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Personality traits vary in their association
with brain activity across situations

Check for updates

Samyogita Hardikar 1,2,3 , Brontë McKeown3, Adam Turnbull 4,5, Ting Xu 6, Sofie L. Valk 7,8,9,

Boris C. Bernhardt 10, Daniel S. Margulies 11,12, Michael P. Milham 6, Elizabeth Jefferies 13,

Robert Leech 14, Arno Villringer 1,2,15,16,17 & Jonathan Smallwood 3

Humancognition supports complex behaviour across a rangeof situations, and traits (e.g. personality)

influence howwe react in these different contexts. Although viewing traits as situationally grounded is

common in social sciences, often studies attempting to link brain activity to human traits examine

brain-trait associations in a single task, or, under passive conditions like wakeful rest. These studies,

often referred to as brain wide association studies (BWAS) have recently become the subject of

controversy because results are often unreliable even with large sample sizes. Although there are

important statistical reasons why BWAS yield inconsistent results, we hypothesised that the situation

inwhich brain activity ismeasuredwill impact the power in detecting a reliable link to specific traits.We

performed a state-space analysis where tasks from the Human Connectome Project (HCP) were

organized into a low-dimensional space based on how they activated different large-scale neural

systems.Weexamined how individuals’observedbrain activity across thesedifferent contexts related

to their personality. We found that for multiple personality traits, stronger associations with brain

activity emerge in some tasks than others. These data highlight the importance of context-bound

views for understanding how brain activity links to trait variation in human behaviour.

Adaptive behaviour depends on efficiently meeting the demands imposed
by specific environmental conditions, andhumans function successfully in a
wide range of situations. For example, situations can vary on the need for
sustained attention1, skilled performance acquired through learning2, or on
our knowledge of the world3. In any specific situation, therefore, optimal
performance corresponds to a specific balance of input from different
cognitive systems. Consistent with this perspective, contemporary work in
psychology has established that how individuals respond to environmental
demands provides a useful way to understand trait variation within our
species4. For example, personality dimensions can be conceptualised as “if-
then” rules where a given trait is most likely to lead to a type of behaviour
when the individual is in a situation with a specific set of features5.

Although this context-dependent view of human behaviour has made
important contributions to the social sciences6 it has played a less important
role in neuroscience7. For example, studies that link brain activity to traits,
often referred to as Brain Wide Association Studies (BWAS), focus on
differences in brain activity that emerge during tasks or often at rest.
However, the BWAS paradigm has recently become the subject of con-
troversy due to concerns that without sample sizes in excess of several
thousand individuals, the results may be prone to false positives (i.e. Type I
error8, although see ref. 9 for an alternative perspective). Our study set out to

explore whether BWAS focusing on an “if-then” view of personality pro-
vides an alternative way of estimating the brain basis of different human
traits.

Results
In order to determine how brain responses under different situations relate
to personality traits, we leveraged the task and resting state functional
Magnetic Resonance Imaging (fMRI) data and the self-reported personality
measures from theHumanConnectomeProject (HCP, 10). As descriptions
of personality traitswe focusedon the so calledBig 5personality traits10 since
these traits are replicable11 and show well described links to real-world
behaviour12,13. In order to compare howdifferent personality traits varywith
brain activity across multiple task situations we constructed a state space
using the first three dimensions of brain variation from a previous
decomposition of group level resting state data of the HCP14. These
dimensions of brain variation, often referred to as “gradients”15 describe
functional differences between activity in different brain systems. We
focused on the first three dimensions, which correspond to differences
between primary and association cortex (Dimension 1, D1), visual and
somato-motor cortex (Dimension 2, D2) and variation between the two
large scale systems embedded within association cortex, namely the default
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mode network, (DMN) and fronto-parietal networks (FPN) (Dimension 3,
D3). Note that in our study we only use resting-state data to describe brain
organisation (e.g.Glasser et al.16), and so avoid thehypothesisedproblems in
using this method for ascertaining brain-trait associations8. We used this
‘state space’ to organise the macro-scale patterns of each individual’s brain
activity in the seven tasks (13 conditions) measured in the HCP by corre-
lating each spatial map for each task condition (contrastedwith the implicit
baseline of each condition) with each of the group-level dimensions of brain
variation (seeMethods). This process yielded a set of x, y, z co-ordinates for
describing the observed brain activity for each individual in each task
context (Fig. 1). We also calculated the pair-wise similarities in the whole
brainmaps (see SupplementaryFig. 2).Our analytic approachusesnogroup
averaging and preserves the unique functional topography of each indivi-
dual during taskperformance as this is argued to be important for accurately

