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Abstract

Gene expression data is often collected in time series experiments, under different experi-

mental conditions. There may be genes that have very different gene expression profiles

over time, but that adjust their gene expression patterns in the same way under experimen-

tal conditions. Our aim is to develop a method that finds clusters of genes in which the rela-

tionship between these temporal gene expression profiles are similar to one another, even if

the individual temporal gene expression profiles differ. We propose a K-means-type algo-

rithm in which each cluster is defined by a function-on-function regression model, which,

inter alia, allows for multiple functional explanatory variables. We validate this novel

approach through extensive simulations and then apply it to identify groups of genes whose

diurnal expression pattern is perturbed by the season in a similar way. Our clusters are

enriched for genes with similar biological functions, including one cluster enriched in both

photosynthesis-related functions and polysomal ribosomes, which shows that our method

provides useful and novel biological insights.

Introduction

Next-generation sequencing technology (specifically RNA-sequencing or RNA-seq) allows

researchers to accurately measure gene expression for all genes in a biological sample [1]. Until

recently, it was prohibitively expensive to perform RNA-seq experiments at more than a few

time points at once. RNA-seq is now widespread and affordable enough to use it to investigate

time-sensitive biological processes, such as response to environmental stimuli or the organ-

ism’s internal clock [2]. In this context, typical biological questions are to detect genes that are

differentially expressed over time, and clustering genes according to their expression time

courses. Such clustering efforts have mainly been focussed on finding subgroups of genes shar-

ing common time course patterns [3, 4].

In addition to single RNA-seq time-course experiments, it is now common to performmul-

tiple time series RNA-seq experiments under multiple different treatments [3, 4], and methods
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for analysing such data are not well-established. In this paper, we propose a fundamentally dif-

ferent approach to clustering such multiple gene expression time course, by using the link

between them—through a functional regression—as a way of clustering genes. This strategy

would be able to group together genes that may have very different temporal expression pro-

files in different conditions, but whose profiles change in the same way across treatments. We

hypothesize that such genes would be part of the same pathways. For instance, two genes

might have different gene expression patterns under normal growth conditions, because they

are normally regulated by different sets of regulatory proteins. However, both these genes

might be regulated by the same stress-associated regulatory protein in response to an environ-

mental stimulus, which causes their gene expression pattern to be perturbed in the same way.

Our approach is based on treating gene expression time courses as curves that are sampled

discretely, with measurement error, and falls therefore within the realm of functional data

analysis (FDA) [5–9], now a prevalent area of statistics, with applications in numerous fields,

such as in neuroimaging [10–17], phonetics [18–22], or genomics [23–26]. Classical statistical

modelling tools have been extended to functional data: the functional linear model (FLM) has

received a lot of attention [27], see the review of and references therein, and many generaliza-

tions have been proposed, such as those inspired by generalized linear models [28], (general-

ized) additive models [29–31], or non-parametric regression [6].

Parallel to this, there have been many contributions to the clustering of functional data:

generalizations of K-means have been proposed, usually after projecting the functional obser-

vations onto some finite basis of functions [23, 32–34], or onto the first functional principal

components (FPC) [35]. Extensions of such functional K-means have also been proposed: [36]

proposed using the subspaces spanned by FPCs as representative of the clusters, instead of

using cluster means to define the clusters, and [37] proposed a functional version of the

reduced K-means algorithm [38]. [39] proposed to choose adaptively the projections onto

which the K-means algorithm is applied, and showed that the technique can yield asymptoti-

cally perfect clustering. Mixture models for functional clustering have also been proposed [40–

42].

Combining functional linear models and functional clustering has, however, been far less

studied. Such a problem is motivated, for instance, by trying to find subgroups in the data

characterized by different relationships between the (scalar or functional) response, and one or

several functional covariates. An example of such problem arises in plant genomics, where one

is interested in clustering the genes of a plant based on the relationship of its circadian expres-

sion in summer, say Y(t), where t 2 [0, 48] is a time observation in hours i.e. from a process

observed during two entire days (and 0 represents midnight of the first day), and its relation-

ship with the circadian expressions in autumn, winter and spring, say X1(t), X2(t), X3(t), t 2 [0,

48]. In this setting, one could consider a cluster-specific functional linear model, such as

YiðtÞ ¼ b
0kðtÞ þ

X

3

j¼1

Z

48

0

bjkðt; sÞXijðsÞdsþ εiðtÞ; t 2 ½0; 48�; ð1Þ

if gene i belongs to group k 2 {1, . . ., K}, where EðεiðtÞÞ ¼ 0 for all t 2 [0, 48]. The group mem-

berships are of course unknown, but finding clusters based on model (1) is of interest, and

gives promising results when applied to gene expressions timecourses of Arabidopsis halleri

specimen, see later section about gene seasonal data set.

To the best of our knowledge, only a handful of papers have considered clustering func-

tional data using functional models similar to (1). [43] looked at scalar-on-function regression

modelling (i.e. the case YðtÞ � Y 2 R in (1)) with one functional covariate, and used FPCA

for regularization. [44] considered the concurrent functional linear model YðtÞ ¼
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Pp

j¼1 bjkðtÞXjðtÞ þ εkðtÞ if the observation comes from group k, and used a mixture of Gauss-

ian processes to fit the model using an EM-type algorithm. In this paper, we present a multi-

variate functional clustering method based on a cluster-specific functional linear model like

(1), called Functional Regression Clustering (FRECL). It clusters data of the form {(Yi, Xi1, . . .,

Xip): i = 1, . . ., n}, where Yi, Xi1, . . ., Xip are curves, and allowing p> 1. Our proposed method

has been developed with the application to gene expression time courses in mind, but it can

also be used in other applications, such as the multiple sclerosis applications of [12]. Indeed,

FRECL is versatile enough to be easily applied to cluster any data set in which multiple func-

tional data sets are being compared.

