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Abstract—Unmanned Aerial Vehicle (UAV)-based pavement 

distress detection offers efficient and safe advantages. However, 

obstructions from road vehicles and the slender shape of cracks 

in UAV images challenge accuracy. To address this, this study 

established specific flight parameters, proposed the Historical 

Best Matching Image (HBMI) approach for data loss due to 

obstructions, and created the UAV-Crack500 dataset with 500 

finely annotated crack images. Three algorithms with different 

loss functions were investigated, finding that the U-Net network 

combined with our Completely Asymmetric Loss (CAL) achieved 

the best performance, resolving the issue of class imbalance. 

Morphological analysis of the semantically segmented images 

provided precise crack morphology features. In complex 

scenarios, errors in features like crack area, length, mean width, 

and maximum width remained within 16%. This study 

establishes a comprehensive UAV-based pavement distress 

detection system, overcoming obstructions for accurate 

assessment. 

 
Index Terms—Pavement distress, Semantic segmentation, Crack 

quantification, Image stitching, Unmanned aerial vehicle (UAV) 

 

I. INTRODUCTION 

IMELY and effective maintenance is a crucial measure 

for preserving the functionality, safety, and durability 

of pavement [1], [2], [3]. Precision maintenance 

decisions rely heavily on regular pavement inspections and 

accurate pavement condition assessments. Traditional 

pavement inspection methods primarily involve manual visual 

surveys and pavement inspection vehicles [4], [5], [6]. Manual 

visual surveys rely on specialized personnel to observe and 

measure pavement distress, recording their condition 

manually. This approach suffers from low efficiency, low 

accuracy, traffic disruption, and safety concerns. Pavement 

inspection vehicles, on the other hand, collect road imagery 

using cameras and then employ manual or machine-based 
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identification methods to detect distress. However, this 

method is costly and lacks automation. In summary, 

traditional inspection methods are ill-suited for large-scale and 

frequent inspections, which are at odds with the requirements 

of pavement maintenance [7], [8], [9]. 

To achieve large-scale lightweight pavement inspections, 

lightweight inspection equipment has been introduced into 

road inspections, such as vehicle-mounted cameras, mobile 

robot [10] and unmanned aerial vehicles [11], [12], [13]. 

Vehicle-mounted cameras conduct road inspections by 

equipping ordinary vehicles with cameras and GPS 

positioning devices. This method imposes relatively low 

demands on vehicles and can collect road image data through 

routine inspections. Subsequently, artificial intelligence 

methods are used for distress detection and localization. 

However, this approach is susceptible to traffic flow and lane 

changes, making it challenging to establish stable inspection 

routes. This results in redundant image data and continuously 

changing perspectives, posing significant difficulties for 

subsequent quantitative defect analysis. The lightweight 

mobile robot system is used for real-time detection of road 

cracks, but when dealing with complex traffic conditions, the 

robot needs enhanced sensing capabilities to ensure detection 

accuracy and operational safety. With the continuous 

improvement of UAV flight control and camera performance, 

UAVs have found widespread applications in industries such 

as agriculture, environmental monitoring, transportation, and 

surveying. Pavement distress detection based on UAVs 

effectively mitigates the influence of traffic on captured 

imagery.  

In contrast to industries like agriculture, environmental 

monitoring, and surveying, pavement distress detection using 

UAVs is susceptible to vehicle obstructions, especially in 

densely trafficked areas, limiting data collection. According to 

literature research, there is currently limited research on UAV-

based pavement distress detection. This is partly due to UAVs 

being an emerging technology and the requirements for safe 

flight altitudes for UAVs. In UAV-captured images, pavement 

cracks typically appear thin and occupy a small proportion of 

the overall image, making them vulnerable to being 

overshadowed by other image details or background noise. 

Pan et al. [14] employed support vector machines, artificial 

neural networks, and random forests to classify and detect 

cracks and potholes in UAV-captured road images, achieving 

an overall accuracy of 98.3%. Ali et al. [15] utilized CNN for 
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crack classification in UAV-captured road images and 

achieved a 92% accuracy through sliding window-based 

localization. Silva et al. [16] developed a pavement 

monitoring system based on UAVs and image processing 

techniques for pothole identification, achieving an accuracy of 

over 95%. Ji et al. [17] performed distress semantic 

segmentation on UAV-captured images using the 

DeepLabv3+ network and quantitatively assessed actual 

pavement conditions based on segmented pixel features. Zhu 

et al. [18] collected a dataset of 300 full-scale images (7952 × 

5304 pixels²) with UAVs and obtained a dataset (UAPD) 

containing 3151 images of size 512× 512 pixels² through 

cropping and annotation. This dataset covers six types of 

distress: transverse crack (TC), longitudinal crack (LC), 

alligator crack (AC), oblique crack (OC), pothole, and repair. 

They tested three classical object detection algorithms (Faster 

R-CNN, YOLOv3, and YOLOv4) and found that YOLOv3 

achieved the best performance (56.6% mean average precision 

(MAP)). Zhong et al. [19] designed the W-segnet network for 

semantic segmentation experiments on the UAPD dataset, 

achieving better performance than semantic segmentation 

models like U-net, SegNet, and PSPNet. Zhang et al. [20] 

incorporated the Multi-level Attention Block (MLAB) into the 

YOLOv3 algorithm, improving its performance in defect 

detection on the UAPD dataset with a 7.66% mAP 

improvement. Hong et al. [21] enhanced the U-Net network by 

adding an improved encoder, a CBAM module, and a strategy 

for fusing long and short skip-connections, achieving precise 

segmentation of small and narrow cracks in UAV images 

compared to U-Net and other traditional networks. Currently, 

the majority of research efforts are predominantly directed 

towards enhancing the accuracy of pavement distress 

recognition, with a specific focus on the identification of 

distress in captured images.  

However, there is a paucity of studies that comprehensively 

investigate the statistical assessment and evaluation of the 

overall pavement distress condition along an entire road 

segment [22]. Image stitching technology allows for the 

creation of panoramic images covering an entire stretch of 

road. However, the presence of moving vehicles introduces 

the issue of ghosting in overlapping regions of stitched 

images. To date, there is a dearth of literature on ghosting 

elimination specifically in the context of pavement distress 

detection. 

Pavement distress detection tasks mainly fall into three 

major categories: distress classification, object detection, and 

semantic segmentation [23]. Classification tasks are relatively 

straightforward, involving algorithms to assess whether an 

image contains distress and, if so, to classify the type of 

distress. Object detection involves identifying distress objects 

within an image and marking them with bounding boxes, 

thereby determining the location and type of distress [24]. 

Semantic segmentation tasks assign a class label to each pixel 

in an image, providing not only distress recognition but also 

accurate delineation of distress contours. Unlike object 

detection, semantic segmentation tasks require pixel-level 

understanding and classification while offering additional 

information, such as crack width, length, and orientation. This 

precise information supports accurate maintenance decision-

making and pavement condition forecasting. However, the 

task of semantic segmentation for cracks presents unique 

challenges compared to other semantic segmentation 

endeavors, primarily because cracks do not exhibit well-

defined boundaries. Furthermore, the relatively minor 

proportion of cracks within the overall imagery leads to lower 

accuracy in semantic segmentation tasks [25]. This 

discrepancy highlights the need for specialized approaches and 

methodologies to enhance the reliability of crack semantic 

segmentation techniques. 

