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ABSTRACT: With the help of isotherm equations, how solubility
changes with solubilizer concentration (“solubility isotherm”) can reveal
the underlying interactions. However, despite their success in elucidating
the mechanisms of hydrotropy (via the cooperative (sigmoidal) isotherm)
and synergistic solvation (via the quadratic (bell-shaped) isotherm), these
simple statistical thermodynamic isotherm equations alone are insufficient
for more complex isotherms that combine their features. Here, we show
(i) how simple isotherms can be combined via the isotherm multi-
plicativity rule founded on the excess number relationship (i.e., solubilizer
concentration dependence of the solubilizer excess number around a
solute) and (ii) how (i) leads to successful modeling of complex solubility
isotherms, capturing that cooperative solute−solubilizer association, in
turn, induces the exclusion of solubilizers from the already crowded solute’s locality at higher concentrations. Moreover, we will
demonstrate that both the cooperative and quadratic solubility isotherms can be derived directly from the excess number
relationship, establishing it not only as the basis for the multiplicativity rule but also as the fundamental relationship for simple and
complex solubility isotherms.

■ INTRODUCTION

The problem of poor solubility can often be overcome by the
addition of solubilizers. Several subcategories of this strategy
have been known in the literature (Figure 1): (a) synergistic
solvation in the mixture of poor solvents (Figure 1(a); with
“poor” being a common terminology signifying low solvation
capacity in polymer chemistry1,2 and the solubility of small
molecules3),4−10 (b) hydrotropy by the addition of hydro-
tropes (i.e., short amphiphilic solubilizers that do not exhibit
critical micelle concentration; Figure 1(b)),11−19 and (c)
micellar solubilization by surfactants (Figure 1(c)).20−24

Across these subcategories, how solubility changes with
solubilizer concentration (i.e., “the solubility isotherm”25) is
the key not only to quantifying the efficacy of a solubilizer (a
general term adopted for cosolvents, hydrotropes, and
micelles) on a solute but also to understanding the mechanism
of solubilization.25,26

Our goal is to elucidate the solubilization mechanism
underlying a solubility isotherm. As a first step toward this
goal, solubility isotherm equations must be derived systemati-
cally from the fundamental principles that govern solubiliza-
tion, with each of their parameters having a clear link to the
underlying physical process on a microscopic basis.25 Let us
first summarize the fundamental principles that govern the
derivatives of the solubilization isotherm (when plotted against
the activity of solubilizers): (i) the first derivative (isotherm
gradient) represents preferential solute-solubilizer interac-
tion,27,28 according to the Kirkwood-Buff theory29−36 and
(ii) the second derivative (isotherm curvature) comes from the

change of self-association around the solute, according to the
cooperative solubilization theory.37,38 We emphasize that the
derivatives (i) and (ii) result from a statistical (ensemble)
average of all the molecular interactions in the solution. In this
paper, (i) and (ii) in combination will be referred to as the
fluctuation theory.

From the fluctuation theory alone, we have derived the
quadratic isotherm, which was successful in capturing the bell-
shaped isotherm (Figure 1(a)), with direct mechanistic
insights drawn from its parameters that capture (i) and
(ii).25 However, the quadratic isotherm is incapable of
modeling sigmoidal-shaped solubility isotherms frequently
observed for solubilization by hydrotropes17,22,39,40 whose
signatures are a sudden onset of solubilization (at the
minimum hydrotrope concentration) and the subsequent
plateau of solubilization around a few molars of hydrotropes
(Figure 1(b)).26 Such a sigmoidal shape can instead be
modeled by the cooperative isotherm, successfully applied to
hydrotropy.26

However, experimental solubility isotherms are sometimes
more complex in shape than quadratic or cooperative
isotherms.41−43 As illustrative examples, we have chosen
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syringic acid solubilization in water by 1,2-alkanediols (Figures
2 and 3)44 because the functional shape of the isotherm
changes as the alkyl group becomes longer, from near-
quadratic (ethanediol), through cooperative (propanediol),
and finally to a more complex shape (longer alkyls) which
combines the features of (1) sigmoidal solubilization at lower
solubilizer concentrations and (2) declining solubilization at
higher solubilizer concentrations. Neither the cooperative nor
quadratic isotherm alone can capture such complex isotherm
shapes. The cooperative model26 can reproduce (1) but not
(2), as shown in Figure 2. The quadratic isotherm,25 when
restricted narrowly to low solubilizer concentrations, may fit
(1), yet modeling the overall isotherm shape is beyond its
capacity (Figure 3).