The paper is organized as follows. In the next section we describe and present our FRECL

model and method for finding the clusters and the regression surfaces βjk(t, s). In the next sec-

tion we provide a description of our motivating application for FRECL. Then we provide an

extensive simulation study of the performance of our method in data that resembles that in

our motivating example, and compare it to existing (functional) clustering methods. This is

followed by a section where we identify clusters in an expression time course data set utilising

FRECL, and we conclude with a discussion. The full code of our method is made available for

reproducing our results, and for further applications, see https://github.com/stressedplants/

FRMM.

Description of method

Given multivariate functional observations {(Yi, Xi1, . . ., Xip): i = 1, . . .,m}, where

Yi;Xi1; . . . ;Xip 2 L2ðT Þ, where L2ðT Þ ¼ ff : T ! R :k f k<1g is the Hilbert space of

square integrable functions defined over the compact interval T � R, with norm
k f k¼ ð

R

T
f 2ðtÞdtÞ

1=2
, the goal of our paper is to cluster these observations into groups accord-

ing to the relation between the responses Yi 2 L2ðT Þ, and the predictors Xi1; . . . ;Xip 2 L2ðT Þ.

While we assume that the functional responses and predictors are all defined on the same

domain T , our method can easily be extended to settings with distinct domains for the

response and each predictor.

Let Pm;K denote the set of partitions of {1, . . .,m} into K> 1 disjoint sets (which we shall

call clusters), with elements of the form P = {C1, . . ., CK}. Notice that we allow partitions with

empty clusters, which implies that Pm;K�1 � Pm;K provided we identify sets of the form {A1,

. . ., AL, ;} with {A1, . . ., AL}, where A1, . . ., AL are nonempty sets, L� 1. Let 1A the indicator

function of the set A, defined by 1AðxÞ ¼ 1 if x 2 A, and 1AðxÞ ¼ 0 otherwise. We assume that

the observations {(Yi, Xi1, . . ., Xip)} come from the following model,

YiðtÞ ¼
X

K

k¼1

1C∗
k
ðiÞ b

0kðtÞ þ

Z

T

b
1kðt; sÞXi1ðsÞdsþ � � � þ

Z

T

bpkðt; sÞXipðsÞds

� �

þ εiðtÞ; ð2Þ

where P∗ ¼ fC∗
1
; . . . ;C∗

Kg 2 Pm;K is a fixed partition, εi(t) is a functional error term,

b
0k 2 L2ðT Þ, and bjk 2 L2ðT � T Þ, j = 1, . . ., p, k = 1, . . ., K. In other words, the same func-

tional linear model links Yi and (Xi1, . . ., Xip) within each cluster i 2 C∗
k , but the functional

parameters are (possibly) distinct across the clusters C∗
1
; . . . ;C∗

K . The goal is to find the

unknown partition P*.
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Letting βk ¼ ðb0k; b1k; . . . ; bpkÞ 2 L2ðT Þ � L2ðT � T Þ � � � � � L2ðT � T Þ be a functional

vector, and defining

FððXi1; . . . ;XipÞ; βkÞð�Þ ¼ b
0kð�Þ þ

X

p

j¼1

Z

T

bjkð�; sÞXijðsÞds 2 L2ðT Þ; ð3Þ

then (2) can be rewritten as

Yi ¼
X

K

k¼1

1C∗
k
ðiÞFððXi1; . . . ;XipÞ; βkÞ þ εi:

Another way of expressing model (2) is to say that a model

Yi ¼ FððXi1; . . . ;XipÞ; βÞ þ ε ð4Þ

holds within each cluster of P*, with possibly distinct functional parameters β. Note that Eq (4)
is just a compact representation of equation (2). F links the covariate Xil and the regression

slopes β, so by using a generic β in Eq (4) we allow the conditional mean to be equal to any of

the conditional means in the previous equations. It is not straightforward to view model (2) as

a mixture model since density functions are generally not well defined in a functional context

[45]. Notice that (4) is a function on function regression model with multiple functional pre-

dictors, and thatF((Xi1, . . ., Xip), β) can be viewed as the conditional expectation of the func-

tional response Yi given (Xi1, . . ., Xip) and β, provided E εðtÞ ¼ 0; t 2 T .

Our strategy for finding P* is inspired by the K-means algorithm [46], which we can view

as an iterative procedure alternating between a model fitting (the computation of the cluster

means given the cluster allocations) and a partition update (assigning each observation in the

next iteration to the current closest cluster mean). We therefore propose to estimate P* using
an iterative procedure, summarized as follows:

1. Pick P 2 Pm;K with non-empty clusters at random,

2. Fit model (4) within each cluster of P, thus obtaining K fitted models,

3. Reassign the ith observation, i = 1, . . .,m to the best fitting model, which we refer to as k̂ðiÞ,

a function that returns the assigned cluster designation for each observation:

k̂ðiÞ 2 f1; . . . ;Kg, thus defining a new partition P+,

4. Set P P+ and repeat steps 2–4 until convergence.

Notice that step 2 requires a fitting method F . We discuss the choice of F below. Step 2

results in K fitted models of the form (4), with estimates β̂k. Step 3 requires finding the best fit-

ting model for each observation (Yi, Xi1, . . ., Xip); we choose to do this by computing the norm

of its fitted residuals under each model,

r̂ ik ¼k Yi � FððXi1; . . . ;XipÞ; β̂kÞ k; k ¼ 1; . . . ;K; ð5Þ

Other methods for updating clusters can be chosen, such as choosing a different norm in

(5). The full version of our generic FRECL algorithm, using the fitting method F , is given in

Algorithm 1.

