At the
end, the transformed variables consist of the clipped values and the associated probabilities,
providing a new representation of the continuous variables that effectively captures the
multimodal attributes of the data. For each continuous variable, the metadata includes the
means, standard deviations, and weights of the Gaussian components derived from the
Bayesian GMM, along with the total number of modes employed. This detailed metadata
provides an understanding of the underlying distribution characteristics of each variable,
which is important for the generator to accurately generate and reconstruct data.

For the categorical transformation, one hot encoder is used to transform the categorical
values into a one-hot encoded matrix. This process converts categorical variable values into a
form that can be provided directly to the neural networks, which require numerical input. The
metadata for each categorical column includes the number of classes (distinct categories) and
the original categories. By handling continuous and categorical variables separately, the model
ensures that the distinctive characteristics of each variable type are addressed appropriately.

3.2. Conditional Generator

As shown in Figure 2, the generator processes continuous and categorical data through
separate pathways before concatenating them into the final output. We focus on guiding the
generative process to produce synthetic samples that reflect specific patterns within the real
data distribution. This is achieved through a conditional architecture where the generator
is informed by metadata that specifies the desired mode of generation. This conditioning
is essential as it allows the generator to produce samples that are not just random but also
represent distinct segments of the data distribution, accurately reflecting their underlying
characteristics. A specialised sub-network is constructed to process continuous attributes.
This network incorporates metadata about the mean, standard deviation, and weight of each
GMM component, derived from our preliminary data analysis. During each generation cycle,
the network selects a GMM component depending on the metadata-provided weights, and
modifies the input noise vector (z) accordingly. Then, this adjusted noise vector is transformed
through a sequence of dense layers, LeakyReLU activations, batch normalisation, and dropout
layers to produce the final continuous attributes of the sample.

For categorical features, an embedding layer is used which transforms each categorical
value into a dense vector of a size determined based on the number of classes; this embed-
ding representation helps in capturing the relationships between various categories [26].
Additionally, flatten layer which converts the multidimensional output of embeddings into
a flat vector that can be processed by subsequent dense layers. After flattening, the data
passes through a fully connected layer with a ReLU activation, followed by a normalization
layer and dropout to regularize the model. Another fully connected layer is used to further
enhance the feature representation and improve the model’s ability to capture the complex-
ity of categorical data distributions. The continuous and categorical processing streams are
designed to handle different data types separately until integration. Each stream processes
its respective data independently, transforming the inputs through their layers. To combine
the results, the outputs of these layers are reshaped into a consistent format. Then, by
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concatenating these reshaped outputs along the final dimension, we create an integrated
feature set. This concatenated output effectively merges the transformed continuous and
categorical data into a single, unified representation.

Figure 2. Overall structure of the conditional generator.

3.3. Discriminator

The purpose of the discriminator in the GAN framework is to assess the authenticity
of generated samples. This component is crucial for the adversarial training process
because it learns to differentiate between real and synthetic data, and help in guiding
the generator towards producing increasingly realistic outputs. As illustrated in Figure 3,
the discriminator framework consists of several layers. The architecture begins with the
Minibatch Discrimination layer [27], which is essential for preventing mode collapse by
ensuring that the discriminator can detect diversity within groups of samples, not just
evaluate the authenticity of individual samples. It achieves this by computing distances
between samples in a transformed feature space, which helps in distinguishing real data
from generated counterparts that may lack variety and thus ensures the generator produces
diverse outputs. Following the minibatch discrimination, each dense layer within the
discriminator is wrapped with Spectral Normalisation. This approach normalises the
weight matrices by their largest singular value in order to maintain stability in the training
process and prevent the discriminator from overpowering the generator [28].

Figure 3. Discriminator framework.

Moreover, the core of the discriminator’s architecture involves multiple dense layers,
each followed by a LeakyReLU activation function. LeakyReLU is chosen because of its
ability to allow a small, positive gradient when the unit is inactive and thus aid maintain
gradient flow during training. Also, each dense layer is paired with batch normalisation
and dropout. The discriminator concludes its processing with a final dense layer that
incorporates spectral normalisation but does not employ an activation function. Since there
is no activation function at the last dense layer, the network can output a single scalar value.
This scalar provides a continuous assessment of authenticity, with higher values suggesting
that the input is more likely to be synthetic, while lower values indicate a higher probability
that the input is real.