Building on the need to overcome the limitations present in 

current approaches to detecting pavement cracks, this study is 

poised to introduce a series of advancements. The contribution 

of this work can be summarized as follows: 

1) We propose UAV flight parameters tailored to the 

requirements of pavement distress semantic 

segmentation tasks, optimizing the data acquisition 

process for improved segmentation outcomes.  

2) We introduce the Historical Best Matching Image 

(HBMI) approach to effectively handle obstructions 

like vehicles in UAV road detection, improving 

accuracy and reducing the impact of these 

obstructions. 

3) We propose the Completely Asymmetric Loss 

(CAL), addressing the class imbalance issue in UAV 

pavement image crack segmentation, and enhancing 

the crack detection accuracy. 

4) We have developed a complete system that 

encompasses UAV-based parameter setting, 

obstruction-free image processing, and image 

segmentation and quantification, enabling intelligent, 

pixel-level detection across entire road segments for 

unobstructed analysis (Fig. 1). 

The rest of the paper is organized as follows: Section 2 

reviews the methods for crack detection in civil infrastructure, 

imbalanced image segmentation, and image stitching and 

ghosting elimination. In Section 3, UAV flight parameters 

based on crack semantic segmentation tasks was proposed. In 

Section 4, the Historical Best Matching Image (HBMI) 

approach was proposed for image stitching without vehicle 

obstructions. In Section 5, Dataset (UAV-Crack500) was 

established for UAV-based crack semantic segmentation, 

segmentation performance of slender cracks in UAV-captured 

images was enhanced by Completely Asymmetric Loss 

(CAL), and Crack features were extracted and quantified using 

morphological operations. In Section 6, we provided a 

summary of our current research and outlined directions for 

future work. 
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Fig. 1. UAV-Driven Pavement Crack Analysis System 

II. RELATED WORKS 

Based on the issues mentioned in Section I regarding 

existing crack detection methods, this section primarily 

conducts a literature review from three perspectives: the 

challenges and solutions in crack detection within civil 

infrastructure, solutions for class imbalance, and solutions for 

image stitching and ghosting elimination in the context of 

crack detection. 

A. Crack Detection in Civil Infrastructure 

Crack detection plays a crucial role in the maintenance of 

civil infrastructure, including buildings, roads, tunnels, etc. 

[26], often involving three types of construction materials: 

asphalt [27], concrete [28], and metal [29]. Although these 

materials differ in texture and luster, and the causes and 

patterns of cracks vary, there are common challenges in the 

semantic segmentation of cracks, particularly in the case of 

slender cracks [30], [31]: 

1) Topological Complexity: Slender cracks often present 

more complex patterns compared to their shorter, wider 

counterparts. The topology of cracks is intricate, with 

no clear, defined boundaries. Cracks differ in width and 

direction, and may intersect with other pavement 

features, challenging segmentation algorithms to 

accurately trace the entire length of the crack. 

2) Background Noise Diversity: The environments in 

which civil infrastructure crack detection occurs are 

varied, with diverse and complex background noise 

(such as lighting, shadows, stains, etc.). Semantic 

segmentation models may struggle to maintain the 

continuity of long linear features, a problem 

exacerbated in the case of slender cracks where 

detection breaks can occur due to variations in lighting, 

shadows, and stains. 

3) Class Imbalance: Class imbalance is an issue when the 

dataset contains significantly more instances of one 

category (e.g., non-cracked surfaces) over another (e.g., 

slender cracks). This imbalance can cause biases in 

machine learning models, making them more effective 

at identifying the majority class and less so at detecting 

the minority class, in this case, slender cracks. 

To address the complexity of crack topology and the 

diversity of background noise, solutions can primarily be 

approached from two angles: 

1) Multi-scale Features/Models Fusion and Global 

Attention Mechanisms: Multi-scale features fusion can 

improve the model's accuracy in segmenting cracks of 

different scales, while global attention mechanisms can 

endow the model with a comprehensive perspective, 

reducing the impact of noise on segmentation results 

[32]. Furthermore, the ensemble of different 

segmentation models can leverage the strengths of 

various models to improve crack segmentation 

performance [33]. 

2) Data Augmentation: The performance of models can 

be enhanced through training with a large variety of 

images featuring different crack shapes and 

backgrounds. Data augmentation mainly involves 

increasing the quantity of original data and employing 

data enhancement methods to expand the dataset. 

The issue of class imbalance will be discussed in detail in 

Section B, along with strategies for image stitching and the 

removal of ghosting effects, which are crucial for enhancing 

the reliability and accuracy of crack detection in civil 

infrastructure. 

B. Imbalanced Image Segmentation 

Deep learning algorithms perform data-driven feature 

learning in an end-to-end manner, leading to remarkable 

advancements in the field of image segmentation. Presently, a 

plethora of classical semantic segmentation models, including 

but not limited to FCN (Fully Convolutional Network) [34], 

U-Net [35], DeepLab [36], and PSPNet [37], have achieved 

impressive results in a wide range of image segmentation 

tasks. These models not only exhibit outstanding performance 

but also provide effective means to deeply comprehend and 

process semantic information within images. 

In convolutional neural networks (CNNs), learning abstract 

feature representations through successive convolution and 

pooling operations has become a predominant approach in 

image processing. Nevertheless, the continuous application of 

these operations can result in a decrease in feature resolution, 
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leading to suboptimal performance in tasks involving dense 

predictions for small objects or object edges. Furthermore, the 

uneven distribution of pixel quantities among different classes 

in images can cause models to exhibit a bias towards 

predicting the majority class while neglecting minority 

classes, thereby impacting prediction accuracy.  

To address these issues, researchers have made 

enhancements to classical semantic segmentation networks, 

including: 

1) Data Augmentation: For minority classes, data 

augmentation techniques are employed to increase 

sample quantity through data transformations. This aids 

in improving the ability of model to learn from minority 

classes [38]. 

2) Patch-Based Approaches: These methods divide the 

image into smaller patches to allow the model to focus 

more on local regions, thus mitigating the impact of class 

imbalance issues and enhancing model performance 

[39]. Furthermore, Performance in semantic 

segmentation can be improved by initially conducting 

object detection to extract target regions, followed by 

applying semantic segmentation specifically to these 

identified areas. This approach leverages the precision of 

targeted detection to refine the subsequent segmentation 

process [40]. 

3) Loss Function Improvements: Specialized loss 

functions designed to handle class imbalance scenarios 

have been devised, such as Weighted Cross-Entropy 

Loss [41], Dice loss [42], Focal loss [43], and others. 

These loss functions assist the model in better handling 

imbalanced class data. 

4) Algorithmic Architecture Enhancements: Techniques 

such as attention mechanisms and balanced sampling 

have been utilized to ensure appropriate attention to each 

class [44], [45]. 