describing brain organisation17,18. Instead of averaging individual maps, we
compared the unthresholded map for each task for each individual against
the first three group-level gradients describing how each individuals brain
resembled thesewell-documented dimensions of brain variation. This state-
space approach allows trait-related variation in brain activity, contextual
differences in brain activity, and their interaction, to be differentiated along
one ormore of the independent dimensions of brain variation focused on in
our study (See19–21 for prior demonstrations of this approach). One
advantage of our state-space method is that it provides a simple low-
dimensional manifold in which the impact of traits and situations can both
be simultaneously assessed. In otherwords, it provides away of assessing the
possibility that brain-trait relationships are situationally dependent, that is
analytically and computationally simpler than more concrete regional
approaches to understanding brain function.
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Fig. 1 | Generation of a ‘state-space’ to understand how the neural correlates of

personality traits are differentially expressed across task situations. To simulta-

neously map neural activity across individuals and situations we utilised a state-

space approach19–21 in which we calculated the correlation between the whole brain

map of an individual’s brain activity in a specific task condition (contrasted with the

respective baseline) with each of the three dimensions of brain variation generated

by the decomposition of brain activity at rest14. This results in a series of values which

can be considered to be co-ordinates in a 3-dimensional space upon which we can

conduct inferential statistics to understand how neural activity changes across

situations and individuals and how these two influences on brain activity interact.

(See Supplementary Fig. 1 for the distribution of all individuals’ maps within the

space and Supplementary Fig. 2 for the group average of each task condition within

the state space). The location on a dimension in this analysis describes the degree of

fit between an observed brain map and the relative levels of activity described by the

specific gradient. Thus, if onemap is higher on gradient 3 than anothermap, the first

map would have higher activity in the fronto-parietal system than in the DMN,

compared to the second map.
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Weused linearmixedmodels, as used the lmerTest package22 in R23, to
perform inferential statistics on the co-ordinates of each brain map to
understand whether they supported a situationally bound account of how
brain activitymaps onto dimensions of personality (seeMethods for details
of the models). We performed these analyses once for each dimension of
brain variation, and in each analysis modelled (i) the main effect of task
conditions, (ii) the main effect of each dimension of personality (Neuroti-
cism, Openness to Experience, Conscientiousness Extraversion and
Agreeableness) and (iii) the interactions between each trait dimension and
task condition. Subject ID and family ID were modelled as random effects,
and age, gender, and mean framewise displacement were added as covari-
ates of no interest. We included family ID as a random effect to control for
the fact that the HCP data set includes individuals who are biological
siblings.

In these analyses, a main effect of condition indicates a difference
between the location of task conditions on the dimension of brain variation
of interest. Amain effect of a personality trait indicates a similar association
between that trait and brain activity across each task context. Finally, a trait-
by-condition interaction indicates that the association between trait and
brain activity follows an “if-then” rule, because the strength and/or direction
of the association between trait and brain activity is variable across the task
conditions sampled in our study. To control for family-wise error in these
analyses we controlled for the 78 pairwise comparisons between tasks, the
five traits thatmake up theBig 5 and the three dimensions of brain variation
(78 × 5 × 3 = 1170). Using the Bonferroni correction method this led to an
alpha value of 0.05/1170 = 0.00004. Although the Bonferroni method may
be considered to be too conservative, we chose this method because we do
not have a holdout sample and are addressing a broad question about the
landscape of brain trait associations. In this context, using a stringent
threshold ensures that we identify only the most robust results.