Algorithm 1: Generic FRECL algorithm run
Input: K > 1, data {(Yi, Xi1, . . ., Xip)}, and method F for fitting model

(4), Stopping criterion S.
Result: A partition P 2 Pm;K.
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begin
Pick at random an initial partition P

0
¼ fC

0;1; . . . ;C0;Kg 2 Pm;K with non-
empty clusters,
j  0.
repet
Fit model (2) for partition Pj using method F:
for k = 1, . . ., K do
Compute the estimates β̂k from the data {(Yi, Xi1, . . ., Xip):i 2 Cj,k}
using fitting method F,
Cj+1,k  ;.

end
Reallocate each observation to the best fitting model:
for i = 1, . . ., m do
for k = 1, . . ., K do
Compute r̂ik as in (5).

end
Compute k̂  argmink¼1;...;K r̂ik,
Cjþ1;k̂  Cjþ1;k̂ [ fig.

end
Pj+1  {Cj+1,1, . . ., Cj+1,K},
K  “Number of non-empty partitions in Pj+1”,
j  j + 1.

until S is true.
Return final partition Pj 2 Pm;K.

end
Because the output of Algorithm 1 depends on the initial random partition, we propose to

use consensus clustering [47] to produce more consistent results. Consensus clustering con-

sists of running a clustering algorithm multiple times, with different initial partitions, and then

aggregating the obtained clusters. We describe it formally in Algorithm 2.

Algorithm 2: Complete FRECL algorithm, with consensus clustering.
Input: K > 1, L > 1, and the input for Algorithm 1.
Result: A partition P 2 Pm;K.
begin
for l = 1, . . ., L do
Run Algorithm 1. If convergent, denote its resulting partition Pl;
otherwise discard the run. Let A(l) be the m × m binary matrix with
(i, j)th entry equal to 1 if i, j are clustered together (according
to Pl), and zero otherwise.

end
Compute the consensus matrix B ¼

PL
l¼1 A

ðlÞ,
Perform K-means clustering with the rows of B as observations, and
return the resulting partition.

end
Algorithms 1 and 2 depend on a couple of parameters, which we now briefly discuss and

make recommendations about. A more detailed discussion of the choice of some of these

parameters is deferred to the Simulation Section below.

Fitting method F

Fitting functional linear models (FLM) involves solving ill-posed inverse problems, and

requires some form of regularization, which is generally performed by projection of the func-

tional observations on a finite number of functional principal components. This is usually per-

formed either after transforming the discretely observed functional data into curves, or

simultaneously, see [27, 48] for overviews of functional regression. A more recent approach to
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FLM is to use computational methods—such as boosting [49]—for model fitting. [50] propose

such approach, which is nicely implemented in the R package FDboost [51, 52]. In the rest of

the paper, we use F as given by the R function FDboost, which regularises automatically the

functional regression fit. We will always work with the discretized.

Stopping criterion S

Currently, our stopping criteria is when (i) either convergence is reached, i.e. the partitions are

the same between two consecutive iterations or alternatively (ii) the number of iterations has

exceeded a fixed value which we set to 300. Several alternative approaches are possible. For

instance, a stopping criteria may be very strict, such as “only stop iterations when either con-

vergence or a cycle is reached.” It may also be possible to stop at some point which is

approaching convergence, when only a small proportion of observations change clusters across

an iteration. Our choice of stopping criteria is motivated by the analysis in Section about con-

vergence properties.

Number of clusters K

In order to determine the number of clusters, we propose to run the algorithm for a range of

values of K, and compute each time the mean squared error (MSE) with the residuals from the

final partition P = {C1, . . ., CK}:

MSEðKÞ ¼
1

m

X

K

k¼1

X

i2Ck

r̂2ik ð6Þ

where r̂ ik is as in (5). We then plot those quantities and use an elbow-like criterion.

Number of runs L for consensus clustering

The choice of L depends on the balance between runtime and robustness. The larger the value

of L the longer it takes for the algorithm to complete, but the more consistent the clusters will

be. We analyse the impact of varying this parameter in more depth in Section about the power

of consensus clustering.

Motivating application

Biological background

FRECL can cluster any data set in which each observation consists of two or more functional

data. However, we were specifically interested in developing this method to provide new bio-

logical insights related to how plant gene expression changes over time in response to the sea-

sons. In our analysis, we aimed to find clusters of genes determined by associations between

daily gene expression patterns during the summer, and those during autumn, winter and

spring. Many agriculturally-relevant traits that are of interest to plant biologists, such as flow-

ering, occur in the summer. However, many of the developmental decisions that lead to these

traits are thought to occur in the other seasons. For instance, flowering time in the summer is

determined by the temperature in winter (vernalisation) [53] and the changes in day length in

the spring (photoperiod sensing) [54, 55].

About a third of genes are controlled by the circadian clock and vary their expression levels

over the course of the day [56]. Indeed, many of the key vernalisation and photoperiod sensing

genes are known to be directly regulated by the circadian clock [57]. In many species, the daily

pattern of gene expression varies across different seasons because of differences in day length,
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vernalization and winter-dormancy [54, 55, 58]. Even genes that are not regulated by the circa-

dian clock may be more sensitive to environmental fluctuations, like pests, shade or UV light,

during specific seasons [59]. Also, some genes may play one biological role in one season and

play another role in another season, especially genes involved in plant development and

response to plant hormones.

Because of these properties, we thought that genes that are biologically associated with one

another may have very different expression patterns, but may have similar gene expression

changes across different seasons. If this were the case, we would expect FRECL to produce

clusters of genes that share biological roles.

Description of data

The publicly available gene expression data [60] was collected to investigate how diurnal pat-

terns of gene expression change in different seasons. It contains gene expressions of 32669

genes from an experiment done in Arabidopsis halleri specimens, a perennial relative of the

model plant organism Arabidopsis thaliana. The expressions were measured via RNA-seq at

four seasons (winter/summer solstice and spring/autumn equinox), over the course of 48

hours, sampled every other hour, with 5–6 replicates per time point. See additional details in

Appendix.

Pre-processing data set

The following pre-processing steps were undertaken before this data was used in either Sec-

tions about Simulations or about application to new data.

We computed the median gene expression value over the replicates per time point for each

season. Some genes were lowly expressed in nearly all time points. To filter these out, we

selected genes that were expressed at moderate levels in 20 or more time points in each season.

We define moderate expression levels as those that surpass 5 transcripts per million (TPM),

which is a unit of gene expression after normalising RNA-seq data by the sequencing library

depth and gene size. Using a TPM threshold of 5 is a common strategy used in biology for fil-

tering out very lowly expressed genes [59].