In current research on semantic segmentation of UAV 

images, it is common for researchers to employ the patch 

approach, where the entire image is segmented into smaller 

patches. This not only conserves training resources but also 

alleviates the issue of sample imbalance through patch 

selection. This approach has emerged as an effective strategy 

for addressing small target detection and class imbalance 

issues. However, research focused on improving the accuracy 

of UAV road image crack segmentation through loss functions 

remains limited. This paper employs both patch-based 

techniques and loss function improvements to enhance the 

accuracy of pavement crack semantic segmentation. 

C. Image Stitching and Ghosting Elimination 

UAV-captured images are constrained by their capture 

range, resulting in incomplete coverage of the area. 

Consequently, comprehensive road condition assessment 

cannot be solely reliant on individual images. To address this 

challenge, the typical approach for UAV aerial images 

involves image stitching to present a holistic road landscape. 

The process of image stitching generally comprises a series of 

operations, including image registration, reprojection, 

stitching, and blending [46]. However, owing to the presence 

of dynamic elements such as moving vehicles in road images 

captured by UAVs, these elements can introduce issues, 

notably the occurrence of artifacts commonly referred to as 

ghosting. 

Currently, in the field of image stitching, three predominant 

methodologies are employed to mitigate these issues: 

1) Seam-Driven Method: This approach involves the 

detection of dynamic objects, the identification of 

optimal segmentation and stitching paths, and 

subsequent fusion of segmented images to eliminate 

ghosting artifacts. For example, Davis et al. [47] analyze 

intensity differences in images to locate segmentation 

lines with low intensity disparities for seamless 

transitions. Google Maps [48], on the other hand, utilizes 

an energy function to determine the optimal 

segmentation path and replaces pixels containing moving 

objects with corresponding pixels from another image, 

thus minimizing ghosting effects. 

2) Pixel Replacement Method: This method detects 

dynamic objects and utilizes two-dimensional masks to 

replace pixels in one image with corresponding pixels 

from another image to eliminate redundant dynamic 

objects before image stitching. For instance, Murodjon et 

al. [49] detect moving objects by comparing absolute 

differences in overlapping regions of two stitched 

images and employ a two-dimensional mask-based 

approach for pixel replacement. Xue et al. [50] achieve 

ghosting object elimination through recognition of these 

artifacts and selection of image information sources 

based on predetermined rules. 

3) Deep Learning Method: This approach employs deep 

learning techniques for the detection, removal, and 

content inpainting of objects in images. Among these 

techniques, Generative Adversarial Networks (GANs) 

are frequently utilized. The process involves creating 

unobstructed images using a generator within a 

pretrained GAN network, followed by enhancing the 

generator's capability to remove obstructions through 

adversarial learning with a discriminator [51], [52], [53]. 

Unlike the pixel replacement and seam-driven methods, 

which derive image pixels from real-world scenes, the 

images generated through deep learning are determined 

by the pixels surrounding the occluded area and the 

network's prior knowledge. Therefore, while this method 

effectively addresses image occlusions, the generated 

images may not accurately reflect the true pixels of the 

original occluded area, making it less suitable for 

applications such as crack detection in occluded regions. 

In addition, Zhang et al. [54] have addressed the issue by 

employing a semantic segmentation algorithm to separate 

foreground and background images. They subsequently 

eliminate feature matching points in the foreground images 

and perform feature matching on the background images to 

achieve successful stitching of the background. However, it's 

important to note that ghosting artifacts may still persist in the 

foreground images. 

It is noteworthy that there is currently a limited body of 

literature specifically addressing ghosting elimination in the 
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context of pavement distress detection. This poses a 

considerable challenge for assessing the overall road condition 

through UAV aerial surveys. Furthermore, in areas with 

substantial vehicular traffic, even after applying ghosting 

elimination procedures, complete elimination of vehicle 

obstructions on the road may not be achievable. This, in turn, 

can potentially impact the accurate evaluation of pavement 

conditions. Currently, there is a dearth of literature addressing 

such challenges. However, drawing inspiration from the Pixel 

Replacement Method, this paper introduces a historical image-

based pixel replacement method in Section 4. 

III. UAV PARAMETER SETTING 

In order to acquire an adequate volume of road imagery data at 

a sufficiently high resolution, it is imperative to initially configure 

the flight parameters of the UAV. This entails establishing 

parameters such as flight altitude, image resolution, flight speed, 

and route planning, among others. 

A. UAV Platform and Camera 

The research employs the DJI M300 RTK, a recently 

introduced professional-grade unmanned aerial vehicle. This 

UAV boasts advanced features such as high-performance flight 

control, centimeter-level precision positioning, dual-battery 

endurance, IP45 high protection rating, substantial payload 

capacity, and heightened safety capabilities. Presently, it finds 

widespread applications in various domains, including 

construction, surveying, security monitoring, and emergency 

response. 

The camera employed in this study is the Zenmuse H20N, an 

all-weather hybrid sensor payload that integrates dual thermal 

imaging cameras, wide-angle camera, zoom camera, and a laser 

rangefinder sensor. It incorporates state-of-the-art neural network-

based noise reduction algorithms to overcome challenges in low-

light conditions, ensuring robust focusing for clear and bright 

imagery. The visible light zoom camera boasts a 4-megapixel 

resolution and supports a 20x hybrid optical zoom. Leveraging 

the DJI M300 RTK platform and the Zenmuse H20N camera 

enables stable high-altitude flight and facilitates high-precision 

image acquisition. Additionally, the zoom camera allows for 

localized magnification, achieving pixel-level resolution for 

pavement distress analysis. 

B. Flight Altitude 

Upon selecting the camera and aerial platform, the 

determination of flight altitude is primarily influenced by three 

critical factors: safety considerations, image resolution, and 

coverage area. 

1) Safety Considerations: In urban areas, dense high-rises 

and electromagnetic sources (i.e., urban buildings and cell 

towers) disrupt both GPS signals for UAV navigation and 

communication between UAVs and remote controllers. 

Higher flight altitudes reduce these urban interferences, 

enhancing UAV control and safety [55]. 

2) Image Resolution: Lower flight altitudes yield higher 

image resolutions. Furthermore, the use of zoom lenses 

allows achieving high resolutions even at moderate flight 

altitudes. 

3)  Coverage Area: To minimize the need for multiple aerial 

passes, it is desirable to cover a larger area of the road. 

However, it's essential to note that as the coverage area 

increases, the image resolution decreases due to the fixed 

size of the camera photosensitive components. 

Considering that urban roadside mobile communication towers 

typically fall within the range of 30-50 meters in height, with 

altitudes exceeding 50 meters not causing disruptions to drivers 

and being higher than typical roadside infrastructure and 

residential buildings, a flight altitude greater than or equal to 50 

meters was selected for this study. 

The Zenmuse H20N zoom camera features a standard image 

sensor size of 1/1.8 inches. By determining the coverage width 

and flight altitude, optical zoom is employed to maximize image 

resolution. In practical testing, it was observed that at a flight 

altitude of 50 meters, 4X optical zoom adequately covers a single 

three-lane direction. 