Sensors 2024, 24, 7673 10 of 20

3.4. The Loss Function

For the generator to generate realistic samples, the discriminator needs to be trained to
maximize the probability of accurately classifying each sample, specifically assigning y = 1
to real samples xd and y = 0 to generated samples x̃d. On the other hand, the generator
is trained in an adversarial manner to minimize the likelihood that the discriminator
correctly identifies the generated samples as fake, i.e., y = 0. This process, as introduced by
Goodfellow et al. (2014) [3], wherein the generator and discriminator interact in a minimax
game, is represented by Equation (7).

min
G

max
D

V(G, D) (7)

During training, both the generator and discriminator aim to reduce their respective
loss functions. Equation (8) shows the loss function for the discriminator, which seeks to
maximize the value function V(G, D).

lD = −V(G, D). (8)

The loss function for the generator, assuming the discriminator is optimal, is expressed
in Equation (9).

lG = −lD = V(G, D). (9)

Binary cross-entropy [29], given in Equation (10), is a common loss function that is
employed in binary classification tasks, including the training of neural networks in GAN. This
function calculates the dissimilarity between predicted probabilities and true binary labels.

BCE = −[y · log(p) + (1 − y) · log(1 − p)] (10)

where y is the true binary label which can either be 0 or 1, p is the predicted probability of
the positive class, which is label 1. In this function, the term y · log(p) adds the loss in the
case of y = 1, whereas the term (1 − y) · log(1 − p) adds the loss when y is 0.

The discriminator’s role is maximizing its capability to differentiate between real and
generated samples by minimizing the binary cross-entropy loss. This involves assigning
high probabilities which are close to 1 to real samples and low probabilities, close to 0, to
fake samples. Conversely, the generator seeks to deceive the discriminator by generating
samples that are classified as real, thereby increasing the discriminator’s loss. At the end this
dynamic interaction leads to improved performance for both models during the training
process. However, binary cross-entropy loss can cause training instability, particularly
when the discriminator becomes too confident in its predictions, leading to saturation [30].
This saturation can hinder the learning process for both the generator and the discriminator,
thereby limiting their ability to improve.

In the context of GAN, the Wasserstein loss is employed as a metric to guide the
training process [31]. This approach allows the generator to create samples that more closely
resemble the real data distribution. Unlike traditional GANs that use binary cross-entropy
loss, Wasserstein GANs offer a more stable training process and can generate higher quality
data samples. The Wasserstein loss [31], as defined in Equation (11), works by computing
distance between the generated and real data distributions. In practice, this loss is calculated
as the maximum difference between the expected value of the discriminator function, which
is represented as D(x), applied to both the real and generated data distributions.

W(Pd, Pg) = max(E[D(x)])− min(E[D(G(z))]) (11)

where E[ ] denotes the expectation, which is computed over the corresponding distribution.
D(x) is the output of the discriminator for a real data sample x, while G(z) is the generated
data sample produced by the generator from random noise z. The advantages of this loss
are that it does not max out even when the supports (the underlying data structures) of
the generated probability distribution pg and the real data distribution pd exist on low-
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dimensional manifolds. This allows the discriminator to be trained extensively, possibly
even to or near its optimal performance, without causing the issue of vanishing gradients.

This issue arises during neural network training when gradient values become so small
that they can no longer effectively adjust the network’s weights during backpropagation
process [29]. In the context of GANs, it is vital to avoid vanishing gradients to ensure
the generator receives beneficial feedback on its performance, which helps the generator
continuously improve its output, making it more closely resemble the real data distribution.
Therefore, in our research, we are using Wasserstein loss rather than binary cross-entropy to
leverage its benefits in dealing the vanishing gradient issue and improving the generator’s
ability to produce outputs that closely resemble the real data distribution.

In our work, training is performed via gradient back-propagation, as illustrated in
Figure 4. This process follows the adversarial framework introduced by Goodfellow et al.
(2014) [3], where the generator and discriminator are trained in a minimax game to enhance
their respective performance. The first step is called the forward pass, where input data is
passed through the network, undergoing linear transformations and non-linear activations
to produce the final prediction or classification. Next, the model calculates the loss by
comparing the predicted output with the true target values, quantifying the discrepancy
between them. Gradients of the loss function are then computed with respect to each
weight in the network, indicating how small changes in the weights will affect the overall
loss. In the backward pass, these gradients are propagated back through the network,
starting from the output layer and moving to the input layer. During this step, the gradients
are used to adjust the weights, guided by the Adam optimization algorithm.