We transformed all the variables by subtracting, for each gene, the sample mean curve of all

the gene expression, and then smoothed the resulting curve by using locally estimated scatter-

plot smoothing (LOESS) [61, 62], formed with local quadratic polynomials. For the ith gene,

let Yi(t) represents the (median, transformed, LOESS-ed) gene expression at time t in summer,

and let Xij(t) be its expressions in spring, autumn and winter for j = 1, 2, 3, respectively. We

drop the words “transformed, median, LOESS-ed” from now on. For computations, we used

the evaluation each smoothed curve at the original set of time points.

We describe a simulation study that was designed so that the data had very similar proper-

ties to the motivating example. We apply FRECL to the real gene expression data set, and dem-

onstrate that this method is useful for generating new biological insights and hypotheses for

future investigations.

Simulations

Simulation strategy

Overview. We compare our method with these alternative approaches in a simulation

study in the Subsection about comparison with other methods. The simulated data was gener-

ated to represent realistic situations, so that the results would be applicable to real data. In

order to generate a new simulated data set that shares many of the properties of the real one,
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we sample the explanatory variables and assign them to known partitions. Additionally, we use

the explanatory and response variables to generate a set of realistic model parameters, which

we sample from when we assign parameters to each partition. Finally, for each partition, the

sampled explanatory variables and parameters are used to generate simulated response

variables.

Generating the simulated data set. We want to simulate data generated from the model

in Eq (2), using the real data D = {(Yi, Xi1, Xi2, Xi3), i = 1, . . .,m} described in the previous sec-

tion. The model has then a functional response, which is the gene expression at summer, and

p = 3 explanatory variables, which are the gene expressions at spring, autumn and winter. We

work with the discretized variables defined in the original set of time points

T
0
¼ ft

1
; . . . ; tTg � T ¼ ½0;T�;T ¼ 24. The time points, equidistant, are ti = i. First, we

choose βk, k = 1, . . ., K as the fitted parameters obtained by applying full FRECL (and using

FDboost [49, 51] for fitting) to the real data D, with K equal to the number of desired clusters.

Consequently, our choice of parameters represents a realistic situation. We then draw a parti-

tion P∗ ¼ ðC∗
1
; . . . ;C∗

KÞ 2 Pm;K at random, which will represent the true clusters. The FDboost

package gives the discretized conditional expectation F via the ‘predict’ routine—i.e., evalu-

ated in T0. Finally, we construct the vector of the discretized simulated response Y, by adding

errors varying across simulations.

Scenarios evaluated. First, we consider the scenario composed by K = 3 clusters, indepen-

dent and identically distributed standard normal random error terms εi(t)*N(0, 1), and gen-

erate 50 simulations for sample sizes n = 500, 1000. Additionally, we perform a sensitivity

analysis for a variety of different scenarios. These include varying:

(i) the distribution of the random error term from a discrete version of model (2). We consider

two scenarios, both with K = 3 and for n = 500, 1000. The first one with errors following an

auto regressive model with 1 lag (AR1), i.e.

εiðtqÞ ¼ r εiðtq�1Þ þ �iðtqÞ; ð7Þ

where ρ = 0.5 and the innovations are �i(tq)*N(0, 0.1), q = 2, . . ., T, i = 1, . . .,m. The sec-

ond one, with independent and identically distributed standard normal errors, i.e. εi(tq)
*N(0, 1), q = 1, . . ., T, i = 1, . . .,m.

(ii) the number of clusters K = 3, 6, 9, 12, with an analogous AR(1) random error term and for

n = 500, 1000;

(iii) the sample size n = 500, 1000;

(iv) whether the L1 or L2 norms are used in FRECL, see Eq (5), to quantify the magnitude of

the fitted residuals in an iteration. Recall that for a function f(s), s 2 T , its L1 norm is given

by
R

T
jf ðsÞjds whereas its L2 norm is ½

R

T
ðf ðsÞÞ

2
ds�

1=2
. We generate 50 simulations for each of

the scenarios with K = 3; these results are included S2 Fig. As the L1 and L2 norms per-

formed nearly identically, we chose to only use the L2 norm in the remainder of the

manuscript.

(v) the number of iterations in the runs of one instance in Algorithm 1, for K = 3, 12, and

n = 500, 1000;

(vi) the number of runs, K = 12, n = 1000, AR(1) random error term with ρ = 0.5, �* N(0,

0.1).

Fig 1 (i, iii), Fig 2 (i, iii), Fig 3 (i, iii) and Fig 4 (ii, iii); are developed in the sections about

simulations with 50 replicates and the results from a sensitivity study, Fig 5; (v) is developed in
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Fig 1. Distribution of the adjusted Rand index, above, and Rand index, below, for the 50 simulations from a
model with K = 3 clusters, i.i.d. random error term.

https://doi.org/10.1371/journal.pone.0310991.g001

Fig 2. Distribution of the True Positive Rate, above, and True Negative Rate, below, for the 50 simulations from a
model with K = 3 clusters, i.i.d. random error term.

https://doi.org/10.1371/journal.pone.0310991.g002
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a section about convergence properties of FRECL Fig 6; (vi) is developed in the section about

the power of consensus clustering.

Metrics for evaluating accuracy. For each simulated data set, we compute the observed

adjusted Rand Index (ARI) [63], which allows for chance assuming that the underlying ran-

dom variable defining the counts of pairs of observations belonging or not to clusters of the

two partitions that are being compared is hypergeometric, the Rand index [64], which is the

proportion of correctly classified pairs of observations selected at random, the true positive

and the true negative clustering rates in the space of all pairs of observations. Specifically, we

Fig 3. AR(1) error term, ρ = 0.5, σ2 = 0.1 versus i.i.d., σ2 = 1 for all the methods; K = 3. Lines corresponding to the same algorithm
have the same colour. Different error terms distributions are distinguished by line types. A continuous line represents i.i.d. error, an a
dotted one, AR(1).

https://doi.org/10.1371/journal.pone.0310991.g003

Fig 4. Observed adjusted Rand index for one-replicate simulations (with AR(1), ρ = 0.5, σ2 = 0.1) against the number of clusters
K = 3, 6, 9, 12 (on the horizontal axis). Lines corresponding to the same algorithm have the same colour. Sample sizes are
distinguished by line types.