With a chosen flight altitude of 50 meters, a 4X optical zoom 

with a focal length of 24 mm, and an image sensor size of 7.75 

mm × 4.36 mm (16:9), the captured image dimensions are 2688 

pixels × 1512 pixels (Fig. 2 (a)). This allows for the calculation of 

the actual image coverage area and the real-world dimensions 

represented by each pixel using optical principles (1). 

 𝑠𝑐𝑎𝑙𝑒 =  𝑓𝐻  =  𝑆𝑤𝐺𝑤  (1) 

Where f is focal length of the camera; H is the flying height 

above ground level; Sw is the sensor width of the camera; Gw is 

the image footprint on the ground. 

Based on the derived formula, the real image dimensions are 

determined to be 16 m × 9 m, with an approximate individual 

pixel size of 6 mm × 6 mm. 

  

(a) Flight altitude and capturing range (b) Flight speed and overlapping area 
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Fig. 2. UAV flight parameters 

 
Fig. 3. Route planning, and ghosting artifacts in stitching via DJI Terra software. 

 

C. Flight Speed 

Flight speed primarily considers flight efficiency and photo 

overlap. To enhance the quality of subsequent image stitching, it 

is recommended that the overlap between stitched images falls 

within the range of 20% to 50%. Based on the capture frequency 

(2 seconds per image) and the image width (9 meters), a flight 

speed of 2.5 m/s is set, resulting in an approximate along-track 

photo overlap rate of 35% (Fig. 2 (b)). 

D. Route Planning 

Utilizing the waypoint flight functionality of the DJI M300 

RTK, flight waypoints are pre-set on the map. This study focuses 

on collecting single-directional lane images, and thus, waypoints 

are positioned along the centerline of the single-directional lane. 

Upon UAV activation, it autonomously cruises along the 

designated flight path, and upon mission completion, it returns 

automatically. The flight route is configured for both up and 

down lane traversal, capturing data from both directions, ensuring 

comprehensive coverage of both lanes (Fig. 3). 

To document the capture range and image quality, DJI Terra is 

employed for the stitching of visible light images, which are then 

overlaid onto a map. This visualization effectively depicts the 

flight path and the collected data (Fig. 3). DJI Terra is a 

professional ground modeling software developed by DJI, 

designed for efficient, precise modeling, mapping, and analysis 

tasks. However, when applied to road scenarios, the dynamic 

nature of road vehicles can pose challenges. Issues such as 

modeling failures and ghosting were encountered during the road 

image stitching process, as evidenced in the 2D Map and 3D 

Model of Fig. 3. These 3D models were generated using DJI 

Terra's 3D photogrammetric reconstruction technology, which 

converts 2D images into three-dimensional representations using 

advanced photogrammetry techniques [56]. Consequently, for 

pavement inspection, the presence of vehicle occlusion and 

modeling artifacts may potentially impact distress detection. The 

following section will progressively address these issues of 

vehicle occlusion and stitching artifacts to achieve comprehensive 

pavement distress detection via UAV-based methods. 

IV. PAVEMENT IMAGE STITCHING WITHOUT OCCLUSION 

Common UAV image stitching primarily relies on algorithms 

that detect keypoint features in registered images (Fig. 4 (a)), 

compute invariant feature descriptors, and subsequently employ 

these invariant feature descriptors for image matching (Fig. 4 (b)). 

This approach is commonly and effectively employed when 

capturing static structures and environments. However, in the 

context of acquiring UAV-based pavement images, inevitable 

occlusion by road vehicles leads to the loss of pavement pixels. 

Additionally, due to the dynamic nature of moving vehicles, 

attempts to stitch pavement images can result in stitching failures 

or the creation of discontinuous artifacts (ghosting) (as depicted in 

Fig. 4 (c). This is due to the introduction of inconsistent features 

or changes in perspective by moving objects, rendering accurate 

alignment and stitching of image features challenging. 

 

   

(a) Features detecting (b) Features matching (c) Image distorting and stitching 

Fig. 4. Common method for image stitching 

 

Considering the challenges, this paper introduces the 

Historical Best Matching Image (HBMI) approach. Its 

objective is to extract the historically best-matching region of the 

obscured road surface and fuse it with the current image to 
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generate an unobstructed, true-to-life panoramic view of the road. 

The specific steps are outlined as follows (Fig. 5): 

1) Image capturing (Fig. 5 (a)): Leveraging the UAV flight 

parameters from Section 3, pavement imagery is acquired, 

generating a sequence of road images with continuous 

overlapping region. 

2) Detection and location (Fig. 5 (b)): Utilizing an object 

detection algorithm (in this study, YOLO v5), road vehicles 

are detected, and their geographical coordinates are mapped 

to determine vehicle locations, defining Regions of Interest 

(ROIs) for each image. 

3) Best match for historical captured image (Fig. 5 (c)): 

Based on the ROI locations, the corresponding best-

matching historical images are identified in the image 

repository. The best matching criteria are as follows:  

a) No occluding detection boxes (vehicles) in the 

historical image. 

b) The center of the image is within a specified distance of 

the ROI center, ensuring minimal distortion within the 

ROI. 

c) The historical image capture time is closest to the 

current image's, preserving the pavement state as closely 

as possible. 

4) Feature matching and distortion correction (Fig. 5 (d)): 

The historical image that best matches the obstructed photo 

is identified using the best-matching criteria. Keypoint 

detection and feature matching are performed between this 

historical best-matching image and the obstructed image. 

Based on the feature matching results, a projection and 

mapping transformation is applied to the historical best-

matching image to align it with the obstructed image. 

5) Region of Interest (ROI) extraction (Fig. 5 (e)): Using the 

ROI bounding box coordinates, the target area is extracted 

from the image after the projection mapping transformation. 

6) Pavement Segmentation (Fig. 5 (f)): To enhance the 

stitching quality, it is crucial to maintain consistent color 

tones between the stitched image and the obstructed image. 

As the previous step extracts pavement pixels, achieving 

color tone consistency with pavement of the obstructed 

image requires segmentation. Utilizing a semantic 

segmentation algorithm (in this study, DeepLabv3), asphalt 

pavement pixels within the image are segmented. 

7) Color Tone Consistency Transformation (Fig. 5 (g)): 

The images of the target area (ROI) extracted in Step 5 are 

subjected to color correction to match the color tone 

distribution of the segmented pavement in Step 6 

(histogram matching method is employed in this study). 

Histogram matching alters the histogram of an image, 

changing the grayscale of individual pixels, enhancing local 

contrast without affecting global contrast. This method is 

particularly useful for images where both the background 

and foreground are too bright or too dark. As shown in Fig. 

5 (g), the color tone distribution of the target area after 

histogram matching (ROI-HM) aligns with that of the 

pavement. 

8) Image Overlay (Fig. 5 (h)): The color-adjusted image ROI-

HM from Step 7 is directly placed over target location of 

the obstructed image, achieving image fusion. 

9) Features Matching and Distortion (Fig. 5 (i)): By 

repeating Steps (2)-(8), pavement pixels with vehicle 

occlusion in the UAV capture sequence are fused, and 

traditional keypoint detection and matching of the image 

sequence are performed. Subsequently, based on the 

matched features, a projection mapping transformation is 

applied. 

