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Abstract: Efficient road inspection and maintenance are essential to extend pavement 21 

lifespan and enhance safety. However, automated crack detection remains challenging 22 

due to varied environmental conditions and differences in image collection equipment, 23 

making robust algorithm development a critical need. Vision Transformers, with their 24 

capacity to capture long-range dependencies, offer significant advantages for crack 25 

detection in complex scenarios by effectively extracting global features. Nevertheless, 26 

existing Transformer-based methods encounter difficulties in boundary delineation due 27 

to decoder design limitations, which lead to suboptimal fusion of low-level and high-28 

level features. To address this issue, we propose a comprehensive approach that 29 

integrates semantic preservation, detail refinement, and detail delineation. These 30 

concepts are realized through our novel Dual-Cross Attention Module (DCA) and 31 

Upsampling Attention Module (UA). The DCA module progressively filters redundant 32 

details from low-level feature layers using high-level semantic information, while 33 

preserving boundary details to refine high-level feature boundaries. In addition, the UA 34 

module employs progressive local cross-attention in upsampling, facilitating more 35 

precise boundary definitions and surpassing conventional dynamic upsampling 36 

methods. Our approach, utilizing both lightweight (MiT-B0, LVT) and middle-weight 37 

(Swin-T) backbones, demonstrates state-of-the-art performance on three diverse 38 

datasets—Crack500, CrackSC, and UAV-Crack500—highlighting its robustness across 39 

varied conditions. This work contributes to advancing Transformer-based architectures 40 

for defect segmentation in complex engineering contexts, underscoring the critical role 41 

of improved feature fusion in crack detection. The code is available at: 42 

https://github.com/SHAN-JH/DCUFormer. 43 

 44 

Keywords: Pavement crack, Vision Transformer, Semantic segmentation, Feature 45 

upsampling 46 
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1. Introduction 48 

Roads play a critical role in transportation, directly affecting commuter safety and 49 

comfort. Regular inspection and timely maintenance are essential to prolonging road 50 

lifespan and ensuring safety, particularly in urban areas where asphalt pavements are 51 

susceptible to environmental degradation and traffic loads (Lei et al., 2024; J. Li et al., 52 

2022; Munawar et al., 2021). Without proper intervention, cracks can expand, leading 53 

to severe structural instability due to moisture and air infiltration, underscoring the need 54 

for efficient, precise crack detection methods (Marcelino et al., 2018; Ragnoli et al., 55 

2018). 56 

With advances in artificial intelligence (AI), deep learning has greatly enhanced 57 

the efficiency and accuracy of pavement inspections (Dong et al., 2024; Y. Li et al., 58 

2021; Roy & Bhaduri, 2023; Tong et al., 2023; Zhu et al., 2023). However, crack 59 

segmentation remains challenging, especially under complex conditions. Cracks often 60 

have irregular, thin shapes, indistinct edges, and low contrast with their surroundings, 61 

making them difficult to detect. Furthermore, various external factors such as lighting 62 

and stains add complexity of AI-based pavement crack detection (F. Guo et al., 2023; 63 

Z. Li et al., 2024). 64 

To address these challenges, recent research has explored Transformer-based 65 

architectures, which excel in capturing global dependencies across images via self-66 

attention. Unlike convolutional neural networks (CNNs), which incrementally build 67 

feature representations through limited receptive fields, Transformers can model long-68 

range relationships within the entire image, making them advantageous for complex 69 

crack patterns (Duan et al., 2024; Islam et al., 2024; Younesi et al., 2024). Although 70 

promising, existing Transformer models like Swin Transformer (Z. Liu et al., 2021) 71 

and MiT (Xie et al., 2021) lack effective decoders for fusing low-level and high-level 72 

features. The integration of detailed local information with global semantic context is 73 

essential for accurate crack segmentation in complex scenarios. Effectively combining 74 
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these complementary aspects could significantly enhance segmentation performance by 75 

leveraging the strengths of both types of information. 76 

To tackle this issue, we propose a novel Dual-Cross Attention Module (DCA) and 77 

an Upsampling Attention Module (UA) to enhance feature fusion and detail 78 

preservation (Fig. 1). Our DCA module uniquely combines high-level and low-level 79 

features, differing from prior models like FeedFormer (Shim et al., 2023) and U-80 

MixFormer (Yeom & von Klitzing, 2023) by using a two-step cross-attention approach. 81 

First, it injects high-level semantic information into the low-level feature space to retain 82 

contextual information (semantic preservation). Then, it transmits low-level structural 83 

details to high-level feature maps, refining edges and eliminating redundant 84 

background information (detail refinement). This method addresses the need for 85 

accurate crack segmentation by preserving semantic context while amplifying essential 86 

edge details. 87 

 88 

Fig. 1. Overview of challenges in crack detection, limitations of existing algorithms, and 89 

the advantages of our proposed method. 90 

Furthermore, our UA module improves upon traditional upsampling methods by 91 

applying local cross-attention within same resolution feature maps. Unlike methods that 92 

rely on high-resolution features for upsampling, which can result in suboptimal 93 
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attention mapping, our approach leverages detail preservation and similarity 94 

requirements within the cross-attention framework to better delineate fine textures and 95 

boundaries in complex crack images. These advancements are compared against 96 

popular decoder and upsampling modules, demonstrating state-of-the-art (SOTA) 97 

performance. The primary contributions of this work are as follows: 98 

(1) We propose the Dual-Cross Attention Module (DCA), designed to enhance the 99 

integration of low-level detail with high-level semantic information. The DCA 100 

improves the understanding of high-level semantic information in low-level 101 

feature maps, eliminates redundant information in lower-level features, and 102 

reconstructs or amplifies important details that may be lost or blurred due to the 103 

increasing depth of neural networks. 104 

(2) We introduce the Upsampling Attention Module (UA), a novel upsampling 105 

module based on attention mechanisms. This module leverages progressive local 106 

cross-attention for precise and effective upsampling, enabling improved learning 107 

and prediction of edges and texture details. 108 

(3) The model's performance was evaluated on three datasets with significant 109 

variations in crack morphology and environmental interference: Crack500, 110 

CrackSC, and our UAV-Crack500. Utilizing MiT-B0, LVT, and Swin-T as 111 

backbones, our model outperformed existing high-performance decoder models, 112 

offering new perspectives for Transformer-based feature refinement and 113 

upsampling design. 114 

The structure of the paper is as follows: Section 2 reviews current decoder designs 115 

based on CNNs and Transformers as well as upsampling methods; Section 3 introduces 116 

our model architecture; Section 4 presents test and visualization results on three datasets, 117 

along with ablation experiments; Section 5 concludes the content of the paper and 118 

discusses future research directions. 119 

2. Related Works 120 
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In semantic segmentation tasks, the encoder-decoder architecture is fundamental. 121 