Figure 4. Training process.

The weights are updated in a way that reduces the loss, usually scaled by a learning
rate. This process is repeated over multiple epochs until the network converges to a group of
weights that minimise the loss function. Efficient training using gradient back-propagation
requires attention to several factors. Learning rate which is a critical hyperparameter that
controls the step size taken in the weight space. Note that a too high learning rate can cause
oscillations and divergence, while a too low learning rate can lead to slow convergence.
Additionally, batch size represents the number of samples processed before adjusting
the weights. Larger batch sizes provide more accurate gradient estimates but need more
memory and computational resources. Furthermore, appropriate weight initialization can
significantly affect the convergence speed and overall performance of the network.

4. Experimental Results and Analysis

In order to evaluate the performance of our proposed approach in producing synthetic
tabular data that closely resembles real datasets, we performed an extensive experimental
comparison with both CTGAN and TVAE. The comparison assessed the ability to generate
both continuous and categorical data, using several metrics. For continuous columns,
we applied a two-sample Kolmogorov–Smirnov (KS) test [32]. This test calculates the
maximum difference between the cumulative distribution functions of real and generated
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datasets, as shown in Equation (12). The KS statistic ranges between 0 and 1, where a lower
value suggests a higher level of similarity between the distributions.

Dn,m = max |F1(x)− F2(y)| (12)

Here, D represents the KS statistic, n and m are the sample sizes of the two datasets,
and F1(x) and F2(y) are the respective CDFs.

To assess the categorical data, we utilized the Jaccard coefficient to quantify the
similarity between the real and generated data for each categorical column [33]. The Jaccard
coefficient, shown in Equation (13), ranges from 0 to 1, where 1 indicates complete similarity.

J(A, B) =
|A ∩ B|

|A ∪ B|
(13)

In this formula, |A ∩ B| indicates the cardinality of shared observations across both
datasets, while |A ∪ B| is the total number of distinct observations when the two datasets
are combined. These metrics help evaluate how effectively the synthetic data replicates the
original in both continuous and categorical variables.

In this study, the dataset was derived from the King Faisal Specialist Hospital & Re-
search Centre in Saudi Arabia, comprising 218 patient records. It includes both categorical
and continuous data, covering various clinical and demographic features such as age,
weight (WT), height (HT), and body mass index (BMI). The categorical features encompass
clinical diagnoses and conditions, including estimated glomerular filtration rate (eGFR),
prior stroke (P.STRK), prior myocardial infarction (P.MI), atrial fibrillation (A.F), gender,
and coronary artery disease history (CAD.prior), among others. Continuous features con-
sist of baseline and follow-up measurements for clinical parameters like Hemoglobin A1c
(hA1c), diastolic blood pressure (DBP), low-density lipoprotein cholesterol (LDL), and total
cholesterol (T.C.). For example, hA1c (#1), DBP (#1), LDL (#1), and T.C. (#1) were recorded
at baseline, while follow-up measurements were taken for the same parameters, along
with the coronary artery calcium score (CACS#2.scor). Importantly, the dataset does not
contain confidential information such as names, addresses, or ID numbers. All patients in
the dataset were over 30 years of age, with males accounting for 76.6% of the population.

Table 1 presents KS statistics for various features across the three models: CTGAN, TVAE,
and our proposed approach. The KS statistic measures the maximum difference between
the cumulative distribution functions of the real and synthetic data for each feature, where a
lower KS value indicates a closer alignment between the synthetic and real data distributions.
Our proposed architecture demonstrates strong performance, achieving lower KS statistics for
several key features, such as hA1c.#1 (0.2089) and DBP.#1 (0.0957), compared to TVAE (0.2669
and 0.3525, respectively) and CTGAN (0.4355 and 0.3137, respectively). These results suggest
that our approach more effectively captures the distributions of these variables, reflecting its
strong capability in modeling the underlying data patterns.