10) Image Stitching (Fig. 5 (i)): After obtaining all the images 

transformed through projection mapping, these images are 

stitched together. In this study, the MultiBand Blender 

method is used, which is proposed by Matthew Brown and 

David G. Lowe [57]. It can decompose different frequency 

bands (high-frequency and low-frequency components) and 

blends each band individually. High-frequency components 

refer to areas of rapid intensity (brightness/gray scale) 

change, like edges or contours in an image. Low-frequency 

components, on the other hand, indicate areas where the 

intensity changes more gradually, typically found in larger 

uniform color blocks. This distinction is crucial in blending 

UAV-captured images to create seamless mosaics, 

efficiently handling overlapping and alignment challenges 

in aerial imagery. 

Considering the gradual yet potentially rapid progression of 

pavement crack development, we recommend reducing UAV 

inspection intervals for areas with poor pavement conditions. This 

strategy aims to minimize discrepancies between historical and 

current data, ensuring timely maintenance interventions. 

Furthermore, where feasible in terms of time and budget, 

performing multiple data collections over consecutive days on the 

same road segment can effectively address crack development. 

This frequent monitoring enables a more comprehensive and 

detailed understanding of crack progression. 

To further contrast the differences between our method and 

traditional approaches, this paper conducted ablation experiments 

comparing the presence or absence of historical best matching 

images with projection mapping and the consistency 

transformation of color tones within ROIs. While the use of 

histogram matching aligned the color tones with the background 

image, it resulted in some offset in pavement distress due to the 

absence of feature matching and mapping with the original 

image, as depicted in Fig. 6 (a). After employing feature matching 

and mapping, road distress in the image became aligned, meaning 

spatial pixels corresponded correctly. However, noticeable 

differences in color tones between the foreground image (ROI) 

and the background image were observed, which may introduce 

interference during the subsequent pavement distress recognition 

process, as shown in Fig. 6 (b). Finally, with the use of projection 

mapping and histogram matching, the foreground integrated well 

with the background, and pixel alignment was achieved, 

significantly restoring the original pavement condition, as 

illustrated in Fig. 6 (c). 

In Fig. 6 (c), it can be observed that, even with the combination 

of histogram matching and projection mapping, there are still 

some differences in color tones at the edge. This is because 

during histogram matching, pavement pixel selection 

encompasses the entire image, and the grayscale distribution of 

the entire pavement pixels can be influenced by some pixels (e.g., 
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patch-like repairs). Therefore, if further improvement in the 

fusion of edge pixels is desired, a region-based pixel color tone 

consistency approach can be employed. This involves extracting 

road surface pixels within a certain range from the region of 

interest (ROI) and then performing histogram matching with the 

segmented ROI image. However, it's important to note that this 

does not affect road distress detection. Once the model is trained, 

it will not erroneously detect the stitching traces during pavement 

distress detection. 

 

 

Fig. 5. Historical best matching image (HBMI) approach 
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(a) With histogram matching and without projection mapping 

 

 
(b) With projection mapping and without histogram matching 

 

 
(c) With histogram matching and projection mapping 

 

Fig. 6. Ablation study of histogram matching and projection 

mapping 

V. CRACK SEMANTIC SEGMENTATION AND QUANTIFICATION 

UAV-based pavement distress semantic segmentation 

encounters two primary challenges: 

1) Annotation Difficulty: Current vehicle-mounted cameras 

provide high pixel accuracy, with resolutions typically 

reaching 1 mm × 1 mm per pixel. In contrast, in images 

captured by UAVs, each pixel represents a larger real-world 

size, posing challenges for pixel-level annotations due to the 

relatively small dimensions of cracks. 

2) Segmentation Challenge: The larger pixel sizes in UAV 

images, combined with the slender characteristics of cracks, 

result in a minor proportion of the image being occupied by 

these distress features. Consequently, class imbalance issues 

arise during semantic segmentation. When training 

algorithms directly on UAV photos, it is difficult to 

accurately identify cracks, occasionally predicting entirely 

black segments (representing the background). 

To address the annotation difficulty, this study meticulously 

configured the UAV flight path and zoom settings. Specifically, 

the UAV captured images separately for the up and down lanes 

while employing a 4X optical zoom, achieving a pixel accuracy 

of approximately 6 mm × 6 mm. This configuration facilitated the 

acquisition of crack pixels with enhanced precision. Furthermore, 

future enhancements in camera precision and photosensitive 

component sizes hold the potential to meet pixel-level detection 

requirements akin to those of vehicle-mounted cameras. To 

confront the segmentation challenge, this paper introduced image 

partitioning and integrated novel loss functions, resulting in a 

notable enhancement in semantic segmentation accuracy. 

A. Data Preprocessing 

The inherent imbalance in pixel distribution can introduce a 

bias in models, causing them to predominantly predict 

background areas while potentially neglecting regions of interest, 

thus compromising overall model performance. As illustrated in 

the 2688×1512 UAV-captured image (Fig. 7), cracks constitute a 

relatively small fraction, accounting for just 0.52% of total pixels. 

Notably, during testing, direct training on the original image 

consistently resulted in predictions classifying the entire image as 

background, effectively rendering it entirely black. 

 
Fig. 7. Full image and ground truth 

 

 

 
Fig. 8. Distracting scene image blocks 

To address this challenge, this study adopted a segmentation 

strategy that involved partitioning the original image into 16 

blocks (each measuring 672×378 pixels) and excluding blocks 

devoid of cracks. We primarily utilized EISeg for annotation, 

following a two-step approach. Initially, multiple individuals 

performed coarse crack annotations. Given the inherent 

variability in individual markings, these annotated JSON files 

(containing segmented area points) and images were 

subsequently sent to road maintenance experts for refined 

adjustments in the interactive EISeg interface. Subsequently, 500 

representative crack images were subjected to meticulous fine-

grained semantic annotation (named as UAV-Crack500). These 

images were then distributed into distinct sets: 250 images for 

training, 50 for validation, and 200 for testing. It is worth 

highlighting that the image selection process deliberately 

incorporated scenarios with potential sources of disturbance, such 

as the presence of road markings, shadows, curbstones, trees, and 

road dividers (Fig. 8). 
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B. Loss Function for Imbalanced Data 

In the context of binary classification tasks, the prevailing loss 

function is Binary Cross-Entropy Loss (BCE), which is 

mathematically represented as follows (2): 

 𝐿𝐵𝐶𝐸 = −((𝑦 × 𝑙𝑜𝑔𝑦’) + (1 − 𝑦) × log(1 − 𝑦’)) (2) 

Where y denotes the actual ground truth, while y’ signifies the 
predicted value. 

However, the utility of Cross-Entropy loss functions primarily 

hinges on their capacity to minimize pixel-level discrepancies, 

treating each pixel with equal weight during loss calculation. 

When confronted with class imbalance, these functions tend to 

disproportionately favor pixels belonging to the majority class, 

resulting in a diminished capacity to delineate the minority class 

effectively. 