The encoder extracts features, capturing edges, textures, shapes, and semantic 122 

information, often through progressive downsampling to reduce computational demand 123 

and capture global contextual information. However, direct use of downsampled feature 124 

maps can blur boundary information. To address this, decoders are designed to 125 

reconstruct the image, gradually restoring resolution and recovering lost spatial details 126 

for high-accuracy segmentation with fine boundaries. 127 

This section reviews CNN-based and Transformer-based decoders, and 128 

upsampling methods, highlighting their efficiency and accuracy in recovering spatial 129 

details and boundary information, while also pointing out their limitations. 130 

2.1 CNN-based Decoder Heads 131 

CNN architectures utilize downsampling to enhance computational efficiency, 132 

feature representation, and model generalization. Various methods have been proposed 133 

to restore downsampled feature maps to their original resolution. The Fully 134 

Convolutional Network (FCN) (Long et al., 2015) directly upsamples feature maps 135 

downsampled by factors of 32 or 16, resulting in coarse restorations and blurred 136 

boundaries. U-Net (Ronneberger et al., 2015) employs stepwise upsampling and lateral 137 

connections to gradually restore spatial details and structural information, showing 138 

excellent performance across various segmentation domains. The Pyramid Scene 139 

Parsing Network (PSPNet) (Zhao et al., 2017) utilizes a Pyramid Pooling Module (PPM) 140 

to integrate context information at different scales, significantly improving 141 

segmentation accuracy in complex backgrounds and multi-scale object scenarios. 142 

DeepLabv3 (Chen et al., 2017) incorporates atrous convolution to capture multi-scale 143 

context information through the Atrous Spatial Pyramid Pooling (ASPP) module, while 144 

DeepLabv3+ (Chen et al., 2018) combines low-level and high-level features to enhance 145 

detail resolution capability. Panoptic FPN (Kirillov et al., 2019), with an FPN backbone 146 

(Lin et al., 2017), uses a top-down and skip-connection architecture similar to UNet, 147 

but with an asymmetrical, lightweight design, adjusting different-level feature maps to 148 



7 

have the same number of channels, thus reducing computational load and parameter 149 

count. These methods improve the decoder's capability to restore fine image details 150 

through effective multi-scale information fusion. 151 

Despite the introduction of techniques such as atrous convolutions (Chen et al., 152 

2017) and deformable convolutions (Dai et al., 2017) in CNN decoder structures to 153 

expand the receptive field, their global perception capability remains insufficient. This 154 

limitation often results in false negative predictions when segmenting thin and 155 

elongated cracks in complex environments. In classical CNN architectures, to restore 156 

the resolution of high-level feature maps, bilinear interpolation is typically employed 157 

for upsampling. Although low-level features are integrated through concatenation or 158 

addition, this approach can still lead to issues with unclear boundaries. 159 

2.2 Transformer-based Decoder Heads 160 

While deeper CNNs capture broader contextual information, they still primarily 161 

focus on local features and may lack global awareness in complex scenes. Transformer-162 

based models address this limitation through self-attention mechanisms, enabling 163 

superior performance in capturing global dependencies. These models typically employ 164 

Transformer/CNN backbones for initial feature extraction, followed by advanced 165 

decoder structures that leverage Transformer mechanisms to further enhance the 166 

extraction of detailed information and semantic enrichment. SenFormer (Bousselham 167 

et al., 2022) builds on the FPN structure, incorporating a Transformer-based learner to 168 

extract features from different decoder levels. Mask2Former (Cheng et al., 2022) 169 

introduces a pixel decoder module that gradually upsamples features, feeding them into 170 

a Transformer decoder to enhance small object recognition. FeedFormer (Shim et al., 171 

2023) uses high-level encoder features as queries and lowest-level encoder features as 172 

keys and values in its Transformer decoder, enhancing structure by integrating fine 173 

spatial details from low-level features with high-level semantic information. This 174 

approach effectively restores important details in the segmentation process. U-175 

MixFormer (Yeom & von Klitzing, 2023) integrates the U-Net structure with 176 
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Transformer operations, replacing lateral connections with Transformer decoders and 177 

mixing features from both encoder and previous decoder stages. These models 178 

demonstrate the evolution towards more sophisticated architectures that effectively 179 

balance global context capture and local feature preservation, pushing the boundaries 180 

of performance in visual semantic segmentation tasks. 181 

Transformer-based decoder heads enhance global information decoding through 182 

attention mechanisms, strengthening the semantic information in high-level feature 183 

maps while preserving important details. However, previous research has typically 184 

focused either on deepening the semantics of feature maps or on characterizing fine 185 

details, without effectively combining these two aspects. This dichotomy in approach 186 

suggests a potential gap in the field, where a more integrated method could potentially 187 

yield improved results by simultaneously addressing both semantic enrichment and 188 

detail preservation. 189 

2.3 Upsampling Methods 190 

In the decoder stage, upsampling methods are typically employed to recover image 191 

detail information. Traditional upsampling methods include bilinear interpolation and 192 

nearest neighbor interpolation, which are non-learnable and use predefined kernels for 193 

upsampling operations. Other methods such as deconvolution (Noh et al., 2015), pixel 194 

shuffle (Shi et al., 2016), and unpooling (Badrinarayanan et al., 2017) are also widely 195 

used. Although the convolutions in deconvolution and pixel shuffle are learnable, their 196 

kernels operate on the entire feature map and cannot be dynamically generated. 197 

Unpooling can perform upsampling based on indices saved during downsampling and 198 

can adjust dynamically according to input, but its zero-filling operation compromises 199 

semantic information. 200 

Recently, researchers have proposed several new dynamic upsampling methods, 201 

such as CARAFE (Wang et al., 2019), FADE (Lu, Liu, Fu, et al., 2022), SAPA (Lu, 202 

Liu, Ye, et al., 2022), DySample (W. Liu et al., 2023), and ReSFU (Zhou et al., 2024). 203 

CARAFE dynamically generates upsampling operators based on encoder feature maps; 204 
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FADE further combines encoder and decoder feature maps to guide the upsampling 205 

process; SAPA utilizes a similarity-aware point affiliation mechanism to design an 206 

upsampling operator, achieving both semantic smoothness and boundary sharpness; 207 

DySample dynamically generates sampling point positions from a point sampling 208 

perspective to guide upsampling; ReSFU achieves more fine-grained upsampling 209 

through query-key feature alignment and a fine-grained neighbor selection strategy. 210 

These methods show certain advancements compared to fixed upsampling methods, 211 

primarily generating query-key pairs to guide upsampling using encoder or decoder 212 

feature maps. 213 

However, these dynamic upsampling methods still have some limitations. As 214 

pointed out by ReSFU, query-key pairs from different feature maps are not fully aligned 215 

in detail and semantic spaces, leading to suboptimal upsampling results. Although 216 

ReSFU attempts to perform query-key feature alignment, discrepancies in semantic and 217 

detail spaces still exist. This is because the detail space contains more high-frequency 218 

information such as structure and color, while the semantic space is smooth. To perform 219 

query-key attention calculations more effectively, cross-processing of information is 220 

needed beforehand. Subsequently, local cross-attention can further restore crack edge 221 

details. 222 

3. Proposed Architecture 223 

3.1 Overall Architecture 224 

Based on the aforementioned approach, we propose our model – DCUFormer (Fig. 225 

2). DCUFormer is designed to address the challenges in dense prediction tasks, 226 

particularly focusing on the effective fusion of low-level and high-level feature maps. 227 