How can we model complex solubility isotherms that
combine the features of simple isotherms? This question is
important because isotherms with complex functional shapes
are not restricted to alkanediols44 but are observed also in the
wider classes of solubilizers (e.g., glycerol ethers,42 cy-
rene,41,43,45 and ionic liquids46). The hint to answer this
question comes from a similar problem that was solved
recently for sorption isotherms: the key was the discovery of the
isotherm multiplicativity rule for “conditional” sorption
consisting of (1) unconditional (initial) process and (2)
conditional process subject to (1).47 We will demonstrate in
this paper that this new approach can be carried over to
solubilization through a formal analogy between solvation and
sorption,36,48,49 leading to the discovery of a new class of
solubilization phenomenon. To achieve this goal, we need to

Figure 1. Top. Typical functional shapes for the solubility isotherm (i.e., how solubility changes with solubilizer concentration) of (a) synergistic
solvation, (b) hydrotropy, and (c) micellar solubilization. Bottom. The mechanistic insights underlying the isotherms clarified so far: (a) the
enhanced self-dissociation in the solubilizer (orange)-solvent (blue) mixture around the solute, (b) the enhanced self-association of the solubilizer
(orange) around the solute, and (c) the enhanced self-association in the micelle (orange)-solvent mixture around the solute.

Figure 2. Complex solubility isotherms of syringic acid (solute) in
water (solvent) with the concentrations of solubilizers, i.e., 1,2-
Ethanediol (blue circles), 1,2-Propandiol (green diamonds), and 1,2-
Butanediol (magenta triangles), from the experimental data published
by Abranches et al.44 The solubility (cu) relative to the pure water
value (cu

o) is expressed as a function of solubilizer mole-fraction (x2).
The fitting by the cooperative solubility isotherm (eq 9, right bottom
within the figure) works for 1,2-Ethanediol (blue solid line; (m, xs,
cu

∞/cu
o) = (1.7,0.99,66)) and 1,2-Propandiol (green solid line;

(2.5,0.25,35)) but fails for 1,2-Butanediol (magenta solid line;
(3.4,0.12,36)) or strictly limited to the lower solubilizer concen-
trations (magenta dotted line; (1.9,0.15,46)).

Figure 3. Complex solubility isotherms of syringic acid (solute) in
water (solvent) with the concentrations of solubilizers, i.e., 1,2-
Butanediol (magenta triangles up), 1,2-Pentanediol (orange triangles
down), and 1,2-Hexanediol (red squares), from the experimental data
published by Abranches et al.44 The logarithmic solubilization (ln(cu/
cu

o)) is expressed as a function of solubilizer mole-fraction (x2). The
global fitting by the quadratic solubility isotherm (eq 5, top within the
figure) fails for 1,2-Butanediol (magenta solid line; (A0, (B0 − 2Aχ0)/
2) = (16,−13)), 1,2-Pentanediol (orange solid line; (18,−16)), and
1,2-Hexanediol (red solid line; (17,−15)). The local fitting for x2 ≪ 1
can be done for a strictly limited range ((34,−82), (61,−250), and
(87,−590) for the magenta, orange, and red dotted lines).
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establish a universal theoretical foundation for simple and
complex solubility isotherms, based on the statistical
thermodynamic fluctuation theory, in a manner parallel to
sorption. Thus, the objectives of this paper are

I. to derive the cooperative solubility isotherm directly
from the fluctuation theory (as was possible for the
quadratic isotherm);

II. to show solubility isotherm multiplicativity as the natural
consequence of the fluctuation theory;

III. to combine I and II to capture complex isotherms as the
conditional solubilization processes.

Achieving these objectives will not only provide mechanistic
insights into complex solubility isotherms (objective III) but
also furnish a universal theoretical foundation for simple and
complex isotherms (objectives I and II). Mirroring the recent
progress in sorption,47,50−52 simple solubility isotherms will be
derived systematically by solving differential equations and
complex solubility isotherms can be constructed based on a
multiplication of simple solubility isotherms,47 both directly
based on the fundamental principles of the statistical
thermodynamic fluctuation theory.