Also, it demonstrates superior performance for features like LDL.#1 and T.C.#1, achieving
KS statistics of 0.1420 and 0.0779, respectively, which are significantly lower than TVAE (0.3946
and 0.1826) and CTGAN (0.4052 and 0.2786). These findings highlight the ability to accurately
replicate the distributions of these clinical measurements. Regarding demographic features
such as age, WT, HT, and BMI, our approach again shows strong performance. Notably, the
KS statistic for BMI is significantly lower at 0.1488, compared to TVAE at 0.2985 and CTGAN
at 0.4580. For Age, our approach achieves a KS statistic of 0.1673, outperforming TVAE (0.3621)
and CTGAN (0.2526). For WT, a KS statistic of 0.0861 is recorded, outperforming both TVAE
(0.2873) and CTGAN (0.1593). These results highlight the effectiveness of our approach in
capturing the distributions of demographic characteristics.

Conversely, for certain features, TVAE achieves lower KS statistics than our model. For
example, in the case of CACS#2.scor, TVAE records a KS statistic of 0.5399, which is lower
than both our approach (0.7179) and CTGAN (0.8039). Similarly, for LDL.#2, TVAE achieves
a KS statistic of 0.4982, outperforming our method (0.9345) and CTGAN (0.7375). For
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hA1c.#2 and T.C.#2, TVAE also demonstrates superior performance, achieving KS statistics
of 0.5142 for both features, compared to 0.9341 for hA1c.#2 and 0.9150 for T.C.#2 in our
method. These results suggest that TVAE may be more adept at capturing the distributions
of these particular features, potentially due to its variational framework, which can better
model complex data structures. The mean KS statistics provide an overall indicator of each
model’s performance. We achieve a mean KS of 0.3900, which is comparable to TVAE’s
0.3858 and significantly lower than CTGAN’s 0.4803. This overall performance suggests
that both our approach and TVAE are more effective than CTGAN at capturing real data
distributions across the evaluated features. The slight difference in mean KS statistics
between our approach and TVAE indicates comparable overall performance, with each
method demonstrating strengths in different features.

Table 1. KS Statistics for Continuous Features Across Models.

Feature CTGAN [18] TVAE [24] Our Approach

hA1c.#1 0.4355 0.2669 0.2089
DBP.#1 0.3137 0.3525 0.0957
LDL.#1 0.4052 0.3946 0.1420
T.C.#1 0.2786 0.1826 0.0779
CACS#2.scor 0.8039 0.5399 0.7179
hA1c.#2 0.6301 0.5142 0.9341
DBP.#2 0.9011 0.5011 0.5371
LDL.#2 0.7375 0.4982 0.9345
T.C.#2 0.7210 0.5142 0.9150
Age 0.2526 0.3621 0.1673
WT 0.1593 0.2873 0.0861
HT 0.1477 0.3027 0.1045
BMI 0.4580 0.2985 0.1488

Mean KS 0.4803 0.3858 0.3900

To further illustrate the models’ performance, we include the cumulative distribution
function (CDF) plots for selected features, as shown in Figures 5–7. Each plot compares
the real and synthetic data distributions generated by CTGAN, TVAE, and our proposed
approach, with the x-axis representing the variable values and the y-axis the cumulative
probabilities. The red dashed line represents the synthetic data, while the blue solid line
represents the real data. A closer alignment between the CDF curves of the real and
generated data suggests that the model is more effective in replicating the distribution of
the real data. For hA1c.1 and DBP.1, the CDF plots indicate that the synthetic data generated
by our approach (Figure 5) closely mirrors the distribution of the real data, consistent with
the low KS statistics for these features. In contrast, CTGAN (Figure 6) and TVAE (Figure 7)
display larger deviations from the real data, as reflected by their higher KS values. This
trend is also observed for LDL.#1 and T.C.#1, where our approach demonstrates a stronger
alignment with the real data compared to the other models.