In each of these three models we identified a significant main effect of
task condition (D1: F(12, 11964) = 5.92, p < 0.00001 ; D2: F(12, 972) = 51.05,
p < 0.00001 ; D3: F(12, 11992) = 10.83, p < 0.00001). This indicates that brain
activity recorded in the specific task conditions measured in the HCP sig-
nificantly varies along each of the three dimensions of brain variation that
makeupour state space (see SupplementaryTable 2 for complete results and
Supplementary Fig. 2 formean locations of all conditions in the state space)
establishing that across the set of tasks included in the HCP there was
significant variation in the average balance of different neural systems
engaged during task completion.

In addition, for two out of three dimensions of brain variation studied
we identified at least one example where the association between a trait and
brain activity was explained by an “if-then” relationship (Fig. 3). For the
second dimension of brain variation (D2, differentiation between visual and
somato-motor cortex), a significant interaction was observed for Agree-
ableness (F(12, 11958) = 3.82, p < 0.00001). The condition with the most
positive association (i.e., towards visual cortex) was the “2-back” working
memory (t = 2.17) while the task with the strongest negative association
(towards somato-motor cortex) was “motor” (t =−3.35).

For D3 (the dissociation between the default mode network and the
fronto-parietal network) we found significant interactions for both Open-
ness to Experience (F(12, 11979) = 4.40, p < 0.00001) and Conscientiousness
(F(12, 11984) = 3.57, p < 0.00003). For Openness to Experience the task with
the most negative association (i.e., towards the default mode network) was
“story” (t =−3.60) and the most positive was the “reward” condition in the
gambling task (t = 2.12). For Conscientiousness, the task with the most
negative association was with the “motor” task (t =−2.78) and the “0-back”
workingmemory condition had the strongest positive association (t = 2.66).

It is important to note that in all three models none of themain effects
of traits passed our correction for family-wise error; the strongest associa-
tion was in D2 for Neuroticism (p = 0.033 uncorrected, complete results of
all linearmodels can be found under Supplementary Tables 3–9). Together,
therefore, our analysis indicates only weak support for the hypothesis that
traits will show a general association with brain activity across tasks, and
substantial support for the view that these associations aremodulated by the

task context. Overall, therefore, our data is consistent with the view that
traits lead to situationally specific changes in brain activity and inconsistent
with the implicit assumptions behind many BWAS that attempt to link
traits to a single condition.

Next, we examined the sample size needed to infer associations
between traits and brain activity across situations in our analysis. One cri-
ticism of BWAS is that the magnitude of associations between activity
within regions or sets of regions and traits are often higher with smaller
numbers of participants and decline with larger sample sizes: a pattern that
is indicative of false positives with underpowered designs8. For each of the
significant interaction effects, therefore, we repeatedly sampled individuals
from our population to create samples-sizes ranging from 25 to 950 in 16
log-spaced steps. We created 1000 examples of each sample size. We
examined how these relationships changed with increasing power (bottom
row, Fig. 3). It can be seen that with smaller sample sizes the task-trait
relationships begin to stabilise, i.e., generate > 95%estimates that all have the
same direction, for samples that are between 222 and 459. Relative to those
observed inBWAS that focus onbrain activity at rest, these estimates tend to
stabilise with equivalent, if not smaller, samples. Lastly, as the full HCP
dataset contains pairs of individuals who are siblings, we repeated the
reproducibility analysis, generating bootstrapped samples which only
contained singletons in each resampling iteration, yielding broadly similar
results (Supplementary Fig. 4).