https://doi.org/10.1371/journal.pone.0310991.g004
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Fig 5. Observed adjusted Rand index for iteration in FRECL, 100 runs. Each line represents the values for a run.
The ARI is usually monotonic increasing but not completely. Small underlying number of clusters sizes results in
better performance. Moreover, the ARI increases very steeply in all the iterations close to the last one, which suggests
not to stop FRECL before reaching convergence for speeding up the time. The situation for bigger number of clusters
is the opposite. The red lines indicate the value of the final ARI for FRECL after performing consensus clustering on
the individual runs.

https://doi.org/10.1371/journal.pone.0310991.g005

Fig 6. Observed distributions of ARI ×100 from the FRECL partition after consensus clustering; against the number of runs.
Simulation with K = 12 clusters, n = 1000, AR(1) random error term.

https://doi.org/10.1371/journal.pone.0310991.g006
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define a true positive and a true negative as the successful identification of a pair that are or are

not part of the same cluster respectively.

Comparison with other methods. Whilst some FDAmodel developments involve multi-

variate functional data including at least a functional response and a functional explanatory

variable [65], FRECL is the only algorithm we are aware of that clusters observations based on

the association between functional explanatory variables and functional response variables.

However, there are a number of other methods for clustering functional data, which cluster

the observations based on their (functional) response variables Y, i.e. ignoring X = (X1, . . .,

Xp).

We compare FRECL with five such methods. Because of our strategy for generating the

simulated data, we would not expect X to be involved in forming any discernible clusters (as

these observations are randomly sampled), unlike Y (see the Simulation section for more

details). When we compare methods for the simulated data, we use Y only in the main text,

but the methods were also evaluated with X and Y appended together, which is shown in S2

Table. When comparing these methods on the real data, we consider observations formed

with the values of both the explanatory and response, since Xmight contain information perti-

nent for clustering and we did not wish to give FRECL an unfair advantage.

Firstly we compute the functional principal components [5], using a basis of 12 B-spline

functions of order 4 with equally spaced knots. The coefficients of the first s principal compo-

nents are clustered with the K-means algorithm, s = 2, . . ., 12 and we select the s that maxi-

mises the adjusted Rand Index [63]. This optimal value of s is, of course, unknown, but it can

be used as an oracle. We call this method FPCA.oracle.

Secondly, High Dimensional Discriminant Clustering (HDDC), is based on [66] and

described as filtering in [67] because the functional observations are approximated by a finite

basis of functions. These assume a set of “multivariate” variables, formed in our context by the

discrete set of time points. It is a model-based clustering focussed on a Gaussian Mixture

model and using the expectation-maximisation algorithm for inference. We consider the

default option, which implies selecting the dimension of the FPC space for each cluster using

Cattell’s test. We call this clustering method HDDC.Cattell. We also consider an alternative to

this method, by selecting the FPC space dimensions using the Bayesian Information Criterion

(BIC) [68], and call this method HDDC.BIC.

Finally we consider FunHDDC [69, 70] which is a generalisation of HDDC for functional

data. It is adaptive because the coefficients of the bases of functions are assumed random vari-

ables having a cluster-specific probability distribution [67]. It assumes an underlying latent

functional mixture Gaussian model, where, unlike ours, the response is the only (functional)

variable, and it models coefficients of basis expansions chosen to be the functional principal

components from a cluster-specific analysis. These scores are assumed Gaussian with certain

parameters. After estimating the dimensions of the FPC spaces, the model is fitted with the

EM algorithm. This method represents an extension of [71]. When these dimensions are esti-

mated with Cattell’s test, we call the method FunHDDC.Cattell. Otherwise, when considering

the BIC, we call the method FunHDDC.BIC. We initialise the EM algorithm in the FunHDDC

approaches with K-means.

Simulation results

Simulations with 50 replicates and K = 3. Figs 1 and 2 display boxplots with the distribu-

tions of the performance measures for the simulations with K = 3 clusters, L2 distance, i.i.d.

random error model term, n = 500, 1000. In all the cases, FRECL outperforms any other

method. It is the only method for which the average performance increases as n increases.
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We also note that the FunHDDC approaches, which represent developments specific for

clustering functional data, find the poorest results. This outcome is reversed in most of the sce-

narios of the AR(1) simulated models, see S1 Table in Supplementary File. A one-tailed t-test

indicates that the ARI in FRECL is a significant improvement over the alternative methods for

any sample size (p< 0.0001 for any n).

Results from sensitivity study. Fig 3 compares simulations with a lag 1 autoregressive

model to those from an independent and identically distributed error term; for FRECL and

the five alternative methods. We note that the two simulated data sets here, for each of the

sample sizes, were generated from functional models with the same β. First, we see that
FRECL, which is developed assuming a functional linear model, outperforms any other

approach for any of the two simulations and sample sizes. FRECL, FPCA.oracle, FunHDDC.

Cattell, and FunHDDC.BIC found greater mean ARI for the AR(1) models regardless of the

sample size. Unlike HDDC.Cattell and HDDC.BIC, where the models with an i.i.d. error term

have greater mean ARI for n = 500 compared to n = 1000. For small sample size, FPCA.oracle

and HDDC.BIC maximise the mean ARI in AR(1) and i.i.d. models (16.72% and 18.98%

respectively). For big sample sizes, FunHDDC.BIC and HDDC.BIC outperform other alterna-

tive methods in AR(1) and i.i.d. models (19.98% and 16.71% respectively). FRECL performs

outstandingly in all scenarios.

