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Abstract

The charge-changing cross-section (σcc) of the dripline nucleus, 19B, was measured using the transmission technique

at RIBF, RIKEN, to understand its root mean square proton radius (Rp). This new measurement will be the first

determination of the Rp for the Borromean nucleus, 19B. The new value of Rp will help determine the geometrical

structure of 19B and the neutron-neutron correlation in the Borromean nucleus.

1. Introduction

A nearly symmetric combination of protons and neutrons forms β-stable nuclei on the Segrè chart. However,

some short-lived neutron-rich nuclei exhibit striking structural properties. The neutron-halo nuclei are an intriguing

quantum system with a large radial extent caused by the valence neutron. The three-body system of two-neutron

Borromean halo nuclei is particularly interesting as any two sub-systems are unbound. Exotic phenomena have been

reported for such nuclei, such as the emergence of new magic numbers and the disappearance of conventional magicity

[1, 2]. Further, the Borromean nuclei are the test bench for probing the neutron-neutron correlation.
17B and 19B are Borromean nuclei at the neutron-dripline of boron isotopes. A cascade of Borromean systems

at the dripline is a unique condition observed only for boron and helium (6He[3] and 8He[4]) isotopes. The root-

mean-square matter (Rm) and proton (Rp) radii are the structural properties of the nuclei that help to understand these

halo systems. The experimental observations suggest that the Rp increases for Borromean nuclei on the isotopic

chain, for example, 6He [3], 11Li [5], and 17B [6]. Interestingly, the proton radius of 8He is smaller compared to 6He
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while having a larger matter radius [7]. This phenomenon concluded that 8He has a α + 4n arrangement. The mass

measurement [8] and interaction cross-section [9] studies have hinted at a similar structure for the 19B nucleus. Further,

both studies claim that the valence neutrons in 19B occupy a 1d5/2 orbital, meaning it follows the traditional shell

model. However, the recent measurement of the Coulomb dissociation of 19B nucleus found 35% 2s1/2 contribution

[10], contradicting the previous studies. These observations caused a stir in theoretical studies. H. T. Fortune et al.

support predominantly 1d5/2 characteristics of the valence neutrons [11]. Recent studies [12–15] had mild success in

reproducing the observations from K. J. Cook et al. [10]. Considering the deformation effects, X. X. Sun shows the
19B nucleus has a more complex structure than the 17B + 2n system [16]. The knowledge of the proton radius of 19B

will assist in concluding this discrepancy.

As depicted in Fig.1, theoretical predictions for the proton radius of 19B vary greatly. Earlier calculations from the

Relativistic Hartree-Bogoliubov (RHB) model [17], Skyrme-Hatree-Fock (SHF) model [18], Antisymmetrized Molec-

ular Dynamics + Variation After spin and parity Projections (AMD+VAP) model [19], Hartree-Fock-Bogoliubov

(HFB) model with SLy4 and UNEDF1 forces [20], Glauber model with harmonic-oscillator Slater determinants [21],

predict a significantly lower value of Rp for 19B than experimentally known Rp value 2.67(2) fm for 17B [6]. However,

the recent measurement of the Coulomb dissociation of 19B improved theoretical models [10]. The new predictions

from the AMD model [22] and 19B modeled as a 17B + n + n system [13] suggest 19B to have slightly higher Rp than
17B, contradicting the previous results. Further, the first observation of 20B and 21B nuclei as resonances has sparked

a renewed interest in the search for magic numbers N = 14 and 16 for Z = 5 [23, 24]. For these reasons, it is crucial

to experimentally determine the proton radius of 19B.

(I) (II)

Figure 1: Theoretical predictions of proton radius for 17B (blue triangles) and 19B (red circles). Values in the shaded region-I, are mainly guided

by the observed S 2n [8] and matter radius [9]. The references in shaded region-I are [17–21]. Predictions in the shaded region-II are the new

values considering the dineutron correlation, suggested in Ref [10]. The references in shaded region-II are [22, 13]. The green hatched region is

the experimentally determined proton radius of 17B: 2.67(2) fm [6].