Discussion
Using a state-space created from dimensions of brain variation observed at
rest we established that different tasks employed in the HCP vary in the
whole brain patterns of brain activity they engender. This analysis confirms
that these situations provoke different challenges to the brain. Consistent
with psychological models of cognition and behaviour that emphasise trait
variation as a set of “if-then” rules, different tasks systematically varied in
their utility to capture the brain activity associated with different traits.
Openness to Experience, for example, was most strongly associated with
increased activity within the default mode network during the “story” task
condition and increased activity in the fronto-parietal network during the
“reward” condition.Agreeablenesswas linked to relatively greater activity in
somato-motor cortex in the “motor” task and with relatively greater visual
activity during “2-back” working memory. In contrast, Conscientiousness
was linked to greater engagement of the fronto-parietal system than the
default mode network during the “0-back” working memory compared to
the “motor” task.

Together these data illustrate that associations between brain activity
and trait variation cannot be mapped equally in a single situation. Con-
sistent with psychological perspectives that traits can be conceived of as
stable responses to specific environmental challenges (“if-then” rules) our
analysis establishes that brain activity correlates of traits vary substantially
across situations. For instance, the associationwe find betweenOpenness to
Experience and activity in the default mode network during the “story” and
“ToM” tasks sit in line with the previously reported role of the default mode
network in tasks that require narrative engagement and comprehension24,25

and theory of mind ability26,27. While the link betweenDMN andOpenness
to Experience has been established in brain activity at rest28, wefind that this
effect is strongest during task contexts that require narrative comprehension
(“story”) and theory of mind (“ToM”) and shows the opposite direction in
the condition that requires reward-based decision making (“reward”). This
suggests that regardless of sample size8, or analytic approach9, studies
seeking associations between brain-activity and traits will likely have greater
success indetecting accurate associations by tailoring the situations inwhich
brain activity is measured to challenge the brain in an appropriate manner.
Our study, therefore, establishes that one reason why BWAS may yield
inconsistent results is that because the resting-state context is only one of
many situations the brain canbeplacedwithin, somaynotbe thebestway to
understand the complete landscape of brain-trait associations. This is likely
because at least some traits are likely to be linked to how the individual
responds to cognitive challenges that rest does not provoke. While it
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continues to be important to employ well powered designs, and better
analytic approaches, BWAS will become more useful following the devel-
opment of better theoretical models which include situations (including
rest) in which brain-traits are most likely to emerge (e.g.29). We note that
recentworkhasused approaches that combine resting-state andhypothesis-
driven task paradigms to gain insight into the organisation of specific
functions in the brain and individual differences30–33, and a trend for esti-
mating trait associations in appropriate contexts is also emerging in
population studies of genetics34.

At the same time as illustrating that trait associationswithbrain activity
are at least partially situationally bound, our approach highlights important
new avenues of inquiry for understanding how human variation is linked to
patterns of brain activity. For example, what are the best situations for
mapping the neural correlates of specific traits, and howmany situations are
needed to efficientlymap thebulkof human traits?Weutilised theHCP task
data because it is the largest existing dataset to sample a wide range of tasks
along with trait measures. However, the selection of tasks for the HCP was
not designed to test ”if-then” relationships between personality and brain
activity. It is likely, therefore, that there are better batteries of tasks with
which to distinguish the neural correlates of different traits. Fortunately,
techniques such as neuroadaptive Bayesian optimisation, which uses
machine learning to efficiently identify correlations between brain activity
and behaviour, can be used to identify situations in which a specific trait
maps onto specific patterns of brain activity efficiently35. Iteratively, this
process will enable the detection of situations where specific brain-trait
associations can be mapped in an optimal manner and which in turn will
improve the efficiency with which the neural correlates of different features
of human behaviour can be understood.