Fig 4 displays the observed ARI against simulations with K = 3, 6, 9, 12 clusters, on the hori-

zontal axis, n = 500, 1000, for FRECL and the 5 alternative methods. Continuous and dotted

lines indicate values for simulations with n = 500, 1000 respectively. Overall, all the clustering

performances decrease as the number of underlying clusters increases. FRECL outperforms

any other approach in all instances. We tried the FunHDDCmethods a number of times when

these did not find a convergent model, in order to initialise differently the EM algorithm. If it

was not possible to find a convergent model with K clusters, we explored models with less

number of clusters. Thus, FunHDDC.Cattell found a convergent model with 4 clusters for

K = 6 with either n, with 2, 4 clusters for K = 9, n = 500, 1000 respectively, and likewise for

K = 12. FunHDDC.BIC found a model with 7 clusters for K = 9, n = 500, with 5 clusters for

K = 12, n = 500 and with 11 clusters for K = 12, n = 1000.

Convergence properties of FRECL. The first steps in FRECL consist of performing an

iterative procedure a certain number of times prior to computing the consensus matrix. It is of

interest to study the evolution of our performance measure of choice (e.g. the adjusted Rand

index) for each iteration in a run. If we know that, in a particular scenario where FRECL com-

putation has a lot of burden, as the number of iterations increases, it appears a plateau for our

performance measure, then we can speed up the computations by shortening their number.

We computed the adjusted Rand index by iteration for a simulated data set in each of the

scenarios: K = 3, 12 clusters, L2 distance, n = 500, 1000, AR(1) random error terms. Fig 5

depicts the ARI in percentage form. Overall the ARI increases by iteration in all runs. We

observed that it is monotonic increasing up to an iteration very close to the last one, e.g. the

antepenultimate. When the number of clusters increases, the algorithm has less accurate per-

formance. However, in this scenario the line approximately reaches a plateau when close to the

iteration where convergence is achieved. In contrast, for small number of clusters, the values

of the ARI increase very steeply towards the ‘end’ of the lines, suggesting that it is not advisable

to shorten the number of iterations in these cases. As n increases, the performance measures

increases on average in either scenario.

The power of consensus clustering. When searching partitions with larger numbers of

clusters, FRECL becomes computationally intensive. It is therefore of interest to investigate

whether considering a small number of runs we can achieve an acceptable solution. For this

purpose, we set up a study of the distributions of the adjusted Rand Index with different
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numbers of runs in one of our simulated data sets corresponding to a scenario with K = 12,

n = 1000, L2 distance, AR(1). We computed the ARI for 20 groups of various numbers of runs,

such that all the runs in these groups did not coincide with each other. And all this for 10, 20,

30, . . ., 100 runs as well as for 5 and 15 runs. Fig 6 includes boxplots of these distributions. The

variability of the ARI decreases overall as the number of runs of the first stage in FRECL

increases. Furthermore, on average it increases, and it becomes convergent from 20 or 30 runs

on. This finding indicates that, first, consensus clustering is working because with bigger num-

bers of runs we obtain better performance, and moreover, we do not need to consider a big

number of runs in order to accurately find a partition with a big number of clusters. A 0.05

level t-test gives poor evidence of any difference in the means (with a statistic of −1.2, 95% con-

fidence interval of [−2.53, 0.63], p-value of 0.2323).

Novel biological insight with FRECL

Gene seasonal data set

Our central aim was to identify sets of genes whose circadian gene expression profiles in the

summer (during the flowering phase) was linked in the same way to gene expression in the

autumn, winter, and spring. We expected that there would be modules of genes that may have

very different expression patterns from one another, but whose gene expression patterns

change in the same way as the seasons progress.

FRECL was used to generate clusters in the seasonal A. halleri gene expression data sets pre-

viously described and the number of clusters K was determined by the elbow method (see Fig

7(A)). We performed FRECL clustering twice: once using the gene expression profiles over

two consecutive days, and once taking the average expression curve across the two days. In

each setting, this produced 10 relatively evenly sized clusters (Fig 7(B)).

Fig 7. On the basis of the elbowmethod, we selected K = 10 clusters, both for the data set with 23 time points spread over one day (A); and for the data
set with 24 time points spread over two days (B). The clusters are approximately evenly sized, under both conditions tested: over one day (C) or two
days (D).

https://doi.org/10.1371/journal.pone.0310991.g007
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Genes in similar pathways do seem to group together in FRECL, suggesting that our

method is a useful tool. In many model organisms, each gene is associated with a series of

labels representing the cellular components, molecular functions, and biological processes that

the protein encoded by the gene is involved in; these are referred to as gene ontology (GO)

terms. For every A. halleri gene clustered by FRECL, we identified the most similar gene in the

model plant Arabidopsis thaliana and searched for GO terms that were significantly associated

with each cluster using gProfiler [72]. We successfully identified a number of GO terms that

were specific to certain gene clusters, see supplementary spreadsheet for a summary, which

indicates that FRECL produces biologically interesting clusters. The adjusted p-values of a few

key GO terms are illustrated in Fig 8. Interestingly, we find that ribosome and photosynthesis

related genes tend to cluster together in FRECL, which may suggest that the same set of genes

regulates the season-dependent gene expression of both processes, suggesting an avenue of

research for biologists. Intriguingly, a recent manuscript highlights that both ribosomal pro-

cesses and photosynthesis are downregulated during plant early age-related senescence, the

process by which plants plan leaf death to enable energy expenditure in reproduction [73]. As

the seasons progress, we would expect that the plants will mature, so our results are consistent

with these findings. In addition, this highlights a strength of our approach: normally ribosome

and photosynthesis genes would not be clustered together due to having distinct temporal

expression patterns, but we correctly identify that these two processes both change in the same

way over the larger temporal scale. We also observe cluster-specific enrichment in polysome,

mRNA processing, and immunity-related processes.

The clusters produced by FRECL are very different from those produced by other methods,

based on the ARI between the clusters produced by different clustering methods (S5 Table),

indicating that our method potentially provides new biological insight. In fact, similarity in

clustering algorithms was quite low (S5 and S7 Tables in the supplementary file), suggesting

that each of these methods produces very distinct clusters in the real data, perhaps indicating

that the partition to clusters in this data is highly dependent on how clusters are defined. A

unique aspect of FRECL in comparison to other clustering algorithms is that FRECL clusters

on the basis on the relationship between curves, and not only their shape. Indeed, we observe

that genes that are assigned to the same cluster do not have similar gene expression patterns

with each other, despite sharing GO terms (Fig 8).