■ THEORY

Statistical Thermodynamic Fluctuation Theory. Here,
we establish the theoretical foundation for achieving our three
objectives (see Introduction). We begin by setting up our
system: a solute (which can be a small molecule or a
macromolecule; denoted as species u) in a mixture consisting
of solvent (species 1, such as water, yet can be used for any
solvents) and solubilizer (species 2, which can be electrolytes
and nonelectrolytes). The solubilizer has many synonyms (e.g.,
cosolvents, cosolutes, hydrotropes, osmolytes, denaturants, and
stabilizers).53 Throughout this paper, we adopt a {T, P, N1, μ2,
μu} ensemble.54,55 (Note that converting it to the grand
canonical ensemble {T, V, μ1, μ2, μu} underlying the Kirkwood-
Buff theory29−36 can be carried out straightforwardly via
statistical variable transformation, as outlined in Appendix A of
ref 25) The constancy of μu emphasizes the phase equilibrium
of the solute between solution and its pure phase that underlies
eq 1, making it applicable to low and high solubilities alike.38

Let us focus on the solubility of a solute (cu, in the molarity
scale56) and write down an exact, approximation-free relation-
ship (which was derived as eq 1 of ref 25) as to how it depends
on the solubilizer activity (a2),

c
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ln

ln

u
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u u
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where Nu2 is the excess number of solubilizers around a probe
solute, which is defined as the difference between ⟨N2⟩u (the
mean number of the solubilizer molecules in an inhomoge-
neous ensemble in the presence of a solute molecule whose
center of mass is fixed at the origin) and ⟨N2⟩ (in the
homogeneous ensemble of bulk solution i.e., a mixture of
water, solubilizer, and solute molecules). For electrolyte
solutions, Nu2 refers to the excess number as combined
contributions from cation and anion, following the common
KB approach to ionic species.57,58 (Note that cation and anion
contributions are combined due to the charge neutrality of the
solution system.57−59) Hereafter, eq 1, our fundamental
equation, will be referred to as the excess number relationship.

Not only the gradient (eq 1) but also the curvature is an
important signature of an isotherm, such as its concavity or
convexity; a sudden onset of solubilization,37,38 which is an
important characteristic of hydrotropy, can also be considered
as the isotherm convexity at low solubilizer concentrations.25

The cooperative solubilization theory links the curvature
(second derivative) to the local-bulk difference in solubilizer-
solubilizer interaction, via37,38
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where ⟨δN2δN2⟩u is the local solubilizer number fluctuation
around the solute and ⟨δN2δN2⟩ is that in the bulk solution.
Through eq 2, how solubilizer-solubilizer number correlation is
enhanced locally (around the solute) as compared to the bulk
determines the ln-ln curvature of the solubility isotherm.

Thus, the fluctuation theory reveals solubilizer interactions
underlying a solubility isotherm (how cu depends on the
solubilizer concentration) through its first and second
derivatives.
Deriving the Quadratic Isotherms from the Fluctua-

tion Theory. As an important preparation for achieving
Objective I, it is imperative to clarify what it means to derive
an isotherm equation directly from the fluctuation theory. To
identify the requirements to achieve this goal, we take the
quadratic isotherm as an example.

Our theoretical foundation is the excess number relationship
(eq 1). Here, we rewrite it in a form in closer conformity to an
isotherm, using a2 as its variable instead of lna2, as

c
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(3a)

This representation of the excess number relationship (eq 3a)
is combined with a characteristic equation, which expresses how
the excess number (Nu2) changes along solubilization.25 Here,
we adopt a series expansion around a reference activity, a2 = ar,

N

a
A B a a( )u

r r r

2

2
2= + + ···

(3b)

as the characteristic equation, with its coefficients, Ar and Br,
that can be evaluated at that point.25 (Note that eq 3b is a
generalization of our recent expression that was restricted to ar