Focal Loss emerges as a purpose-built solution designed to 

address the intricacies of class imbalance. It achieves this by 

downweighting easily classified samples, thereby shifting the 

focus toward samples that pose greater classification challenges. 

The formula defining Focal Loss is as follows (3): 

 𝐿𝐹 = −𝛼𝑡(1 − 𝑦’)𝛾(𝑦 × 𝑙𝑜𝑔𝑦’) (3) 

Where 𝛼𝑡 represents a balancing factor strategically employed 

to modulate the weighting of samples, distinguishing between 

those readily classified and those requiring greater scrutiny. In 

this paper, we experimented with different balancing factors 𝛼𝑡 

for foreground and background elements, setting the weight 

factor for foreground elements at 0.50 and 0.75. A factor of 0.50 

indicates equal weights for foreground and background, while 

0.75 increases the weight factor for the foreground elements. The 

factor γ exerts control over the extent of adjustment applied to 
sample weights. 

Focal Loss, with its specialized design, sharpens the 

discernment of arduously classified samples, serving as an 

effective tool for mitigating class imbalance issues. Nevertheless, 

it imparts uniform parameters across all classes, which can 

suppress the contribution of rare classes and may not always 

outperform Binary Cross-Entropy Loss in practical applications. 

Dice loss is employed to assess the similarity between the 

segmentation masks generated by the model and the actual 

ground truth masks. Unlike the traditional cross-entropy loss, 

which processes the predictive probability of each pixel or class 

individually, Dice loss optimizes the model by evaluating the 

spatial overlap between classes. This approach inherently 

mitigates the model bias caused by class imbalance, focusing on 

the holistic agreement between predicted and true segmentation 

areas rather than individual pixel accuracy. The formula defining 

Dice Loss is as follows (4): 

 𝐿𝐷𝑖𝑐𝑒 = 1 − 2𝑇𝑃2𝑇𝑃+𝐹𝑁+𝐹𝑃 (4) 

Where TP represents True Positives, TN represents True 

Negatives, FP represents False Positives, and FN represents False 

Negatives. 

This study introduces a novel Completely Asymmetric Loss 

(CAL), built upon the foundation of the Asymmetric Unified 

Focal Loss [58]. The formula is as follows (5): 

 𝐿𝐶  =  𝜆𝐿𝑏 + (1 − 𝜆)𝐿𝑓  (5) 

Where, 

 𝐿𝑓  = （1 − 𝑇𝑃𝑇𝑃+𝛿𝐹𝑁+(1−𝛿)𝐹𝑃）1−𝛾
 (6) 

 𝐿𝑏  =  −(1 − 𝑙𝑜𝑔𝑦’𝑏)𝛾(𝑦𝑏 × 𝑙𝑜𝑔𝑦’𝑏) (7) 𝐿𝑓  represents the loss function for foreground (positive) 

samples, while 𝐿𝑏  signifies the loss function for background 

(negative) samples. λ is used to balance the weights of positive 

and negative samples in the loss function. In this paper, by 

controlling δ and γ, the background elements have been 
suppressed and the foreground elements have been enhanced, 

thus λ is set to 0.5, which means that the weights for both the 

positive and negative samples are equal. The parameter δ is 
employed to control the relative weight between positive and 

negative samples. When δ > 0.5, it indicates that the loss function 
is assigning a greater relative weight to false negatives (FN), 

which are actual positive samples that were incorrectly predicted 

as negative. This can lead to a higher penalty for misclassifying 

positive samples, effectively encouraging the model to be more 

sensitive to the detection of foreground elements. Therefore, in 

this paper, δ is set to 0.6. Additionally, the loss for rare classes is 

amplified through the exponent (1-γ). 𝑦’𝑏  denotes the predicted 

value for the background, and 𝑦𝑏  corresponds to the actual 

background label. The loss for the background is suppressed by 

the exponent γ. Additionally, γ also relatively enhances the 
weight of the difficult-to-classify samples within the background. 

This approach is designed to address class imbalance issues by 

allowing for asymmetric treatment of positive and negative 

classes, tailored to the specific needs of the problem. It is 

noteworthy that γ can suppress the overall background loss while 
enhancing the weight of difficult-to-classify samples within the 

background; when 0<γ<1, (1-γ) enhances the overall foreground 
loss, but increases the weight for easy-to-classify samples even 

more. Therefore, the following text selects different values of γ 
for hyperparameter tuning (γ=0.2, 0.4, 0.6, 0.8). 

C. Crack Semantic Segmentation 

This study employed three widely recognized and effective 

semantic segmentation algorithms, namely U-Net, PSPNet, and 

DeepLabv3+, as benchmark algorithms for semantic 

segmentation of UAV images. The U-Net architecture consists of 

an encoder and a decoder, forming a "U"-shaped network 

structure. The encoder is responsible for capturing contextual 

information and extracting features, while the decoder restores the 

size and generates segmentation masks through upsampling. 

PSPNet leverages pyramid pooling to extract and fuse contextual 

information at different scales, and it achieves semantic feature 

extraction for objects of various sizes through multiscale feature 

fusion. DeepLabv3+ also adopts an encoder-decoder structure. In 

the encoder part, it combines dilated convolution and global 

average pooling techniques to extract and fuse multiscale 

features. The decoder part utilizes bilinear interpolation for 

upsampling, producing semantic segmentation results with image 

resolution. 

This study employed Accuracy, Precision, Recall, F1-score, 

and Intersection over Union (IoU) as evaluation metrics, 

calculated using the (8)-(12): 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 (8) 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃+𝐹𝑃 (9) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃+𝐹𝑁 (10) 

 𝐹1 = 2 ∙  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 (11) 

 𝐼𝑜𝑈 =  𝑇𝑃𝑇𝑃+ 𝐹𝑃+ 𝐹𝑁 (12) 

In this study, we leveraged the publicly accessible model zoo, 

Segmentron [59], hosted on GitHub, as our experimental 

platform. Additionally, we customized the loss function and 

applied color jitter augmentation with parameters set to 

brightness=0.1, contrast=0.1, saturation=0.1, and hue=0.1, to 

increase image diversity and thereby improve the model's 

performance. Similar to many studies in crack segmentation [33], 

[60], [61], this research employs a 1-pixel tolerance margin to 

mitigate the substantial label noise present in crack dataset 

images. This noise primarily arises from variations in human 

annotator judgments, human errors, or inaccuracies from 

computer-generated labels. By implementing this tolerance, the 

study permits slight discrepancies between the model’s 
predictions and the ground truth, ensuring that these minor 

deviations do not negatively impact the assessment of the model's 

performance. This approach effectively acknowledges and makes 

allowances for the natural inconsistencies found in crack 

annotations. The data presented in the table clearly indicates that 

Focal Loss demonstrates limited effectiveness in the recognition 

of UAV imagery, and in some cases, may even produce 

detrimental outcomes. This phenomenon is largely ascribed to 

Focal Loss's concurrent suppression of both infrequent and 

background samples. Conversely, models employing Dice Loss 

observed a substantial enhancement in performance. However, 

the combination of Dice and Focal Loss did not yield further 

improvements in model efficacy. Our proposed Completely 

Asymmetric Loss, in comparison to Dice Loss, achieves an 

improvement in the F1-score ranging from 0.1% to 0.7%. 