For demographic features such as BMI and age, the method (Figure 5) demonstrates
superior performance. The CDF plots show that the synthetic data generated by this
approach closely matches the real data distributions, while both CTGAN (Figure 6) and
TVAE (Figure 7) exhibit more pronounced differences, which are reflected in higher KS
statistics for these features. However, for CACS#2.scor and LDL.#2, TVAE’s synthetic data
(Figure 7) aligns more closely with the real data, consistent with its lower KS statistics
for these features. Although TVAE displays better KS values, visual inspection reveals
slight discrepancies in the distribution shapes that the KS statistic might not fully capture.
In contrast, CTGAN (Figure 6) shows the largest deviations for these features, which
aligns with its higher KS values. For the final features, hA1c.#2 and T.C.#2, our method
(Figure 5) demonstrates stronger performance than CTGAN (Figure 6), as shown by both
the KS statistics and CDF plot alignment. Although TVAE (Figure 7) shows slightly better
alignment for these features, our approach remains competitive. Overall, across most
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features, this method (Figure 5) outperforms both CTGAN (Figure 6) and TVAE (Figure 7)
in replicating real data distributions. While TVAE performs better for certain features,
particularly CACS#2.scor and LDL.#2, our method provides more consistent replication of
the real data across a wider range of variables.

Figure 5. Comparison of Cumulative Distribution Functions (CDFs) for Real and Generated Continu-

ous Data in our approach.

Figure 6. Comparison of Cumulative Distribution Functions (CDFs) for Real and Generated Continu-

ous Data in CTGAN.
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Figure 7. Comparison of Cumulative Distribution Functions (CDFs) for Real and Generated Continu-

ous Data in TVAE.

To further evaluate the models’ ability to preserve pairwise relationships among
continuous features, we computed Pearson correlation matrices for both the real and
synthetic datasets, as shown in Table 2. The results indicate that TVAE achieved the
highest correlation preservation rate at 77.00%, closely followed by our approach at 76.00%.
CTGAN had the lowest preservation rate at 74.00%. These findings suggest that all models
are capable of maintaining a substantial proportion of the original correlations, with TVAE
marginally outperforming our approach in this aspect. However, the small difference
between TVAE and this approach indicates that it remains highly competitive in preserving
pairwise relationships among continuous features.

Table 2. Correlation Preservation Rates Across Models.

Model Correlation Preservation (%)

TVAE [24] 77.00%
Our approach 76.00%
CTGAN [18] 74.00%

Additionally, we present a comparison of categorical features between the real and
generated data in Figures 8–10. Each subplot within these figures represents a different
categorical feature, displaying the frequency of each category in both the real (blue bars)
and generated (magenta bars) datasets. The Jaccard coefficient provides a quantitative
measure of similarity between the real and synthetic categories for each feature. The results
in Table 3 and the visual comparisons in Figures 8–10 indicate that both CTGAN and our
proposed method generally achieve higher Jaccard coefficients compared to TVAE. CTGAN
attains a Jaccard coefficient of 1.00 for most features, signifying perfect overlap between
the categories in the real and synthetic datasets. Our method achieves high coefficients,
with values of 1.00 for eight out of eleven features and 0.67 for three features. In contrast,
TVAE exhibits lower Jaccard coefficients across most features, ranging from 0.33 to 0.50,
except for HTN, where it achieves 1.00. For features such as A.F, Gender, RA, CKD, DLP,
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DM, and HTN, both CTGAN and our method achieve a perfect Jaccard coefficient of 1.00,
as depicted in Figures 8 and 9. This demonstrates excellent preservation of categorical
distributions and indicates that both models effectively capture the categories present in
the real data for these critical medical features.

Table 3. Jaccard Coefficients for Categorical Features Across Models.

Feature CTGAN [18] TVAE [24] Our Approach

eGFR 1.00 0.33 0.67
P.STRK 0.50 0.50 1.00
P.MI 1.00 0.33 0.67
A.F 1.00 0.50 1.00
Gender 1.00 0.33 1.00
CAD.prior 1.00 0.33 0.67
RA 1.00 0.50 1.00
CKD 1.00 0.33 1.00
DLP 1.00 0.33 1.00
DM 1.00 0.33 1.00
HTN 1.00 1.00 1.00

Figure 8. Comparison of Real and Generated Data for Categorical Variables Using Jaccard Coefficient

in CTGAN.

Figure 9. Comparison of Real and Generated Data for Categorical Variables Using Jaccard Coefficient

in our approach.