= 0.25) To derive a solubility isotherm, it is necessary to
combine the excess number relationship (eq 3a) and the
characteristic equation (eq 3b),
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and to solve the combination (eq 3c) as a differential equation.
Integrating eq 3c yields

c

c
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B
a aln
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2
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u r

r r

r

r2 2
2

= + + ···

(4)

which is the quadratic solubility isotherm around a2 = ar.
Once a solubility isotherm has been derived, the next task is

to give each of its parameters a physical interpretation. In the
case of the quadratic isotherm (eq 4), its parameters, Ar and Br,
can be interpreted using the fundamental relationships of the
fluctuation theory (eqs 1 and 2). As clarified in Supporting
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Information: Section A, Ar signifies the preferential solute-
solubilizer interaction and Br represents the enhancement of
self-interaction by the solute, both defined around a2 = ar

(Figure 4). We emphasize that the expansion (eq 4), alongside
the interpretations of its parameters Ar and Br, is an exact
relationship valid for any solubility isotherms, while truncating
eq 4 and using it over a finite range of a2 is an approximation.

The quadratic isotherm, when expanded around ar = 0 and
truncated at a2

2, is a particularly convenient approximation
arising from eq 4. Changing its variable from a2 to x2 (see eq 7a
of ref 25) leads to

c

c
A x

B A

xln
( 2 )

2

u

u

o 0 2
0 0 0

2
2

= + + ···

(5)

with A0 and B0 defined at ar = 0, which is also true for χ0, i.e.,
the Kirkwood-Buff χ parameter of the bulk solution (see
Supporting Information: Section A for its origin and
definition). This form of the quadratic isotherm (eq 5) was
useful in modeling synergistic solvation isotherms.25 (In
Results and Discussion, in the subsection entitled “Capturing
Complex Solubility Isotherms via the Multiplicativity Principle
(Objective III)”, retaining the first term of eq 5 will be shown
to be sufficient for the solubilization of syringic acid by 1,2-
alkanediols.)

Thus, with the quadratic isotherm as an example, we have
clarified the general procedure of deriving a solubility isotherm
from the fluctuation theory, which involves: (i) combining the
excess number relationship and the characteristic equation to
form a differential equation; (ii) solving the differential
equation; and (iii) to provide an interpretation for its
parameters.
Deriving the Cooperative Isotherm from the Fluctua-

tion Theory (Objective I). Here, we derive the cooperative
isotherm26 directly from the fluctuation theory. Its original
derivation (starting with the partition functions of semi-open
ensembles26) was achieved with significant mathematical labor,
leading to a limited clarity of the physical basis of this
isotherm. Here, our novel systematic approach, based on a

combination of the excess number relationship and the
characteristic equation (see Statistical Thermodynamic Fluc-
tuation Theory), will lead to a clarification of the physical
picture underlying the cooperative isotherm.

First, we determine the functional shape of the characteristic
equation for the cooperative isotherm. The signatures of the
cooperative isotherm are (nearly) zero isotherm gradient
before the onset of solubilization and at saturation.26 This can
be captured most succinctly by a quadratic equation which
becomes zero at cu

o (solubility in the absence of solubilizers)
and cu

∞ (saturation solubility), as

c

a
c c c c

ln
( )( )u

T P

u u u u

2 , ;

0

u

=

i

k

jjjjj

y

{

zzzzz
(6a)

where η is a constant, whose expression will soon be
determined, and why adopting lna2 as the variable will be
clarified shortly. The constant η must be positive for the
isotherm to exhibit a maximum gradient between cu

o and cu
∞.

Comparing eqs 6a and 1, the simplest functional form for the
characteristic relationship of cooperative solubilization is

N
c c c c

c

( )( )
u

u u
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u u

u

2 =

(6b)

The next step is to solve the differential equation that
combines the excess number relationship (eq 1) and the
characteristic equation (eq 6b), which is already given as eq 6a.