Moreover, with parameters set to λ=0.5, δ=0.6, and γ=0.2, our 
model secures a more favorable outcome in terms of the F1-score. 

This underscores the value of an asymmetric approach in 

enhancing the prediction of rare samples. During the comparative 

analysis of different algorithms, it was noted that U-Net exhibited 

the best predictive performance. This observation can be 

attributed to the fact that the focus of this study was on the 

detection of narrow and slender cracks. Expanding the field of 

view and extracting features of varying sizes did not contribute 

significantly to the semantic understanding of these features; 

instead, it might introduce noise and interference. 

TABLE I 

THE PERFORMANCE OF MODELS ON THE TEST SET OF UAV-CRACK500 (%) 

Model Loss Acc Pr Re F1 mIoU Crack IoU 

U-Net 

BCE 98.38 96.57 19.82 32.88 70.21 42.03 

Focal (α=0.50, γ=2) 98.42 94.83 22.79 36.75 69.15 40.09 

Focal (α=0.75, γ=2) 98.22 98.17 9.78 17.79 70.03 41.85 

Dice 98.76 74.19 69.60 71.82 76.92 55.18 

Dice+Focal (α=0.50, γ=2) 98.91 84.36 60.86 70.71 76.03 53.45 

Dice+Focal (α=0.75, γ=2) 98.89 81.42 64.07 71.71 75.88 53.21 

CAL (λ=0.5, δ=0.6, γ=0.2) 98.88 80.11 65.47 72.05 75.90 53.27 

CAL (λ=0.5, δ=0.6, γ=0.4) 98.83 85.38 54.33 66.40 75.02 51.39 

CAL (λ=0.5, δ=0.6, γ=0.6) 98.91 84.74 60.61 70.67 75.95 53.24 

CAL (λ=0.5, δ=0.6, γ=0.8) 98.85 88.16 52.45 65.77 75.12 51.58 

PSPNet 

BCE 98.28 87.38 16.84 28.23 68.47 38.95 

Focal (α=0.50, γ=2) 98.18 89.18 9.46 17.10 68.35 38.70 

Focal (α=0.75, γ=2) 98.35 81.24 25.13 38.38 68.06 38.40 

Dice 98.46 66.98 61.82 64.30 71.73 45.38 

Dice+Focal (α=0.50, γ=2) 98.50 72.19 49.41 58.67 71.01 43.96 

Dice+Focal (α=0.75, γ=2) 98.46 70.32 50.09 58.50 71.02 44.00 

CAL (λ=0.5, δ=0.6, γ=0.2) 98.45 66.04 63.96 64.98 72.66 47.16 

CAL (λ=0.5, δ=0.6, γ=0.4) 98.43 76.84 35.66 48.71 68.99 40.07 

CAL (λ=0.5, δ=0.6, γ=0.6) 98.40 79.61 30.12 43.70 68.87 39.90 

CAL (λ=0.5, δ=0.6, γ=0.8) 98.33 82.96 22.27 35.12 68.73 39.50 

DeepLabv3+ 

BCE 98.13 86.54 6.44 12.00 62.20 26.29 

Focal (α=0.50, γ=2) 98.14 95.61 5.85 11.02 64.19 30.34 

Focal (α=0.75, γ=2) 98.24 91.36 12.79 22.44 68.24 38.50 

Dice 98.50 68.64 58.88 63.38 72.36 46.33 

Dice+Focal (α=0.50, γ=2) 98.63 77.24 51.41 61.73 72.53 46.66 

Dice+Focal (α=0.75, γ=2) 98.65 80.22 48.68 60.59 72.39 46.28 

CAL (λ=0.5, δ=0.6, γ=0.2) 98.65 76.50 54.27 63.49 72.70 47.02 

CAL (λ=0.5, δ=0.6, γ=0.4) 98.67 77.60 53.69 63.47 72.78 47.17 

CAL (λ=0.5, δ=0.6, γ=0.6) 98.69 80.99 50.90 62.51 72.84 47.21 

CAL (λ=0.5, δ=0.6, γ=0.8) 98.59 78.91 45.94 58.07 71.35 44.33 
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U-Net 

      
BCE Focal (α=0.50, γ=2) 

      
Focal (α=0.75, γ=2) Dice 

      
Dice + Focal (α=0.50, γ=2) Dice + Focal (α=0.75, γ=2) 

      
CAL (λ=0.5, δ=0.6, γ=0.2) CAL (λ=0.5, δ=0.6, γ=0.4) 

      
CAL (λ=0.5, δ=0.6, γ=0.6) CAL (λ=0.5, δ=0.6, γ=0.8) 

   

PSPNet 

      
BCE Focal (α=0.5, γ=2) 

      
Focal (α=0.75, γ=2) Dice 

      
Dice + Focal (α=0.50, γ=2) Dice + Focal (α=0.75, γ=2) 

      
CAL (λ=0.5, δ=0.6, γ=0.2) CAL (λ=0.5, δ=0.6, γ=0.4) 

      
CAL (λ=0.5, δ=0.6, γ=0.6) CAL (λ=0.5, δ=0.6, γ=0.8) 

   

DeepLabv3+ 

      
BCE Focal (α=0.50, γ=2) 

      
Focal (α=0.75, γ=2) Dice 

      
Dice + Focal (α=0.50, γ=2) Dice + Focal (α=0.75, γ=2) 

      
CAL (λ=0.5, δ=0.6, γ=0.2) CAL (λ=0.5, δ=0.6, γ=0.4) 

      
CAL (λ=0.5, δ=0.6, γ=0.6) CAL (λ=0.5, δ=0.6, γ=0.8) 

Fig. 9. Typical scenarios with different color tones and various types of interference (yellow: TP; red: FP; green: FN) 
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Fig. 9 selected for the study depict typical scenarios with 

different color tones and various types of interference. From the 

predictive analysis, the application of Completely Asymmetric 

Loss boosts the model's crack prediction capabilities. In contrast 

to Dice Loss, which results in a higher incidence of background 

and noise pixels being incorrectly classified as cracks, our loss 

function achieves a more balanced trade-off between precision 

and recall.  

Notably, the model demonstrates commendable robustness in 

complex environments, as evidenced by its ability to distinguish 

between actual cracks and repaired sections in the first image. 

However, the segmentation performance for cracks in shadowed 

areas was found to be suboptimal, indicating a need for future 

improvements. Enhancing the model's robustness across diverse 

scenarios will require the incorporation of multi-scenario data and 

structural optimizations of the model.  

When employing DeepLabv3+ and PSPNet, the incidence of 

noise pixels being mistakenly predicted as cracks decreases. This 

improvement is attributed to the model's enhanced receptive field 

using atrous convolution. However, the introduction of atrous 

convolution and downsampling slightly diminishes the model's 

ability to accurately predict smaller crack pixels. By comparing 

the three different algorithms, it becomes apparent that utilizing 

U-Net yields superior results for predicting UAV road surface 

images, while DeepLabv3+ performs the least effectively. 