However, differences emerge in features like eGFR, P.MI, and CAD.prior, as shown
in Figure 9. While CTGAN maintains a coefficient of 1.00 for these features(see Figure 8),
our method records a coefficient of 0.67, which is still notably higher than TVAE’s 0.33 for
the same features. The frequency distributions in Figure 9 reveal that our method captures
a significant portion of the categories but does not achieve the complete overlap seen
with CTGAN. A notable observation is the performance on the P.STRK feature, where our
method achieves a perfect coefficient of 1.00, outperforming both CTGAN (0.50) and TVAE
(0.50). The visual comparison in Figure 9 highlights the superior ability of our method to
replicate the categorical distribution of this feature, likely due to the embedding layers for
categorical variables that enhance the capture of category relationships. Overall, TVAE
underperforms in preserving categorical distributions, with Jaccard coefficients mostly at
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0.33 or 0.50, as shown in Figures 8–10. This suggests that TVAE struggles to accurately
replicate the category sets present in the real data. This limitation may affect the usefulness
of synthetic data generated by TVAE, particularly in analyses that depend significantly on
categorical variables.

Figure 10. Comparison of Real and Generated Data for Categorical Variables Using Jaccard Coefficient

in TVAE.

5. Discussion and Potential Applications

The experimental analysis demonstrates that our proposed architecture offers signif-
icant advancements in generating synthetic tabular data that closely replicating the real
datasets. By comparing our findings with two established generative models—CTGAN
and TVAE—we have identified key areas where our enhanced framework excels and others
where further refinement is necessary. The proposed approach consistently outperforms the
other models in replicating the distributions of several continuous features. Specifically, for
features such as hA1c.#1, DBP.#1, LDL.#1, T.C.#1, age, HT, and BMI, our approach achieves
the lowest KS values. This indicates a stronger ability to capture the underlying statistical
properties of these variables. The integration of Bayesian GMMs allows for dynamic adap-
tation to the data, capturing multimodal distributions more effectively than the variational
inference used in CTGAN. The enhanced performance can also be attributed to the spe-
cialized sub-networks designed for each continuous attribute, which incorporate metadata
about the mean, standard deviation, and weight of each GMM component. By adjusting the
input noise vector based on these components, the generator produces synthetic samples
closely aligned with the real data distributions. Furthermore, the architecture employs
dense layers, activation functions, batch normalization, and dropout layers to refine the
generated features, enhancing the model’s capacity to mimic complex data patterns.

In terms of categorical features, this approach demonstrates competitive performance
when compared to CTGAN and outperforms TVAE. The Jaccard coefficients reveal that our
approach effectively preserves the category sets for most features, achieving a coefficient of
1.00 for eight out of eleven categorical variables. The embedding layers utilized for categor-
ical data likely contribute to this by capturing relationships between categories, enhancing
the generator’s ability to replicate the categorical distributions accurately. Conversely, the
higher performance of CTGAN in generating categorical features can be attributed to the
use of a conditional vector, which helps the model address the issue of imbalanced categor-
ical columns. This vector enables the model to generate synthetic rows that are conditioned
on specific values of a discrete (categorical) column. Additionally, the training-by-sampling
technique ensures that the conditional vector is properly sampled by uniformly selecting
from all possible values within the discrete columns, thereby accounting for the entire
range of categories during training.

Compared to medGAN [4] and its variants (medBGAN [8], medWGAN [9]), our
proposed approach enhances the ability to handle mixed data types without relying on
an autoencoder, which medGAN uses to manage high-dimensional discrete variables.
Although medGAN is effective at generating binary and count features commonly found
in EHR datasets, it lacks support for continuous data types. Our approach addresses this
limitation by employing specialised sub-networks for both continuous and categorical
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features. For continuous features, we use Bayesian GMMs to more effectively capture
complex, multimodal distributions. VeeGAN [13] incorporates a reconstructor network to
mitigate mode collapse, primarily focusing on continuous data. However, it faces challenges
in handling discrete and binary data types. Our architecture addresses this limitation by
integrating embedding layers for categorical features, enabling the effective generation of
mixed data types. TableGAN [15] improves data authenticity by incorporating information
and classification loss functions. However, its reliance on min-max normalization for all
variables limits its ability to model complex multimodal Gaussian distributions. In contrast,
our approach uses Bayesian GMMs for continuous variables, which allow more accurate
capture of these complex distributions. This improvement is reflected in lower KS statistics
for key continuous features.