Second, we determine the precise mathematical form of η, in
preparation for solving the differential equation. This can be
accomplished by considering the limiting behavior of eq 6a at
the onset of solubilization, cu ≃ cu

o. Expanding the right-hand
side of eq 6a in terms of cu − cu

o and taking up to its first order,
we obtain
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In order for eq 7a to represent the cooperative association of m
solubilizer molecules, η must be

Figure 4. Left. A schematic representation of the second-order gradient of the quadratic isotherm (eq 4). Right. Top: cooperativity (Br > 0)
represents the enhancement of self-association of the solubilizer (orange) around the solute compared to the bulk. Bottom: anticooperativity
represents the weakening of self-association (=self-dissociation) of solubilizers around the solute compared to the bulk.
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m
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(7b)

This can be justified easily by integrating eq 7a under eq 7b,
namely,
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which leads, via Supporting Information: Section B, to

c c K a
u u

o m

2
= + (7d)

Indeed, eq 7d expresses the cooperative association of m
solubilizers to the solute with K′ (originally an integration
constant) as the association constant.

Having determined η (eq 7b), the characteristic equation for
the cooperative isotherm can be expressed as

N m
c c c c

c c c
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u u
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which can be solved in combination with the excess number
relationship (eq 1). As detailed in Supporting Information:
Section B, the separation of variables, followed by partial
fraction decomposition, leads to
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which is indeed the cooperative solubility isotherm,26

previously derived through significant mathematical labor.
Note that eq 8b reduces to eq 7d at cu ≃ cu

o (Supporting
Information: Section B), hence the constant K still signifies the
cooperative association constant.

The cooperative solubility isotherm (eq 8b) can be
expressed in a more compact form:
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with simple algebra, as well as the introduction of the
solubilizer activity at the steepest point of the isotherm (see
Appendix A of ref 60) via

a K
s

m1/
= (8d)

which is convenient for locating the parameter as visually on
the isotherm plot.50,60 Now we make an approximation to
facilitate experimental data analysis. When the increase of cu

from cu
o to cu

∞ takes place in a relatively narrow range of
solubilizer concentration around the solubilizer mole fraction
xs (Supporting Information: Section C), we can express the
cooperative isotherm as the function of x2 as
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which has been applied to model the sigmoidal solubility
isotherms for hydrotropes.26

Thus, we have demonstrated that the cooperative solubility
isotherm can be derived directly from the excess number
relationship (eq 1) in combination with the characteristic

relationship (eq 6a or 6b) that captures the cooperative
association of solubilizers on the solute (Objective I).
Multiplicativity in Solubility Isotherms (Objective II).

So far, the two classes of simple solubility isotherms, quadratic
(see Deriving the Quadratic Isotherms from the Fluctuation
Theory) and cooperative (see Deriving the Cooperative
Isotherms from the Fluctuation Theory (Objective I)), have
been derived systematically by combining the excess number
relationship (eq 1) and the characteristic equations (eq 3b for
the quadratic and eq 8a for the cooperative). The simple
isotherms alone (quadratic and cooperative) could not
reproduce complex solubility isotherms (see Figures 2 and
3). First, the cooperative isotherm (eq 9) cannot capture post-
saturation solubility decreases (Figure 2). Second, the
quadratic isotherm (eq 5) cannot reproduce near-plateau
isotherm shapes (Figure 3). Third, incorporating higher-order
terms of x2 beyond quadratic results in the fitting coefficients
with increasing magnitude, alternating signs, and little physical
insights.26,61 These limitations of simple isotherms necessitate
a novel approach to capturing isotherms with complex
functional shapes.

Here, we show how complex isotherms, that combine the
features of simple isotherms, can be constructed by isotherm
multiplicativity. We will show that isotherm multiplicativity can
be derived directly from that excess number relationship (eq 1;
Objective III). Isotherm multiplicativity manifests when
solubilization consists of unconditional and conditional
processes, denoted by I and II/I, where the notation II/I
signifies “the process II conditional to the occurrence of I”.
With this preparation, our starting point is the fundamental
relationship on the solvation free energy at the completion of
process II, μu*

II,

RT
Y

Y
ln

u

II u

II

* =
(10a)

in terms of the partition functions Y in the {T, P, N1, μ2, μu}
ensemble and Yu

II in the inhomogeneous ensemble, {u: T, P,
N1, μ2, μu}, which contains a solute molecule whose center of
mass is fixed at the origin. Through the introduction of Yu

I (the
partition function of the process I), the solvation free energy
μu

II* can be expressed as

u

II

u

I

u

II I/* = * + * (10b)

with unconditional and conditional solvation free energies, μu*
I

and μu*
II/I, defined via
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(10c)

by virtue of the basic property of the logarithmic function. The
additivity of solvation free energies (eqs 10b and 10c) leads to

c

a

c

a

c

a

ln

ln

ln

ln

ln

ln

u

T P N

u

I

T P N

u

II I

T P N
2 , , ; 2

, , ;