The architecture incorporates mechanisms for semantic preservation, detail refinement, 228 

and detail delineation, aiming to achieve a balance between preserving high-level 229 

semantic information and enhancing fine-grained details. The model leverages a 230 

hierarchical structure to extract multi-scale features while employing novel techniques 231 

to overcome the limitations of traditional upsampling and feature fusion methods. By 232 
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implementing a progressive fusion strategy and utilizing cross-attention mechanisms, 233 

DCUFormer strives to maintain the integrity of semantic information from high-level 234 

features while accurately delineating detailed structures guided by low-level features. 235 

The model accepts feature maps with four levels, which align with the outputs 236 

from popular backbone networks such as Swin Transformer, MiT (Mix Transformer), 237 

and LVT (Light Vision Transformer). This design choice ensures compatibility with 238 

diverse state-of-the-art backbones, allowing for flexible integration into various deep 239 

learning pipelines. Assuming the input image size is H W C  , the different levels of 240 

output feature maps are 
1 12 2

ii i

H W
× ×C 

, denoted as i
E . 241 

 242 

Fig. 2. DCUFormer architecture. 243 

Our model architecture leverages the Dual-Cross Attention Module (DCA) and 244 

the Upsampling Attention Module (UA) to effectively integrate and refine features 245 

extracted by the encoder, enhancing the semantic segmentation performance. 246 

Initially, feature maps from different hierarchical levels of the encoder are fed into 247 

the DCA, enhancing the low-level feature maps' understanding of high-level semantic 248 

information while eliminating redundant information. 249 
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Following the DCA, the refined feature maps from different levels are processed 250 

by the Upsampling Attention Module (UA). Within a U-shaped architecture, high-level 251 

feature maps are connected laterally and undergo upsampling attention mechanisms. 252 

This process results in upsampled lower-level feature maps, where the learnable 253 

upsampling attention mechanism ensures the gradual restoration of detailed 254 

information. 255 

3.2 Dual-Cross Attention Module (DCA) 256 

Considering that high-level feature maps obtained from the encoder are rich in 257 

semantic information while low-level feature maps contain detailed structural and 258 

boundary information, the Dual-Cross Attention Module (DCA) fully utilizes both 259 

highest-level feature maps 4
E  and lowest-level feature maps 1

E .  260 

Initially, the feature maps i
E  serve as the query, with the highest-level feature 261 

map 4
E  acting as both key and value for cross-attention computation. Subsequently, 262 

the resulting feature maps i
F  from different levels serve as the query, and the lowest-263 

level feature map 1
E , after undergoing convolution operations with a kernel size and 264 

stride of 8 and having its channels expanded to match E4, acts as both key and value for 265 

a second round of cross-attention computation. This integration ensures a more 266 

comprehensive representation by combining both high-level semantic information and 267 

low-level detailed information. 268 

3.3 Upsampling Attention Module (UA) 269 

Currently, for upsampling operations, most models adopt the simple and explicit 270 

method of bilinear interpolation; however, this method is non-learnable and tends to 271 

smooth out boundary information to some extent. To fully utilize the feature maps 272 

obtained from the previous layer's upsampling as well as their lateral connections for 273 

upsampling operations, we propose the Upsampling Attention Module (UA) (Fig. 3).  274 
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 275 

Fig. 3. Upsampling Attention Block. 276 

In this module, the laterally connected feature maps from the previous layer (
i

D ) 277 

serve as the query, and the upsampled feature maps from the previous layer ( i
U ) serve 278 

as both key and value. They first undergo layer normalization before proceeding to the 279 

Upsampling Attention Operation. To accommodate the residual connection after 280 

upsampling, the 
i

D  map is upsampled by a factor of 2 and then added to the map 281 

processed by the attention mechanism. This is followed by computation in a feed-282 

forward neural network to achieve nonlinear fitting. Unlike traditional non-learnable 283 

methods, the Upsampling Attention Module (UA) leverages higher-layer contextual 284 

information for precise and effective upsampling through the attention mechanism, 285 

enabling better learning and prediction of edge and texture detail information. 286 

 287 

Fig. 4. Upsampling Attention Operation. 288 
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The steps for the Upsampling Attention Operation (Fig. 4) are as follows: first, the 289 

input feature maps of the i-th layer 
i

D  and i
U  undergo layer normalization followed 290 

by an unfold operation with a kernel size of 3 3 , stride of 1, and padding of 1. Assume 291 

the sizes of input maps 
i

D  and i
U  are both i i iC H W

X
  , where i

C  represents the 292 

number of channels, and iH  and iW  represent height and width, respectively. The 293 

unfolding operation can be regarded as transforming each local k k  window in the 294 

feature map X  into a column vector, thereby generating a new matrix 
2( )

unfold
ik C N

X
  295 

(Formula (1)-(2)), where N  is the number of columns after unfolding. This process 296 

does not change the spatial dimensions due to the use of stride 1 and padding 1 in the 297 

unfold operation. Consequently, i i
N H W  . 298 

  Unfold
i iD _un D

X X  (1) 299 

 
 Unfold

i iU _un U
X X

 
(2) 300 

Subsequent to the unfold operation, grouped convolution (Formula (3)-(4)) is 301 

employed to facilitate feature learning for upsampling, with each group consisting of 302 

the unfolded 9-pixel blocks. The output channel dimension for 
i

D , when it functions 303 

as the query, is established at 36, reflecting a doubling in the upsampling rate, explicitly 304 

calculated as (3 2) (3 2)   . In the case of i
U , designated as both key and value, the 305 

output channels are accordingly doubled to 36 channels for the key and 36 channels for 306 

the value, to accommodate the upsampled feature representation. 307 

 
_ _i iq Up D D un

X W X
 (3) 

308 

 
_ _i ikv Up U U un

X W X
 (4) 

309 

The weights for i
D  and i

U  in the upsampling operation are denoted as 310 

2 2 2( )

_

( )i

i

i

D

k

p

C

U

C k
W

   and 
2 2 2(2 ) ( )

_ i

i ik C

U U

C

p

k
W

  ;   represents the scaling factor. 311 
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Subsequently, we reshape and permute the dimensions of the unfolded feature 312 

maps to fit the dimensions required for the subsequent operations. The reshaped iq ,
i

k ,313 

i
v  (

_2 2

_
_ ( ) ( )

, ,
Cout i

i i num heads
B num heads H W k

i i i
q k v

     
 ) have dimensions suited for computing the 314 

attention mechanism (Formula (5)), where 36 denotes the number of channels for each 315 

of the unfolded pixel groups, facilitating the attention operation across 3 3  pixel areas. 316 

This allows for a detailed feature learning process, effectively capturing both spatial 317 

and semantic information within these regions. This attention mechanism helps to 318 

selectively emphasize the most relevant features within the upsampled feature space, 319 

incorporating a richer contextual understanding that goes beyond local pixel 320 

information. 321 

 MultiHead _ Attention( , , ) softmax( )
T

i i

k

q k

i i i id
q k v v  (5) 322 

Where kd  represents the dimensionality of the key vectors, ensuring that the attention 323 

scores are appropriately normalized, avoiding disproportionately large values that could 324 

dominate the softmax output, thereby maintaining a balanced attention distribution 325 

across the features. 326 

After the attention computation, the processed feature maps are subject to two 327 

subsequent folding operations aimed at restoring the attended feature maps to their 328 

original spatial configuration. The first folding operation employs a kernel size of 2 2 , 329 

with a stride of 2 and no padding, effectively producing an upsampled feature map with 330 

dimensions doubled in both height and width (
2

_( ) ( )out i i iB C k H W     ). 331 

The second folding operation then re-integrates the 9-pixel neighborhood back 332 

into the feature map using a kernel size of 3 3 , with a stride of 1 and padding of 1. 333 