Our analyses also highlight specific analytic questions that will need to
be resolved to properly determine how the correlations between neural
activity and traits vary across situations. For example, our study used a state-
space basedonpatterns of brain variation at rest as a low-dimensional space;
allowing us to preserve individual topography while simultaneously mod-
elling task and individual differences in brain function. It has been shown
that using broad-scale activations as a measure of brain function can offer
more statistical power compared to regional effects, with a relatively mod-
erate decrease in specificity29. In our study we used functional gradients
because they are a convenient tool for organising brain-wide activity19–21.
However, there are likely betterways to characterise the dimensions of brain
variation and organisation in order to perform state-space analyses like the
one we report here. For example, contemporary work in neuroscience has
identifieddimensionsof brain variation that combine information related to
brain structure with functional behaviour (e.g., ref. 36). Fortunately,
machine learning can be used to performmultiverse analyses that optimise
how different features of brain organisation can be best analysed to max-
imise their links with phenotypes37. It is likely that optimising the dimen-
sions of brain variation will generate state spaces that allow BWAS to
estimate trait-related patterns of brain activity in a more effective manner.
For example, we found a relationship between greater activity within the
DMN during the ToM task with greater agreeableness, which did not pass
our correction for multiple comparisons, but was seen in a prior study38. It
may be possible to optimise key features of this paradigm to increase its
power to detect a possible relationship to Agreeableness. These more tar-
geted analyses could also include the identification of parcellation schemes
suitable for testingmore nuancedmodels of brain function than are possible
with macro-scale gradients. This could be helpful moving forward because
our study design is optimised to detectmacro-scale changes in brain activity
and it is possible that certain trait features relate tomore subtle differences in
function than can be captured in our state space. It is also important to note
that our study provides only an indirect comparison of the comparative
power of tasks compared to rest (i.e. in the number of subjects required to
reachapattern that is unlikely to lead toType I error, Fig. 3).The tasksdata is
clearly separated into different contexts, whereas resting state data is a
continuous time series (thatmay contain a number of ‘hidden’ states). In the
future it could be possible to separate resting state data into a sequence of

brain states (e.g. using Hidden Markov Models39, or Co Activation
Patterns40). The states could be projected onto low-dimensional manifold
and would allow for a more direct comparison with task states. Finally, our
study focused on trait descriptions of human behaviour that have well
established features (i.e., the “Big 5”). Our analytic choice was motivated by
the idea that BWAS should focus on traits that have real-world
significance41. In this context, the “Big 5” have well established reliability11

and are predictive of behaviour in real-world situations including
academia12 and the workplace13 and are predictive of psychopathology42.
However, it remains to be seen whether the same tasks which establish the
situationally specificneural correlates of the “Big5” canalsodiscriminate the
brain mechanisms which impact mental health, or physical illness, both of
which are probably the most important outcomes from BWAS studies41. In
the future, therefore, it is important to take seriously the goal of under-
standing how to tailor task conditions for acquiring brain activity that have
better capacity to discriminate phenotypes linked to health, wellbeing,
productivity and disease.

In conclusion, our state space analysis of the tasks in the HCP suggest
that brain-trait associations are inextricably linked to the context in which
brain activity is measured and this observation leads to two concrete sug-
gestions for future studies. First, when examining specific brain-trait rela-
tionships it would be helpful to consider the most appropriate situations in
which these association will emerge as out study shows that this intimately
related to the sample size needed for these associations to stabilise. It is
important to note that these conditions may include rest for some specific
traits, since there are likely to be certain traits that express their associations
most clearly in relatively unconstrained situations. Second, if in the future it
is deemed important to generate large data sets similar to the HCP43 or the
Adolescent BrainCognitiveDevelopment (ABCD44), project, then it is likely
that the statistical power for detecting robust brain correlates for a range of
different traits can be derived from a combination of both the amount of
time spent acquiring data in a specific situation (enabling stable measure-
ment) and the range of different cognitive and emotional features that data
acquisition encompasses (which enables the testing battery to discriminate
multiple different traits).