Additionally, we were interested in determining whether FRECL provides biological infor-

mation that can can help us identify gene pairs that share biological roles that would not have

been identified using existing clustering methods. There were 184,605 pairs of genes that were

found to be in the same clusters in FRECL, but not in any of the other methods (or 301,596

pairs when the average curve was used for clustering). Of these pairs, 169,605 were between

pairs of genes whose orthologs in A. thaliana were included in AraNet, a gene network in Ara-

bidopsis that uses a Bayesian approach to combine -omics data sets from various organisms to

predict functional associations between pairs of genes in Arabidopsis [74, 75] (or 278207 pairs

when the average curve was used for clustering). 1470 of the novel pairwise associations found

using FRECL but not in any of the other alternative clustering methods were found to be asso-

ciated with one another in AraNet (or 2330 pairs when the average curve was used).

Discussion

Whilst [69] claim that FunHDDC, a ‘specific’ method for clustering multivariate functional

data, also works for univariate functional data, our simulation results show that it is outper-

formed by the other approaches we consider; even by those developed for non-functional,
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high dimensional variables such as HDDC. In one of the illustrations included in [70],

FunHDDC is outperformed by HDDC, too.

Functional mixture models make it possible to study relationships between explanatory and

response variables over time allowing for clusters characterized by these relationships. [76]

presents a clustering method for mixture regression that involves a penalised likelihood, where

the penalty is the total entropy. FRECL is an alternative to these settings that does not need to

consider a constrained optimization problem, and consequently does not need to estimate the

Fig 8. Each column represents a cluster designated by FRECL, either when considering the average across the two days (1d) or the two days
separately (2d). A heatmap of a selection of biologically interesting GO terms are shown, along with their adjusted p-values based on a gProfiler
analysis [72]

https://doi.org/10.1371/journal.pone.0310991.g008
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value of the Lagrange multiplier. [43] propose a functional mixture model implemented with

FPCs in order to overcome overfitting with a finite number of observations and infinite-

dimensional parameters and as usual selecting a certain number of components. The FPCs are

necessarily computed (only) with the explanatory variables. Since the estimation of the slope

parameters involves only the same number of selected FPCs, as well, the slope parameter space

is restricted, and thus their estimates may be far from the truth. FRECL, clustering based on

the functional ‘mixture’ model (2), improves existing methods, although these were not devel-

oped specifically for generating processes with an underlying functional mixture model. Con-

sequently, it is a step further in the development of functional data clustering.

There are several avenues by which FRECL could be extended in the future. For instance,

our current implementation assumes that the response and predictors have the same domain.

However, it will be possible to extend the method by first scaling the time domains, an exten-

sion that would not fundamentally alter the algorithm. Selection of hyperparameters, such as

the choice of using L1 and L2 norms may depend on the specific application and will need to

be re-assessed when applying the method to new data sets. However, our simulation results

suggest the following guidelines: (i) A choice of L1 or L2 norm does not appear to have a large

impact on the outcome. (ii) If possible, proceed with each run until convergence. (iii) Increase

the number of runs until the consensus clustering converges. (iv) Select the number of clusters

using a classical method, like the edge method.

A downside of FRECL is that it is computationally intensive, specifically Algorithm 1. The

runtime of Algorithm 1 of FRECL is a product of the number of runs, the number of iterations

per run, K, and the runtime of the selected functional regression algorithm (which inherently

depends on the size of the dataset). The number of iterations per run until convergence is not

easily empirically calculated, although it can be experimentally determined for a specific data

set, as we have shown. The number of iterations per run until convergence depends on K and

the size of the dataset. However, parallelisation is easily implemented, as each run can be com-

puted on an independent node on a computing cluster.

Software

Software in the form of R code, together with a sample input data set and complete documen-

tation is available at https://github.com/stressedplants/FRMM.

Appendix

Data

The seasonal data set contains 3 replicates per time points in autumn and 4 replicates for all

the other time points for 32745 genetic entities, 32669 of which are genes. The expression for

the ith gene is the observed proportion of messenger RNAs of the ith gene from specimen X

over the total of mRNAs in specimen X multiplied by 106. We removed one suspicious repli-

cate in a time point; it has zero values in many of the genes. If included, the line plots of many

of the raw spring gene expressions have a very odd minimum at a time point. We computed

the median gene expression per time point as, if using the mean, there are a lot of “ups and

downs” in nearby time points. We selected genes whose median expression was>5 units

except at most 5 time points in each of the 4 seasons. The first time points are collected at

16:00 hours in spring (March, days 19–21), summer (June, days 26–28), autumn (September,

24–26) and winter (December, 24–26). With these criteria, the resulting data set has n = 5378

genes.
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Software

HDDC.Cattell, HDDC.BIC, FunHDDC.Cattell, FunHDDC.BIC are implemented in the

HDclassif [66] and FunHDDC [77] R packages. Curve smoothing was performed using the

fda [78] R package.

Supporting information

S1 Fig. Surface plots for the parameter estimates of FRECL.

(TIF)

S2 Fig. Mean observed adjusted Rand index; and Rand index, left and right respectively,

over 50 simulations.

(TIF)

S3 Fig. Mean true positive and true negative clustering rates, 50 simulations for FRECL.

n = 500, 1000.

(TIF)

S4 Fig. Line plots with the ARI for the simulations with one replicate against the number

of clusters for FRECL and the five alternative methods for simulated data sets. n = 500,

1000.

(TIF)

S5 Fig. Line plots with the RI for the simulations with one replicate against the number of

clusters for FRECL and the five alternative methods for simulated data sets. n = 500, 1000.

(TIF)

S6 Fig. Line plots with the TPR for the simulations with one replicate against the number

of clusters for FRECL and the five alternative methods for simulated data sets. n = 500,

1000.

(TIF)

S7 Fig. Line plots with the TNR for the simulations with one replicate against the number

of clusters for FRECL and the five alternative methods for simulated data sets. n = 500,

1000.