Unlike the first fold, this operation does not alter the size of the feature map; instead, it 334 

focuses on rearranging the pixels to their precise locations based on the attention-driven 335 

importance. By doing so, it ensures that the detailed spatial relationships and contextual 336 

information, accentuated through the attention mechanism, are accurately represented 337 

within the upsampled feature map. This dual-stage folding process is crucial for 338 
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achieving a refined reconstruction of the feature map that retains both the enhanced 339 

details and the original spatial integrity. 340 

After obtaining the upsampled feature map up
X  , it is added to the bilinearly 341 

upsampled feature map _iD up
X . This operation enriches the pathways through which 342 

the upsampled feature map is generated, incorporating both a learnable upsampling 343 

method and a direct bilinear upsampling shortcut branch. This approach effectively 344 

enhances upsampling capability and mitigates gradient vanishing issues during deep 345 

network training. This is followed by a standard layer normalization and feedforward 346 

operation, ultimately producing the upsampled ( 1)u i
X  . The overall process is illustrated 347 

in the given Formula (6)-(7). 348 

 Up_Atten(LN( , )) Up( )
i i ii D U D

X X X X   (6) 349 

 
( 1) FFL(LN( ))

U i i i
X X X    (7) 350 

4. Experimental results and analysis 351 

4.1 Datasets 352 

Imaging equipment variability and altitude significantly impact image quality (Fig. 353 

5). Aerial photography yields broader area coverage but often results in the loss of 354 

minor features and details, with greater susceptibility to weather and lighting conditions, 355 

leading to reduced image contrast and color saturation. Conversely, low-altitude 356 

imagery captures more detailed information but is limited in scope and contains 357 

redundant data, potentially compromising model efficiency. To evaluate the model's 358 

segmentation performance on complex scene cracks, we utilized three distinct imaging 359 

devices and pavement crack datasets from various scenarios, including Crack500, 360 

CrackSC, and our UAV-Crack500. 361 
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 362 

Fig. 5. Comparison of pavement crack images at different imaging altitudes. 363 

Crack500 dataset (Yang et al., 2020) is composed of 500 high-resolution 364 

photographs of road damages, each with an original resolution of 2000  1500 pixels, 365 

captured using cell phones on the main campus of Temple University. To economize on 366 

training expenses while enhancing the crack pixel ratio, the original images were 367 

segmented into 16 non-overlapping regions, with only those containing over 1000 crack 368 

pixels retained. In total, 1896 images were selected for the training set, 348 for the 369 

validation set, and 1124 for the test set. 370 

CrackSC dataset (F. Guo et al., 2023) consists of 197 road damage images (320 371 

 480 pixels) captured by an iPhone 8 around Enoree Ave, Columbia, SC. This dataset 372 

emphasizes complex pavement distress scenes with interference factors like shadows, 373 

leaves, and moss, which pose significant challenges to crack detection. Without a 374 

predefined dataset division by the authors, we divided it into 99 training images, 19 375 

validation images, and 79 testing images, adhering to a 5:1:4 distribution ratio. 376 

UAV-Crack500 dataset (Shan et al., 2024), collected and annotated by us using 377 

EISeg (Hao et al., 2022), is focused on pavement distress imagery obtained from drones. 378 
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Captured at an altitude of 50 m, the original image resolution is 2688  1512 pixels, 379 

covering approximately 16 m  9 m. The aerial perspective results in a lower ratio of 380 

crack pixels, with the images being blurred and more susceptible to external 381 

environmental noise, adding to the segmentation challenge. The images were divided 382 

into 16 non-overlapping regions, from which 500 images displaying significant distress 383 

features and disturbances were selected, comprising 250 images for the training set, 50 384 

for the validation set, and 200 for the testing set. 385 

In real-world scenarios, data is inherently diverse; however, the datasets collected 386 

often have inherent limitations and do not cover a wide range of scenes. Through data 387 

augmentation, models can be trained to grasp deeper semantic information beyond 388 

simple low-level features (such as color and contours). Moreover, limited dataset sizes 389 

can lead to overfitting, particularly in large models like Transformers. Data 390 

augmentation creates new, unseen examples, thereby enhancing the model's 391 

generalization and robustness and preventing overfitting. This paper employs three data 392 

augmentation techniques: Random Crop, Random Flip (Horizontal and Vertical), and 393 

Photometric Distortion (adjusting Brightness, Contrast, Saturation, and Hue), to 394 

achieve sample diversity. The specific alterations to images and masks are detailed in 395 

Fig.6. 396 

 397 

  
         

Original Data Random Crop (256, 256) 

      

Random 

Horizontal Flip 

Random 

Vertical Flip 

Brightness 

Distortion 

Contrast 

Distortion 

Saturation 

Distortion 
Hue Distortion 

Fig. 6. Examples of data augmentation. 398 
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4.2 Training and Evaluation Settings 399 

For fairness in our experiments, all our procedures were conducted within the 400 

public codebase—MMSegmentation v1.2.0 framework1, using an NVIDIA Tesla T4 401 

GPU (16G) for model construction, training, and testing. The following details the 402 

rationale behind our parameter choices and optimization strategies:  403 

In our approach, the image crop size of 256 × 256 during both training and testing 404 

was selected to balance computational efficiency with capturing sufficient contextual 405 

details from the input data, while the batch size of 16 optimized GPU memory usage 406 

and maintained stable gradient estimates. For testing, we used the “slide” prediction 407 

mode with a crop size of 256 × 256 and a stride of 128, which not only ensured 408 

consistency with the training process but also enhanced accuracy by averaging 409 

overlapping predictions, reducing edge artifacts. 410 

The AdamW optimizer was selected for its effective handling of sparse gradients 411 

and adaptive learning rates. A learning rate of 6e-5 was determined through preliminary 412 

experimentation, ensuring stable convergence. The exponential decay averages for 413 

gradients were set at 0.9 and 0.999, with a weight decay of 0.01 added to regularize the 414 

model and mitigate overfitting risks. Training spanned 30,000 iterations, with the first 415 

1,500 iterations featuring a linear learning rate warm-up to facilitate a smooth 416 

adaptation to the optimization process. Afterward, a polynomial learning rate decay 417 