Methods
Data

We used task and resting state fMRI, and self-reported questionnaire data
from the human Connectome Project43 1200 subjects release. Data acqui-
sition protocols were approved under the Washington University institu-
tional review board. All ethical regulations relevant to human research
participants were followed and all participants provided written informed
consent. The HCP dataset (N = 1206) includes multimodal MRI, beha-
vioural, genetic, physiological and demographic data from adult twins and
their non-twin siblings between 22- 37 years of age. From these, our analysis
made use of the minimally preprocessed (2mm smoothing)45 task-fMRI
maps and NEO-FFI personality measures10 and summaries of the group-
averaged functional connectivity matrix from the 900 subjects release14.
Additionally, we used demographic information of subjects (age in years,
gender), and head-movement parameters of each task-fMRI session as
covariates. The final sample size of all HCP subjects with preprocessed task-
fMRI data available for download is 1088 (590 women, mean age =
29.52 ± 3.59 years; 498men,mean age = 27.92 ± 3.61 years). Supplementary
Table 1 shows the number of subjects available in each task condition.

Neural state space

To create a neural state space, which describes maximal functional covar-
iation of different neural systems, we used previously established low-
dimensional summaries of the group-level whole-brain functional con-
nectivity matrix14. These dimensions of brain variation, often referred to as
“gradients”, describe functional differences between brain systems. In our
analysis, we created a three-dimensional “state space” from the first three
gradients which correspond to differences between (i) primary and asso-
ciation cortex, (ii) visual and sensorimotor cortex and (iii) variation between
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the two large scale systems embedded within association cortex (default
mode network, DMN, and fronto-parietal networks, FPN).

To project each individual’s brain activity across different contexts into
the state space,we calculated spearman rank correlation between eachof the
three gradientmaps and each individual’s un-thresholded z-map from each
task condition in grayordinate space. (Fig. 1). Only themain contrasts (each
condition against the respective implicit baseline) were used for this pur-
pose, resulting in 13maps for each individual, namely,Motor: (1) average of
allmovements; Emotion: (1) faces (2) shapes; Language: (1)maths, (2) story;
Social: (1) random interactions, (2) theory of mind (ToM); Working
Memory: (1) 0-back, (2) 2-back; Gambling: (1) reward, (2) punish; and
Relational: (1)match (2) relational). The correlation coefficient of eachmap
with the three gradients served as the location of that map along the
respective dimension of brain variation in the state space (Fig. 1)

Linear mixed models

To understand and quantify how locations of tasks in the state space varied
with dimensions of personality, we performed regression using linearmixed

models once for each dimension of brain variation as the outcome variable,
and the task context, eachdimensionof personality (Neuroticism,Openness
to Experience, Conscientiousness, Extraversion andAgreeableness) and the
interactions between each dimension and each task condition as predictors.
Subject IDand family IDwere addedas randomeffects, and age, gender, and
mean framewise displacement were used as covariates of no interest.

Example model for one dimension of variation:

Location ¼ β0 þ β1 × conditionþ β2 ×Neuroticismþ β3 ×Opennessþ

β4 ×Conscientiousnessþ β5 ×Extraversionþ β6 ×Agreeablenessþ

β7 × ðcondition×NeuroticismÞ þ β8 × ðcondition×OpennessÞþ

β9 × ðcondition×ConscientiousnessÞ þ β10 × ðcondition×ExtraversionÞþ

β11 × ðcondition×AgreeablenessÞ þ β12 × ageþ β13 × genderþ

β14 ×meanFDþ usubþ uFamily þ ϵ

In these analyses, a main effect of task indicates a difference between
the location of tasks on the dimension of interest. A main effect of per-
sonality trait indicates a similar association with brain activity with a trait
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Fig. 2 | Associations between personality traits and state space location across all

dimensions and task conditions. In this figure, each point reflects the estimate of

the association between a trait of the “Big 5” and a single dimension of brain

variation, under a single task condition, while controlling for all other variables in the

model. Error bars indicate the 95% Confidence Intervals around this estimate. For

ease of interpretation, tasks are ordered from the most negative to the most positive.