(TIF)

S8 Fig. Line plots with the RI, left, TPR, centre, and TNR, right for the simulations with

one replicate against the number of clusters for FRECL and the five alternative methods

for simulated data sets.

(TIF)

S9 Fig. Illustration of simulated gene expressions during 48 hours, see horizontal axis,

based on [60]’s data set. Left, raw simulated values; right, smoothed values.

(TIF)

S1 Table. Observed sample means and standard deviations of the distributions of the %

ARI in the 50 simulations.

(TXT)

S2 Table. Observed sample means and standard deviations of the distributions of the %

ARI in the 50 simulations; comparing analyses where the alternative methods were per-

formed with either Y only or Y, X. In all cases, adding the functional explanatory variables
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66. Bergé L, Bouveyron C, Girard S. HDclassif: An R Package for Model-Based Clustering and Discriminant
Analysis of High-Dimensional Data. Journal of Statistical Software. 2012; 46(6):1–29.

67. Jacques J, Preda C. Functional data clustering: a survey. Advances in Data Analysis and Classification.
2014; 8:231–255. https://doi.org/10.1007/s11634-013-0158-y

68. Schwarz G. Estimating the Dimension of a Model. The Annals of Statistics. 1978; 6(2):461–464. https://
doi.org/10.1214/aos/1176344136

69. Schmutz A, Jacques J, Bouveyron C, Chèze L, Martin P. Clustering multivariate functional data in
group-specific functional subspaces; 2018. Available from: https://hal.inria.fr/hal-01652467.

70. Bouveyron C, Jacques J. Model-based clustering of time series in group-specific functional subspaces.
Advances in Data Analysis and Classification. 2011; 5(4):281–300. https://doi.org/10.1007/s11634-
011-0095-6

PLOS ONE Gene expression functional regression clustering

PLOSONE | https://doi.org/10.1371/journal.pone.0310991 November 25, 2024 22 / 23

https://doi.org/10.1023/A:1023949509487
https://doi.org/10.1177/1471082X16681317
https://doi.org/10.1177/1471082X14566913
https://github.com/boost-R/FDboost
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1038/s41477-018-0301-z
https://doi.org/10.1038/s41477-018-0301-z
http://www.ncbi.nlm.nih.gov/pubmed/30478363
https://doi.org/10.1146/annurev-arplant-043014-115555
https://doi.org/10.1146/annurev-arplant-043014-115555
http://www.ncbi.nlm.nih.gov/pubmed/25534513
https://doi.org/10.1186/gb-2008-9-8-r130
http://www.ncbi.nlm.nih.gov/pubmed/18710561
https://doi.org/10.1093/jxb/eru441
http://www.ncbi.nlm.nih.gov/pubmed/25371508
http://www.ncbi.nlm.nih.gov/pubmed/22935652
https://doi.org/10.1016/j.cub.2016.11.026
http://www.ncbi.nlm.nih.gov/pubmed/28073019
https://doi.org/10.1038/s41477-018-0338-z
https://doi.org/10.1038/s41477-018-0338-z
http://www.ncbi.nlm.nih.gov/pubmed/30617252
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1016/j.jmva.2015.10.003
https://doi.org/10.1007/s11634-013-0158-y
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://hal.inria.fr/hal-01652467
https://doi.org/10.1007/s11634-011-0095-6
https://doi.org/10.1007/s11634-011-0095-6
https://doi.org/10.1371/journal.pone.0310991


71. Jacques J, Preda C. Model based clustering for multivariate functional data. Computational Statistics &
Data Analysis. 2014; 71:92–106. https://doi.org/10.1016/j.csda.2012.12.004

72. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:Profiler: A web server for func-
tional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research. 2019;
47(W1):W191–W198. https://doi.org/10.1093/nar/gkz369 PMID: 31066453

73. Redmond EJ, Ronald J, Davis SJ, Ezer D. Single-plant-omics reveals the cascade of transcriptional
changes during the vegetative-to-reproductive transition. BioRxiv. 2023.09.11.557157. https://doi.org/
10.1093/plcell/koae226 PMID: 39121073

74. Lee T, Yang S, Kim E, Ko Y, Hwang S, Shin J, et al. AraNet v2: An improved database of co-functional
gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids
Research. 2015; 43(Database Issue):D996–1002. https://doi.org/10.1093/nar/gku1053 PMID:
25355510

75. Lee T, Lee I. AraNet: A network biology server for Arabidopsis thaliana and other non-model plant spe-
cies. In: Plant Gene Regulatory Networks: Methods and Protocols, edited by Kaufmann, Kerstin, and
Mueller-Roeber, Bernd, 225–238. Springer New York, 2017.

76. Chamroukhi F. Unsupervised learning of regression mixture models with unknown number of compo-
nents. Journal of Statistical Computation and Simulation. 2015; 86(12):2308–2334. https://doi.org/10.
1080/00949655.2015.1109096

77. Schmutz A, Bouveyron JJC. funHDDC: Univariate and Multivariate Model-Based Clustering in Group-
Specific Functional Subspaces; 2019. Available from: https://CRAN.R-project.org/package=funHDDC.

78. Ramsay JO, Graves S, Hooker G. fda: Functional Data Analysis; 2020. Available from: https://CRAN.R-
project.org/package=fda.

PLOS ONE Gene expression functional regression clustering

PLOSONE | https://doi.org/10.1371/journal.pone.0310991 November 25, 2024 23 / 23

https://doi.org/10.1016/j.csda.2012.12.004
https://doi.org/10.1093/nar/gkz369
http://www.ncbi.nlm.nih.gov/pubmed/31066453
https://doi.org/10.1093/plcell/koae226
https://doi.org/10.1093/plcell/koae226
http://www.ncbi.nlm.nih.gov/pubmed/39121073
https://doi.org/10.1093/nar/gku1053
http://www.ncbi.nlm.nih.gov/pubmed/25355510
https://doi.org/10.1080/00949655.2015.1109096
https://doi.org/10.1080/00949655.2015.1109096
https://CRAN.R-project.org/package=funHDDC
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=fda
https://doi.org/10.1371/journal.pone.0310991