(power = 1) was applied for progressive fine-tuning. 418 

To improve segmentation accuracy, especially in imbalanced datasets, we 419 

employed a combination of binary cross-entropy (BCE) and dice loss. BCE handles 420 

pixel-wise classification, while dice loss addresses overlap-based loss, offering a 421 

balanced approach that enhances model performance on challenging segmentation 422 

tasks. 423 

                                                
1 https://github.com/open-mmlab/mmsegmentation 
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Reproducibility was ensured by using consistent random seeds across all 424 

experiments, and results were averaged over three trials to minimize the effects of 425 

random variations. This comprehensive setup ensured reliable and robust model 426 

evaluation. 427 

4.3 Implementation Details 428 

The selection of backbone networks for this study was guided by three critical 429 

factors: dataset characteristics, hierarchical architecture, and global information 430 

extraction capabilities. Given the relatively small scale of pavement crack semantic 431 

segmentation datasets, light to medium-weight backbones were prioritized to mitigate 432 

the risk of overfitting, which is particularly pertinent when dealing with limited data. 433 

Backbones with hierarchical network architectures were selected due to their 434 

demonstrated efficacy in processing multi-scale information, allowing for more 435 

nuanced feature extraction across different levels of abstraction. This approach boosts 436 

both model efficiency and accuracy. Recent advancements in Vision Transformer-based 437 

architectures have shown significant advantages in global information extraction. 438 

Balancing these considerations, MiT-B0 and LVT were employed as light-weight 439 

options, and Swin-T as a medium-weight alternative for the experiments. This selection 440 

allows for performance evaluation across different computational complexities while 441 

leveraging the strengths of Vision Transformer-based architectures. The hierarchical 442 

structures of these chosen backbones further contribute to mitigating overfitting and 443 

enhancing processing efficiency. 444 

For comparison, we selected the SegFormer Head and U-MixFormer Head to 445 

contrast with our decoder model. SegFormer utilizes a straightforward MLP for channel 446 

rearrangement followed by concatenation and another MLP to arrive at the final 447 

prediction. Meanwhile, U-MixFormer, which has shown impressive performance in the 448 

visual domain, employs an upsampling and lateral connection structure similar to UNet, 449 

thereby excelling in detail and boundary recovery. To establish the superiority of the 450 

proposed method, comparisons were conducted with current high-performing 451 
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segmentation models, including SegNeXt (M.-H. Guo et al., 2022), Mask2Former 452 

(Cheng et al., 2022), and VWFormer (Yan et al., 2024). This comprehensive approach 453 

ensures a robust evaluation of the method against state-of-the-art alternatives while 454 

addressing the specific challenges posed by pavement crack datasets. Through this 455 

systematic experimental design and comprehensive comparative analysis, the study 456 

aims to provide valuable insights and innovative approaches to the field of semantic 457 

segmentation, particularly in the challenging application scenario of pavement crack 458 

detection. 459 

For performance evaluation, we utilize Average Accuracy (aAcc), Mean 460 

Intersection over Union (mIoU), Mean Accuracy (mAcc), Mean Precision (mPr), Mean 461 

Recall (mRe), and Mean F1 (mF1) Score as our metrics. The best models typically 462 

showcase paired superior performance in both mIoU and Mean F1 Score, and we select 463 

the model that performs optimally on these two metrics as best model. Furthermore, 464 

considering that cracks do not have clear and distinct pixel boundaries and that the 465 

dataset annotation process is subject to human error, leading to possible pixel deviations, 466 

we follow the practice of other studies (Weng et al., 2019; Panella et al., 2022; Zhang 467 

et al., 2022) by applying a 2-pixel tolerance in our model evaluation. This means that 468 

if the model's predictions are within two pixels of the ground truth, they are considered 469 

true positives. 470 

4.4 Comparison with State-of-the-art Segmentation Approaches 471 

The model was tested on three distinct datasets sourced from Crack500, CrackSC, 472 

and UAV-Crack500, with the results displayed in Tables 1 to 3. Based on the mIOU and 473 

mF1 scores, it is evident that our model, DCUFormer, surpassed existing models across 474 

different backbones, achieving state-of-the-art (SOTA) results. 475 

For the Crack500 dataset, models with a Swin-T backbone exhibit similar 476 

performance, linked to the dataset's characteristics of larger and more prevalent cracks. 477 

Swin-T's effective feature extraction via sliding windows permits simpler feature 478 

interpretation in the decoder phase, resulting in comparable outcomes among the 479 
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models. However, for datasets with complex scenes and blurred boundaries, such as 480 

CrackSC and UAV-Crack500, Swin-T's strong feature extraction capacity requires a 481 

decoder that excels in feature interpretation and fusion, leading our model with Swin-482 

T as the backbone to achieve superior results on the CrackSC and UAV-Crack500 483 

datasets. 484 

Figures 7 to 9 visualize the performance of our top models (measured by mIoU 485 

and mF1) in both light-weight and middle-weight categories, compared to other state-486 

of-the-art models. 487 

In the Crack500 dataset, although cracks are larger and more prominent, the 488 

similarity between crack pixels and background road surface pixels leads to a tendency 489 

for models to produce false negatives, resulting in discontinuous cracks. However, our 490 

model achieved better prediction results, identifying cracks more accurately and with 491 

better connectivity. 492 

In the CrackSC dataset, cracks are finer and accompanied by shadows and stains. 493 

Under shadows, road and crack pixels are almost indistinguishable, often leading 494 

models to false negatives by misclassifying them as pavement pixels. Under influences 495 

like stains and leaves, due to their color and shape similarities to cracks, models are 496 

prone to false positives. As shown in Fig. 8, our model can effectively refine crack 497 

information from shadows based on global context and distinguish between 498 

disturbances such as stains and leaves. 499 

The UAV-Crack500 dataset, captured from high altitudes, suffers from 500 

atmospheric lighting interference, diminishing clarity and color saturation of distant 501 

objects. This effect diminishes the contrast between crack and background pixels, with 502 

cracks occupying a smaller proportion and having blurred boundaries. These conditions 503 

complicate the segmentation task. However, as demonstrated in Fig. 9, our model 504 

maintains commendable performance, effectively distinguishing cracks from shadows 505 

and accurately separating disruptive elements such as shadows along markings and 506 

transition zones around manhole covers. 507 
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Table 1. Performance comparison with the state-of-the art methods on Crack500. 508 

 Method Encoder aAcc mIoU mAcc mPr mRe mF1 

L
ig

h
t-

w
ei

g
h

t 

Segformer MiT-B0 97.50 81.41 87.95 89.89 87.95 88.89 

U-MixFormer MiT-B0 97.56 81.92 88.63 89.90 88.63 89.26 

Segformer LVT 97.57 81.69 87.92 90.35 87.92 89.09 

U-MixFormer LVT 97.58 82.03 88.69 90.00 88.69 89.33 

SegNeXt MSCAN-T 97.43 81.35 88.65 89.07 88.65 88.86 

DCUFormer (Ours) MiT-B0 97.58 82.11 88.76 90.04 88.76 89.39 

DCUFormer (Ours) LVT 97.58 82.15 89.10 89.74 89.10 89.42 

M
id

d
le

-w
ei

g
h

t Segformer Swin-T 97.57 82.06 88.81 89.92 88.81 89.35 

Mask2Former Swin-T 97.07 79.49 87.95 87.08 87.95 87.51 

U-MixFormer Swin-T 97.62 82.06 88.21 90.57 88.21 89.35 

VWFormer Swin-T 97.47 81.99 89.81 88.84 89.81 89.32 

DCUFormer (Ours) Swin-T 97.61 82.07 88.39 90.39 88.39 89.36 

Table 2. Performance comparison with the state-of-the art methods on CrackSC. 509 