Significant interaction effects between conditions and traits aremarked with asterisk

(controlling for multiple comparisons, p < 0.00004). D1 reflects the dissociation

from primary cortex (negative) to association cortex (positive). D2 reflects the

dissociation between somato-motor (negative) and visual cortex (positive). D3

reflects the dissociation between the default mode network (negative) and fronto-

parietal network (positive).
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across each task context. Finally, a trait-by-task interaction indicates that
associations between traits and brain activity varied in their strength,
direction, or both across different tasks. To control for family-wise error in
these analyses we controlled for the 78 pairwise comparisons between tasks,
the five traits whichmake up the “Big 5” and the three dimensions of brain
variation (78 × 5 × 3 = 1170). Using the Bonferroni correction method this
led to an alpha value of 0.05/1170 = 0.00004.To illustrate the change in trait-
brain associations depending on context, we followed up each significant
trait*condition interaction, by comparing the strongest positive and nega-
tive associations of the respective trait and with task locations along
dimensions of brain variation (Fig. 3). Linear models were fitted using the
lmerTest22 package in R23. We used the emmeans46 package to derive the
slope for each trait in the model at each level of the factor “condition”,

resulting in an estimate for the association of each combination of trait and
task condition and state-space location shown in Fig. 2.

Reproducibility of context-specific brain-wide associations

To examine the distribution of effects found in our analysis as a function of
sample size, and to estimate the sample size required to reliably identify such
effects, we calculated the bootstrapped (with 1000 iterations) bivariate
correlation estimates and confidence intervals for all significant task-brain
interactions (Fig. 3). Following Marek and colleagues8 we focused on the
strongest associations identified in our initial analyses. For each of these
effects, we created 16 logarithmically spaced samples sizes from 25 to 950
subjects, by resampling subjectswith replacement 1000 times at each sample
size. Similar to the follow-up analysis for task × trait interactions in the
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Fig. 3 | Trait associations with respect to variation between visual and sensor-

imotor systems (D2) and default mode and fronto-parietal networks (D3). This

figure illustrates the strongest relationship between brain activity and trait for the

three personality dimensions for which significant interactions were identified:

Agreeableness, Openness to Experience and Conscientiousness. Scatter plots in the

top row show the relationships between two conditions and the specific trait along

the dimension of brain variation of interest. In these plots, x axis shows the trait

score, and y axis shows the location of a specific task condition on the dimension of

brain variation of interest, i.e. the Spearman correlation between the task condition

map, and the respective gradient map. Each point represents one individual. Scatter

plots in the middle row show the correlation between the trait and the divergence of

two task-condition maps shown above on the dimension of brain variation interest.

In these plots, y axis shows the pair-wise difference (e.g. 2back - motor) in the

Spearman correlation score of the two task maps with the dimension of interest.

Plots in the bottom row summarise the results of a bootstrapping analysis showing

the distribution of the same correlations as a function of sample size. In these plots,

the shaded regions show the distribution of 100%, 99%, and 95% of the effects

(Pearson’s R) derived from the bootstrapping and vertical dashed lines indicate the
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original sample, in each resampled dataset, we calculated the bivariate
correlation between trait scores and the distance between two brain maps
that show the strongest diverging associations with that trait along a
dimension. (e.g., correlation between Openness and (D3 location of reward
–D3 locationof story). Figure3 shows thedistributionof thesebootstrapped
estimates with increasing sample sizes and indicates the 95% and 99%
confidence intervals as well as full range of effect sizes derived from
bootstrapping.

Finally, given that the HCP dataset is made up of sibling pairs and
groups, to avoid inflated estimates resulting from resampling of closely
related individuals, we repeated the bootstrapping analysis in a smaller
subsample (n = 442) of “singletons” where, in each iteration, no more than
onemember of each family could be included at a time. For this analysis, we
used 13 log-spaced sample sizes between 25 and 442. The results of this
analysis are shown in Supplementary Fig. 4.

Reporting summary

Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data included in the present analyses were acquired with informed
consent and are available at https://db.humanconnectome.org/.

Code availability
All code used for analysis and visualisation can be found at https://github.
com/samyogita-hardikar/hcp-task-trait.
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