Despite its strengths, our approach has limitations in replicating certain features where
TVAE demonstrates superior performance. For instance, in features like CACS#2.scor,
LDL.#2, hA1c.#2, and T.C.#2, TVAE achieves lower KS statistics, suggesting a closer align-
ment with the real data distributions for these variables. This may indicate that TVAE’s
variational framework is better suited to capturing the complex data structures inherent in
these features. The comparatively lower performance of our approach on these variables
may stem from the increased complexity and variability associated with them, highlighting
the need for further enhancements to better model such complexities. Additionally, while
the Bayesian GMM is a robust method for capturing multimodal distributions, it also
increases computational complexity, which could limit the scalability of our approach, espe-
cially in settings with limited computational resources. Lastly, although the proposed model
performed well with this specific dataset, its generalizability to other medical datasets is
uncertain and would benefit from further testing to confirm its broader applicability.

High-quality synthetic data is essential for advancing machine learning applications
in healthcare, particularly when access to real-world data is restricted due to ethical or
regulatory constraints. Mobile sensing-based healthcare systems, which collect data from
wearable devices, mobile applications, and electronic health records, have become critical
tools in personalized medicine, especially for managing cardiovascular health. These
systems rely on real-time data collection and processing to monitor patient health and
deliver personalised recommendations. However, they face significant challenges due to
the limited availability of high-quality datasets for training machine learning models. The
synthetic tabular data generated by the proposed Conditional GAN offers a viable solution
by replicating realistic data distributions. This approach supports the development and
evaluation of predictive models for mobile health applications. Cardiovascular disease
management through mobile sensing systems depends on data from wearable devices
and electronic health records, which combine continuous features (e.g., heart rate, blood
pressure) and categorical features (e.g., medication status, comorbidities). The proposed
architecture’s ability to capture complex feature relationships and maintain statistical
properties makes it well-suited for generating synthetic datasets in these contexts. By
augmenting limited real-world data, the synthetic datasets improve model performance
and adaptability in mobile healthcare applications.

Future research could focus on several strategies to enhance the performance and
applicability of our approach. Integrating components that model higher-order dependen-
cies or incorporating elements of variational techniques within GANs may improve the
capture of complex data structures. Additionally, exploring alternative GAN architectures
could enhance model stability and the quality of generated data. Investigating advanced
sampling approaches would help ensure that minority classes are well represented, thereby
improving the model’s ability to generate balanced synthetic datasets. Finally, evaluating
the model on a diverse range of medical datasets would help assess its robustness and
adaptability. Despite its limitations, our approach bridges the gap observed in existing mod-
els like CTGAN and TVAE. CTGAN, while strong in preserving categorical distributions
with perfect Jaccard coefficients for most features, generally underperforms in replicating
continuous data distributions, as indicated by higher KS statistics. TVAE, on the other
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hand, demonstrates strong performance in replicating continuous features but struggles to
achieve high Jaccard coefficients for categorical variables. This approach delivers robust
performance in replicating continuous data distributions while maintaining competitive re-
sults in handling categorical data. This balance suggests that it is well-suited for generating
synthetic datasets where both continuous and categorical variables are crucial.

6. Conclusions

This study introduces an enhanced Conditional GAN architecture that enhances the
generation of high-quality synthetic tabular data, particularly for cardiovascular disease re-
search. By incorporating specialized sub-networks for continuous and categorical variables
and leveraging metadata such as GMM parameters and embedding representations, our
approach more effectively captures complex distributions and relationships in mixed data
types compared to previous models. Experimental analysis shows that this architecture
achieves a mean KS statistic of 0.3900, surpassing CTGAN’s 0.4803 and closely aligns with
TVAE’s 0.3858. Notably, it produces low KS values for critical continuous features, such as
total cholesterol (KS = 0.0779), weight (KS = 0.0861), diastolic blood pressure (KS = 0.0957),
and height (KS = 0.1045), reflecting higher accuracy in replicating real data distributions.
It also demonstrates a strong ability to preserve pairwise variable relationships, which
is crucial for ensuring the utility of synthetic data in subsequent analytical tasks. For
categorical variables, our approach attains a Jaccard coefficient of 1.00 for eight of eleven
features, highlighting its effectiveness in preserving categorical data structures. Overall,
this architecture represents a significant step forward in synthetic tabular data generation,
providing an effective, balanced approach that handles mixed data types and preserves
essential data properties. Its ability to generate high-quality synthetic data offers promise
for advancing research in medical informatics and other fields, particularly where privacy,
scalability, and data availability are critical constraints.
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