 Method Encoder aAcc mIoU mAcc mPr mRe mF1 

L
ig

h
t-

w
ei

g
h

t 

SegFormer MiT-B0 98.81 78.07 80.85 93.82 80.85 86.15 

U-MixFormer MiT-B0 98.84 78.97 81.91 93.76 81.91 86.86 

SegFormer LVT 98.81 78.01 80.66 94.05 80.66 86.09 

U-MixFormer LVT 98.86 79.24 81.95 94.30 81.95 87.07 

SegNeXt MSCAN-T 98.63 73.35 75.56 93.66 75.56 82.12 

DCUFormer (Ours) MiT-B0 98.83 78.97 82.01 93.59 82.01 86.86 

DCUFormer (Ours) LVT 98.86 79.85 83.06 93.55 83.06 87.54 

M
id

d
le

-w
ei

g
h

t SegFormer Swin-T 98.76 75.71 77.86 94.54 77.86 84.19 

Mask2Former Swin-T 98.83 80.15 83.82 92.85 83.82 87.77 

U-MixFormer Swin-T 98.85 78.85 81.67 93.96 81.67 86.76 

VWFormer Swin-T 98.77 76.87 79.53 93.68 79.53 85.16 

DCUFormer (Ours) Swin-T 98.89 80.84 84.14 93.69 84.14 88.29 

Table 3. Performance comparison with the state-of-the art methods on UAV-Crack500. 510 

 Method Encoder aAcc mIoU mAcc mPr mRe mF1 

L
ig

h
t-

w
ei

g
h

t  

SegFormer MiT-B0 99.21 84.18 87.19 94.95 87.19 90.68 

U-MixFormer MiT-B0 99.22 84.49 87.58 94.89 87.58 90.90 

SegFormer LVT 99.20 83.84 86.52 95.37 86.52 90.44 

U-MixFormer LVT 99.21 83.87 86.47 95.52 86.47 90.47 

SegNeXt MSCAN-T 99.21 84.63 87.46 95.31 87.46 91.00 

DCUFormer (Ours) MiT-B0 99.24 85.19 88.74 94.42 88.74 91.38 

DCUFormer (Ours) LVT 99.24 84.92 88.00 95.01 88.00 91.19 

M
id

d
le

-w
ei

g
h

t  SegFormer Swin-T 99.19 83.68 86.48 95.16 86.48 90.34 

Mask2Former Swin-T 98.91 79.49 84.46 90.59 84.46 87.26 

U-MixFormer Swin-T 99.22 84.23 87.39 94.75 87.39 90.72 

VWFormer Swin-T 99.20 84.37 87.11 95.41 87.11 90.82 

DCUFormer (Ours) Swin-T 99.27 85.45 88.40 95.29 88.40 91.55 

 511 
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Image Ground truth 

      
U-MixFormer-LVT DCUFormer-LVT (Ours) 

      
U-MixFormer-Swin-T DCUFormer-Swin-T (Ours) 

Fig. 7. Qualitative results on Crack500. 512 

      

Image Ground truth 

      
U-MixFormer-LVT DCUFormer-LVT (Ours) 

      
Mask2Former-Swin-T DCUFormer-Swin-T (Ours) 

Fig. 8. Qualitative results on CrackSC. 513 

      
Image Ground truth 

      
SegNeXt-MSCAN-T DCUFormer-MiT-B0 (Ours) 

      
VWFormer-Swin-T DCUFormer-Swin-T (Ours) 

Fig. 9. Qualitative results on UAV-Crack500. 514 

4.5 Comparison with State-of-the-art Upsampling Approaches 515 

To validate the superiority of the Upsampling Attention Module (UA), this study 516 

conducted comparative experiments on upsampling modules using SegFormer-B0. The 517 

comparison included novel and effective dynamic upsampling modules in semantic 518 
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segmentation, such as SAPA, DySample, ReSFU, as well as the conventional but 519 

efficient bilinear interpolation operation (Table 4). Although SAPA, DySample, and 520 

ReSFU achieved state-of-the-art results on large-scale datasets (such as ADE20K and 521 

Cityscapes), they did not perform as well on smaller crack datasets, failing to surpass 522 

the effectiveness of direct bilinear interpolation.  523 

SAPA and ReSFU compute queries from the previous encoder layer and perform 524 

semantic alignment with keys from the current layer. However, for thin cracks with 525 

pixels similar to the background, guiding upsampling through query-key pairs from 526 

different sources does not achieve effective alignment. This approach may even 527 

compromise the semantic information of previously extracted boundaries, erroneously 528 

classifying them as background. DySample utilizes local information from input 529 

features to dynamically adjust sampling strategies. Despite its simplicity and dynamic 530 

nature, the lack of comprehensive pixel interaction hinders its ability to differentiate 531 

semantic information of pixels near crack boundaries. 532 

This limitation is evident in the varying segmentation results across different crack 533 

datasets. SAPA, DySample, and ReSFU perform comparably to bilinear interpolation 534 

on the Crack500 dataset, where cracks are relatively large with clear boundaries. 535 

However, their performance significantly degrades compared to direct bilinear 536 

interpolation on datasets like CrackSC, featuring thin cracks in complex environments, 537 

and UAV-Crack500, which contains low-resolution and blurry crack images. 538 

The proposed Upsampling Attention Module (UA) innovatively combines cross-539 

attention upsampling of same-level semantic feature maps with bilinear interpolation 540 

residual connections, effectively addressing key issues in dynamic upsampling. The UA 541 

module achieves semantic-level query-key alignment, enhancing the model's 542 

comprehension of high-level features.  543 

Furthermore, UA introduces bilinear interpolation residual connections, which not 544 

only enhance gradient flow but also prove particularly effective in distinguishing 545 

semantically similar foreground and background elements. This approach utilizes 546 
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bilinear interpolation information to rectify semantic errors that may arise from the 547 

cross-attention mechanism. While bilinear interpolation can produce smoothing effects, 548 

it also preserves certain boundary information. By leveraging the advantages of both 549 

methods, UA achieves clear boundary semantics.  550 

Compared to other dynamic upsampling models, UA maintains computational 551 

efficiency while balancing semantic consistency, detail preservation, and model 552 

robustness by integrating original features with attention mechanism outputs. This 553 

approach not only enhances model performance in complex visual tasks but also 554 

provides new insights into addressing challenging problems such as fine boundary 555 

recognition and semantic segmentation. 556 

Table 4. Performance comparison with different upsampling modules. 557 

SegFormer-B0 Params FLOPs 
Crack500 CrackSC UAV-Crack500 

mIoU mF1 mIoU mF1 mIoU mF1 

Bilinear-MLP 3.7M 7.9G 81.41 88.89 78.07 86.15 84.18 90.68 

SAPA-MLP 3.8M 8.5G 81.34 88.86 73.90 82.62 83.52 90.23 

DySample-MLP 3.8M 8.0G 81.33 88.84 72.64 81.47 81.16 88.51 

ReSFU-MLP 3.9M 10.0G 81.04 88.63 72.08 80.95 81.93 89.09 

UA (Ours) 7.0M 6.3G 82.05 89.35 78.48 86.48 84.61 90.98 

4.6 Ablation Studies 558 

We conducted ablation studies on the different modules of our approach. Using 559 