2. Measurement of charge changing cross-section (σcc)

The traditional methods for measuring the proton radius Rp (e.g., electron scattering, isotope shift) are challenging

for the drip line nuclei due to short half-lives and weak beam intensities. For exotic nuclei, an extraction of Rp via

Glauber model analysis of the charge-changing cross-section (σcc) is a reliable method [2]. The σcc is the total cross-

section of all reactions that change the proton number of the nucleus. The Rp can be extracted with the finite range

Glauber model within OLA (Optical-Limit Approximation) [25–27].
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Transmission technique enables the experimental measurement of the σcc. The σcc is determined from the mea-

surement of transmission with (Trin) and without (Trout) target. Mathematically,

σcc =
1

t
ln

(

Trout

Trin

)

(1)

where, t is the reaction target thickness. The transmission Tr is the ratio of number of incoming nuclear species (Ninc)

and outgoing unreacted particles. For the σcc measurement, in addition to unreacted boron isotopes, nuclei with Z > 5

are also considered as unreacted, as the proton pick-up and charge exchange reactions are not sensitive to the proton

distribution of the projectile nucleus. Hence, Tr = NZ≥5/Ninc.

The experiment was performed at the RI Beam Factory (RIBF) at RIKEN using the BigRIPS fragment separator

and the Zero-Degree Spectrometer (ZDS). The secondary beam of 19B was produced via projectile fragmentation of

the 48Ca primary beam at ∼345A MeV on a 9Be production target. 19B was identified and selected in-flight using the

BigRIPS separator and ZDS spectrometer. To improve the purity of the secondary beam, wedge-shaped Al degraders

were placed at the dispersive foci F1 and F5. The thicknesses of the production target and the Al wedges at F1 and F5

were 10, 20, and 8 mm, respectively.

As depicted in Fig.2 this measurement was performed at the F11 focal plane with 2.5 g/cm2 carbon target. Before

the final target at F11, the incoming beam particles (Ninc) were identified with the TOF−Bρ−∆E method [28]. Plastic

scintillators at F8 and F11 were used to measure the Time Of Flight (TOF). The magnetic rigidity (Bρ) of incoming

particles was determined by trajectory reconstruction using Parallel Plate Avalanche Counters (PPAC) at dispersive

focus F9 and achromatic focus F11 [29]. MUlti Sampling Ionization Chamber (MUSIC) identified Z at F11 before

the target. After the reaction target, the MUSIC detector was used to count the number of nuclei with Z ≥ 5 (NZ≥5).

48Ca beam

(345A MeV, 585 pnA)
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Figure 2: BigRIPS (F0 to F7) and ZDS spectrometer (F8 to F11) schematic showing detector arrangement for σcc measurement of 19B at the F11

focal plane.

3. Preliminary observation

As shown in particle identification plot Fig.3(a), the 19B events are well separated from other nuclear species and

have a sufficient count rate of 48 pps at F11. Fig.3(b) is the Z spectrum for the outgoing particles from the downstream

MUSIC placed after the reaction target. The charge-changing reactions are visibly increased for the spectrum with

target compared to that without target.

The proton radius of 19B will be extracted from the measured σcc using the Glauber model reaction framework.

The combined knowledge of matter radius and proton radius (this work) will determine the geometrical structure

of the nucleus, enabling us to understand the short-range forces acting between two neutrons and core and neutrons.

Further, the complete evolution of the neutron skin thickness of neutron-rich boron isotopes (12−19B) will help to guide

theoretical models. As shown in Fig.1, theoretical prediction for the proton radius of 19B varies widely. Hence, this

measurement will be the test bench for theoretical models. The N = 14 is a new magic number observed in neutron-

rich oxygen isotopes [24]. Hence, by studying the proton radius trend for the boron isotope, one can determine if

N = 14 magicity holds for Z = 5.

3



(a) (b)

Figure 3: (a) Particle identification with ZDS detectors before the reaction target. Nuclear species and their rate are indicated (b) Z spectrum of the

MUSIC after the reaction target for with (red) and without (blue) target conditions.
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