Consequently, in subsequent research, emphasis can be placed on 

enhancing predictive capabilities by refining algorithms based on 

U-Net. 

D. Crack Quantification 

After the semantic segmentation of cracks, rich pavement 

damage information can be obtained. In this paper, morphological 

operations were applied to the segmented crack images to obtain 

information such as crack area, crack length, crack maximum 

width, crack mean width, and crack width distribution, which 

provide crucial data support for road inspection (Fig. 10). The 

pseudo-code of morphological operations is shown in Algorithm 

1. 

1) Crack Area: To ascertain the proportion of cracks, the ratio 

of the total crack area to the total area of the original image 

was calculated. This was achieved by segmenting the 

images, which had been processed to remove occlusions 

and were stitched together, utilizing the U-Net + CAL 

(λ=0.5, δ=0.6, γ=0.2) algorithm introduced in Section 5 C. 

Through this process, pixels were classified as either crack 

pixels or background pixels, allowing for the calculation of 

the crack ratio and area. 

2) Crack Skeleton Extraction and Length: To accurately 

predict the geometric features of cracks, this paper applied 

morphological algorithms (Scikit-Image library) to extract 

the centerline or skeleton of the cracks, converting the crack 

regions into pixelated lines, where the pixel count 

represented the total crack length (with each pixel 

equivalent to 6 mm, as calculated in Section 3). 

3) Crack Maximum Width and Mean Width: To calculate 

the mean and maximum widths of cracks, for each point on 

the medial axis, the corresponding value in the distance 

transform image, which represents the shortest distance 

from the medial axis to the crack boundary, is utilized. 

Since the medial axis denotes the center of the crack, this 

distance to the boundary is doubled to determine the full 

width of the crack at that point. The mean crack width is 

then obtained by averaging these doubled distances across 

all points on the medial axis, while the maximum width is 

identified by selecting the highest value among these 

calculated widths. 

 

Algorithm 1 Crack Quantification Using Morphological 

Image Processing Techniques. 

Input: Grayscale image after crack segmentation 

Output: Total Pixel, Skeleton length,  

Max & Mean Width of Crack 

1: Binary image ← Apply threshold(Grayscale image) 

2: CrackArea ← np.sum(Binary image) 

3: Skeleton ← medial_axis(Binary image) 

4: CrackLength ← np.sum(Skeleton) 

5: Skeleton Points ← np.argwhere(Skeleton) 

6: Contours ← cv2.findContours(Grayscale image) 

7: Border Points ← np.argwhere(Contours) 

8: for each point in Skeleton Points do: 

9:     (y, x) ← skeleton point 

10:     Distances ← cdist([(y, x)], Border Points) 

11:     CrackWidth ← min(Distances) × 2 

12: 

13: 

    CrackWidths.append(CrackWidth) 

end 

14: AvgWidth ← np.mean(CrackWidths) 

15: MaxWidth ← np.max(CrackWidths) 

 

In this research, three complex crack scenarios, as illustrated in 

Figure 10, were meticulously selected for a comprehensive 

quantitative assessment encompassing crack area, length, mean 

width, and maximum width. Additionally, the average outcomes 

for the entire dataset were systematically evaluated, with the 

results concisely compiled in Table II. The analysis highlighted 

that the pixel error was confined to within 16%, a discrepancy 

primarily linked to the challenges posed by long-distance 

photography and limitations in image resolution, which often lead 

to images depicting cracks in an elongated form, thereby 

obscuring the clarity of crack boundaries.  

Looking forward, it is anticipated that advancements in camera 

lens technology will pave the way for the acquisition of higher-

resolution images. Such developments are expected to 

substantially bolster the segmentation capabilities of the network, 

thereby elevating the precision in the quantification of cracks. 
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TABLE II 

THE RESULTS OF PAVEMENT DISTRESS QUANTIFICATION 

 Ground Truth (pixel) U-Net + CAL (pixel) Error (%) 

Image 1 2 3 
Total 

(/image) 
1 2 3 

Total 

(/image) 
1 2 3 

Total 

(/image) 

Area 2614 16791 10099 5205.94 2225 15872 11538 4964.48 14.88 5.47 14.25 4.64 

Length 484 3120 1589 711.16 457 2893 1337 665.02 5.58 7.28 15.86 6.49 

Mean width 3.86 3.69 4.20 5.51 4.38 4.21  4.62 5.57 13.40 14.00 9.99 1.15 

Max width 10.00 10.24 10.20 9.77 8.94 10.00 11.31 9.49 10.56 2.34 10.94 2.81 

 

 
Fig. 10. Crack quantification 

 

VI. CONCLUSION AND FUTURE RESEARCH 

Unmanned aerial vehicles offer the potential for 

significantly enhanced efficiency and coverage in pavement 

defect detection. However, this task comes with its own set of 

challenges, including obstructions by road vehicles and the 

fine, slender features of cracks in the images. These challenges 

can severely impact the precision of pavement defect semantic 

segmentation. In this study, a systematic approach is taken to 

address these challenges and provide a comprehensive road 

coverage solution. 

Firstly, precise UAV flight parameters tailored to the 

requirements of semantic segmentation are established. To 

tackle road vehicle obstructions, a novel method known as 

Historical Best Matching Image (HBMI) approach is 

introduced. This method effectively allows obstructed regions 

to be replaced with corresponding pixels, resulting in seamless 

and unobstructed image stitching for comprehensive road 

coverage. 

Furthermore, to handle the intricate, slender characteristics 

of cracks, image segmentation and selection processes are 

implemented. These steps culminate in the creation of a 

dataset comprising 500 UAV images specifically designed for 

crack semantic segmentation (UAV-Crack500). Three 

semantic segmentation algorithms (U-Net, PSPNet, and 

DeepLabv3+) are systematically evaluated alongside the loss 

functions (Binary Cross-Entropy Loss, Focal Loss, Dice Loss, 

Dice + Focal Loss, and Completely Asymmetric Loss). The 

experimental findings unequivocally indicate that the U-Net 

algorithm paired with our Completely Asymmetric Loss (U-

Net + CAL (λ=0.5, δ=0.6, γ=0.2)) delivers the most robust 

performance. 

Finally, advanced morphological algorithms are employed 

to extract critical crack features, such as crack area ratio, crack 

length, crack maximum width, and crack mean width, from 

semantically segmented images. These results underscore the 

superior performance of the U-Net + CAL algorithm, 

particularly in complex scenarios. The precise quantification 

of crack features enhances the accuracy of road condition 

assessments. 

While this study offers a comprehensive framework for 

pavement distress detection using UAVs, it is accompanied by 

certain limitations that warrant further investigation. Firstly, 

there is a need for the enhancement of UAV imaging accuracy 

to meet the stringent precision requirements of distress 

detection. Secondly, the establishment of a comprehensive 

pavement distress evaluation system remains an open 

challenge. Subsequent research efforts will be directed toward 

the detection of other distress types and the conduct of 

comparative analyses with existing technologies to achieve 

high-precision and efficient defect detection. 
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