SegFormer-B0 as the baseline, we integrated the Upsampling Attention Module (UA) 560 

directly onto the encoder, allowing for direct prediction using the UA module on the 561 

four different levels of feature maps. Furthermore, we experimented with directly 562 

concatenating the four-level feature maps obtained from our Dual-Cross Attention 563 

Module (DCA) and then predicting outcomes through an MLP. The final model 564 

incorporates both the Dual-Cross Attention Module (DCA) and the Upsampling 565 

Attention Module (UA) as parts of the decoder module, which constitutes our proposed 566 

method, DCUFormer. This integration aims to harness the strengths of both modules to 567 

enhance the model's ability to accurately segment and delineate intricate features such 568 

as cracks, especially in challenging environments, thereby significantly improving the 569 

segmentation accuracy and detail capture compared to conventional methods. 570 
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According to the results in Table 5, our model significantly improves segmentation 571 

precision across different backbones (encoders). On the Crack500 dataset, our model 572 

can enhance performance up to 0.70% mIOU and 0.50% mF1; on the CrackSC dataset, 573 

improvements can reach up to 5.13% mIOU and 4.1% mF1; and on the UAV-Crack500 574 

dataset, we observe a maximum increase of 1.01% mIOU and 0.70% mF1. Notably, our 575 

model exhibits the most substantial improvement with the Swin-T encoder for the 576 

CrackSC and UAV-Crack500 datasets, but the least for the Crack500 dataset. This could 577 

be due to the larger proportion of cracks and clearer crack boundaries in the Crack500 578 

dataset, where even other lightweight encoders can perform well in feature extraction. 579 

The CrackSC and UAV-Crack500 datasets, characterized by finer and more blurred 580 

crack boundaries, gain advantages from the hierarchical Transformer structure of 581 

Swin's Windows Multi-Head Self-Attention and Shifted Windows Multi-Head Self-582 

Attention. This architecture improves the identification of crack boundaries and 583 

leverages contextual information to mitigate interference from diverse environmental 584 

factors.  585 

Table 5. Ablation results. 586 

Method Encoder Params FLOPs 
Crack500 CrackSC 

UAV-

Crack500 

mIoU mF1 mIoU mF1 mIoU mF1 

SegFormer MiT-B0 3.7M 7.9G 81.41 88.89 78.07 86.15 84.18 90.68 

UA MiT-B0 7.0M 6.3G 82.05 89.35 78.48 86.48 84.61 90.98 

DCA-MLP MiT-B0 10.9M 7.3G 81.99 89.30 78.50 86.69 84.50 90.91 

DCUFormer  MiT-B0 10.8M 9.2G 82.11 89.39 78.97 86.86 85.19 91.38 

SegFormer LVT 3.6M 6.7G 81.69 89.09 78.01 86.09 83.84 90.44 

UA LVT 7.3M 11.2G 81.89 89.23 79.53 87.30 84.44 90.87 

DCA-MLP LVT 11.7M 11.2G 81.65 89.07 78.01 86.09 84.52 90.97 

DCUFormer  LVT 11.7M 15.9G 82.15 89.42 79.85 87.54 84.92 91.19 

SegFormer Swin-T 28.2M 30.8G 82.06 89.35 75.71 84.19 83.68 90.34 

UA Swin-T 54.2M 44.3G 81.97 89.22 78.26 86.29 85.19 91.38 

DCA-MLP Swin-T 86.0M 52.0G 81.74 89.13 79.51 87.28 84.92 91.20 

DCUFormer  Swin-T 85.5M 62.1G 82.07 89.36 80.84 88.29 85.45 91.55 

LayerCAM, which assigns element-wise weights for generating class activation 587 

maps, was applied to our model for interpretability. Class activation maps of the 588 
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highest-resolution feature maps (E1, F1, D1, U1) in Swin-T-based models were 589 

visualized using images from the Crack500 and CrackSC datasets, as shown in Fig. 10. 590 

E1 F1 D1 U1 or MLP Output 

 

N/A N/A 

  
SegFormer-Swin-T (mIoU: 86.80, mF1: 92.57) 

 

N/A N/A 

  
UA-Swin-T (mIoU: 88.31, mF1: 93.25) 

     
DCA-MLP-Swin-T (mIoU: 89.84, mF1: 94.45) 

     
DCUFormer-Swin-T (mIoU: 90.46, mF1: 94.82) 

(a) Image from the Crack500 dataset 

E1 F1 D1 U1 or MLP Output 

 

N/A N/A 

  
SegFormer-Swin-T (mIoU: 78.40, mF1: 86.31) 

 

N/A N/A 

  
UA-Swin-T (mIoU: 87.68, mF1: 93.00) 

     
DCA-MLP-Swin-T (mIoU: 90.61, mF1: 94.84) 

     
DCUFormer-Swin-T (mIoU: 93.96, mF1: 96.79) 

(b) Images from the CrackSC dataset 

Fig. 10. LayerCAM visualizations of feature maps E1, F1, D1, U1 from the model based 591 
on Swin-T backbone. 592 
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In the original SegFormer-Swin-T model, the highest-layer feature maps exhibit 593 

poor delineation of details. The direct resizing followed by MLP-based segmentation 594 

leads to suboptimal performance in regions influenced by shadows and complex 595 

backgrounds (highlighted in red), causing segmentation discontinuities. The 596 

incorporation of the UA module progressively injects regional semantic information 597 

through localized cross-attention mechanisms, restoring high-resolution detail layer by 598 

layer. This process results in significant detail recovery, improving the overall 599 

delineation of cracks. However, when segmenting cracks affected by shadows or similar 600 

to pavement textures (highlighted in red), the local cross-attention mechanism shows 601 

some limitations, with certain discontinuities persisting despite improvements over the 602 

original model. 603 

To further enhance performance, the DCA module was introduced. After the first 604 

cross-attention mechanism (with E4 as the key and value, and E1 as the query), the 605 

resulting feature map F1 shows enhanced crack perception, with activations more 606 

concentrated around the cracks, thereby eliminating redundant information in lower-607 

level features and preserving semantic information. However, this step alone is 608 

insufficient for precise crack localization due to the lower resolution of the high-level 609 

feature maps. Through the second cross-attention mechanism, with F1 as the query and 610 

E1 as the key and value, the resulting D1 feature map further focuses on the center and 611 

edges of the cracks. This improvement occurs because F1, rich in semantic information, 612 

computes the similarity with E1, which contains detailed spatial information, allowing 613 

E1 to guide F1 in reconstructing or amplifying important details, thereby achieving finer 614 

detail refinement. 615 

It is worth noting that with the combined DCA and UA modules, the model’s first 616 

cross-attention operation in DCA focuses more on the crack boundaries rather than the 617 

center. After the second cross-attention operation, the activations gradually shift 618 

towards the crack center, achieving greater precision. By integrating the UA module, 619 

the model accurately identifies both the crack region and refines the crack edges, 620 
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resulting in a comprehensive process from semantic preservation to detail refinement 621 

and, ultimately, to the delineation of fine details. This improvement allows the model 622 

to overcome environmental interferences such as shadows, ensuring precise crack 623 

segmentation and significantly enhancing performance. 624 

4.7 Computational Efficiency 625 

We utilized the fvcore library (https://github.com/facebookresearch/fvcore) 626 

developed by the Facebook AI Research (FAIR) team to compare the parameters 627 

(Params) and floating-point operations (FLOPs) of our model with those of other state-628 

of-the-art models (Tables 5 and 6) with input size of (3, 512, 512). 629 

As shown in Table 5, although our UA module has the highest number of 630 

parameters, it exhibits the lowest FLOPs. This is due to our use of regional grouped 631 

convolution for regional feature extraction and the implementation of a regional cross-632 

attention mechanism for upsampling. Compared to multi-layer perceptron (MLP) and 633 

other global dynamic upsampling methods, our approach results in lower FLOPs, thus 634 

providing a computational advantage. Furthermore, our UA module outperforms 635 

advanced upsampling operations and traditional bilinear interpolation in terms of 636 

performance. 637 

Table 6 illustrates that, compared to the baseline model, our model shows a 638 

significant increase in both parameters and FLOPs. This is primarily because the DCA 639 

dual cross-attention module substantially increases the FLOPs, while the UA 640 

upsampling attention module significantly adds to the parameter count. However, our 641 

models based on lightweight encoders (such as MiT-B0 and LVT) perform better than 642 

those using the Swin-T middle-weight encoder (e.g., SegFormer, Mask2Former, U-643 

MixFormer). This indicates that our proposed model can effectively leverage features 644 

extracted by lightweight networks to enhance performance without relying on 645 

excessively heavy encoders. 646 

Nevertheless, there is still room for improvement in our model compared to 647 

lightweight models. Future research will focus on simplifying the DCA and UA 648 
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modules by utilizing sparse attention and lightweight convolution, aiming to achieve 649 

true lightweight performance. 650 

Table 6. Efficiency comparison. 651 

 Method Encoder Params FLOPs 
mIoU 

Crack500 CrackSC UAV-Crack500 

L
ig

h
t-

w
ei

g
h

t  

SegFormer MiT-B0 3.7M 7.9G 81.41 78.07 84.18 

U-MixFormer MiT-B0 6.4M 5.2G 81.92 78.97 84.49 

SegFormer LVT 3.6M 6.7G 81.69 78.01 83.84 

U-MixFormer LVT 6.8M 7.8G 82.03 79.24 83.87 

SegNeXt-T MSCAN-T 4.2M 6.3G 81.35 73.35 84.63 

DCUFormer (Ours) MiT-B0 10.8M 9.2G 82.11 78.97 85.19 

DCUFormer (Ours) LVT 11.7M 15.9G 82.15 79.85 84.92 

M
id

d
le

-w
ei

g
h

t  SegFormer Swin-T 28.2M 30.8G 82.06 75.71 83.68 

Mask2Former Swin-T 47.0M 74.0G 79.49 80.15 79.49 

U-MixFormer Swin-T 52.3M 40.2G 82.06 78.85 84.23 

VWFormer Swin-T 35.1M 57.8G 81.99 76.87 84.37 

DCUFormer (Ours) Swin-T 85.5M 62.1G 82.07 80.84 85.45 

5. Conclusion and Future Research 652 

Crack detection is an essential method for maintaining the normal operation and 653 

safety of civil engineering structures. However, current automated detection methods 654 

are significantly influenced by environmental conditions and equipment performance, 655 

and the robustness of these algorithms needs to be enhanced to meet higher standards. 656 

To efficiently utilize encoder feature maps, preserve semantic information, and enhance 657 

image details, we propose a three-step approach: semantic preservation, detail 658 

refinement, and detail delineation. This methodology aims to further improve the 659 

effective identification of cracks and accurate segmentation of boundaries in complex 660 

backgrounds. Consequently, we introduce two novel modules: a Dual-Cross Attention 661 

Module (DCA) and an Upsampling Attention Module (UA). The DCA incorporates 662 

semantic preservation and detail refinement capabilities, functioning as a feature 663 

extraction cross-attention network. It effectively infuses high-level semantic 664 

information into lower-level feature maps, enhancing their semantic understanding, and 665 

integrates lower-level structural and detail information back into the high-level 666 

semantic information, thereby reconstructing or reinforcing the details that might be 667 

lost or blurred due to increased depths of the neural networks. The UA focuses on detail 668 
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delineation, employing a cross-attention mechanism among neighboring pixels for 669 

precise upsampling. This allows the model to learn the information of the upsampled 670 

image through the attention mechanism, making boundary semantics clearer compared 671 

to bilinear interpolation and other dynamic feature upsampling operators. 672 

We evaluated our approach using both lightweight backbones (MIT-B0 and LVT) 673 

and a middle-weight backbone (Swin-T) across three diverse crack datasets: Crack500, 674 

CrackSC, and UAV-Crack500. These datasets encompass various crack formations and 675 

environmental conditions. By comparing our method with the current state-of-the-art 676 

feature extraction and dynamic upsampling algorithms, the results indicate that our 677 

approach achieves state-of-the-art (SOTA) performance. 678 

While this study primarily focuses on pavement crack segmentation, the proposed 679 

method demonstrates broad application potential across various engineering domains. 680 

In manufacturing and construction industries, a wide array of defects—such as surface 681 

scratches and stains in manufactured products, welding cracks and line breaks in 682 

electronic components, and material cracks in steel structures, walls, and road/bridge 683 

surfaces—share common characteristics that pose significant challenges to detection 684 

and segmentation processes. These shared challenges primarily stem from three factors: 685 

(1) the high similarity between defect pixels and background pixels, (2) the variability 686 

introduced by imaging equipment parameters and environmental conditions, and (3) the 687 

diverse and often elongated morphology of defects. Collectively, these factors have 688 

historically impeded the efficacy of existing models in accurately distinguishing 689 

foreground (defect) from background pixels. Our DCA and UA Module could enhance 690 

the model's capacity for information extraction, and facilitate the gradual restoration of 691 

fine crack pixels, respectively. The synergistic operation of these modules significantly 692 

improves segmentation accuracy, thereby advancing the state-of-the-art in defect 693 

detection across multiple engineering applications. 694 

Building upon insights gained from experimentation, future research in crack 695 

detection should address two key challenges: enhancing model generalization and 696 
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optimizing lightweight efficiency. The significant variations observed in crack 697 

morphology and light-shadow conditions across different datasets, stemming from 698 

diverse data collection and processing techniques, underscore the need for more 699 

adaptable algorithms. Developing models capable of handling the even greater 700 

variability of environmental conditions and crack formations in natural settings will be 701 

essential. Simultaneously, despite our current light-weight models outperforming 702 

medium-weight counterparts, further optimization is necessary. Utilizing sparse 703 

attention mechanisms and lightweight convolution operations could achieve true 704 

lightweight efficiency. Such advancements could lead to significant breakthroughs in 705 

crack detection technology, balancing performance and efficiency. 706 
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