/

2
, , ;u u u

1 1 1

= +

i

k

jjjjj

y

{

zzzzz

i

k

jjjjj

y

{

zzzzz

i

k

jjjjj

y

{

zzzzz

(11a)

which means that the solubility isotherm is multiplicative

c c c
u u

I

u

II I/
= (11b)

Note that cu
I carries the concentration units whereas cu

II/I is
unitless. The isotherms for the unconditional and conditional
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processes can be derived by their respective excess number
relationships,
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in combination with the appropriate characteristic equations.
Thus, the isotherm multiplicativity principle (eq 11b) has

been derived only from the basic mathematical property of
logarithm (eq 11a).

■ RESULTS AND DISCUSSION

Capturing Complex Solubility Isotherms via the
Multiplicativity Principle (Objective III). We have estab-
lished the excess number relationship (eq 1) as the common
foundation for the quadratic and cooperative isotherms (see
Deriving the Cooperative Isotherm from the Fluctuation
Theory (Objective I)) and derived the multiplicativity
approach to combining simple isotherms (see Multiplicativity
in Solubility Isotherms (Objective II)). Here, we focus on the
following solubilization mechanism: the cooperative isotherm
(eq 9) as the unconditional process (step I in Multiplicativity
in Solubility Isotherms (Objective II)) and preferential solute-
solubilizer interaction (taking up to Ax2 in eq 5) as the
conditional process (step II/I). Combining eqs 9 and 5 via the
multiplicative expression (eq 11b), we obtain
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as the multiplicative solubility isotherm.
The experimental aqueous solubility isotherms of syringic

acid by 1,2-alkanediols have been modeled successfully using
eq 12 (Figure 5) via the multiplication of the cooperative and
quadratic isotherms as the unconditional and conditional
processes (Figure 6). The fitting parameters, summarized in
Table 1, provide an insight into the underlying mechanism.
Observed for the initial step are (i) mildly cooperative initial
association (m ≃ 2) for ethanediol, propanediol, and
butanediol, (ii) weakened cooperativity (m < 2) for
pentanediol and hexanediol, (iii) steeper initial association
for longer alkyl chains, indicated by the decreasing xs, and (iv)
the maximum solubilization, cu

∞/cu
o falls sharply for hexanediol

which exhibits weaker local association (i.e., smaller m in Table
1) with reduced association constant (K = xs

−m) from
pentanediol due probably to an increased molecular size. For
the conditional step, the exclusion of solubilizers (except
ethanediol) has been observed from the negative A.

The physical picture underlying the additivity of Nu2 (eqs
11a, 11c, and 11d), which leads to the multiplicativity of the
solubility isotherm (eq 12), can be expressed schematically in
Figure 7 as

1. a cooperative accumulation of solubilizers around the
solute (Figure 7(a));

2. the exclusion of further solubilizers from the already
crowded solute’s locality (Figure 7(b)).

that correspond to cu
I and cu

II/I, respectively. We emphasize that
the conditional isotherm, cu

II/I, does not contribute to the
overall isotherm cu when multiplied to cu

I = 0; the conditional
process kicks in only when the unconditional process is
operative. Intuitively speaking, solubilizer exclusion contributes
to the overall isotherm only when there is a sufficient number
of solubilizers cooperatively associated with a solute already.

Thus, how solubility changes along the solubilizer
concentration reflects the conditional solvation processes:
solubilizer self-association at lower solubilizer concentrations
fills up the solute’s locality with the solubilizers, excluding
further solubilizers, leading to the reduction of solubility.
Self-Association in Local and Bulk. In the Theory

section, we developed the following two approaches to
understanding complex solubility isotherms:

A. isotherm multiplicativity (see Multiplicativity in Sol-
ubility Isotherms (Objective II)).

B. isotherm derivatives (see Statistical Thermodynamic
Fluctuation Theory)

Approach A, such as the combination of the initial cooperative
solubilization and the conditional solubilizer exclusion (eq 12),
has led to the successful modeling of complex solubility
isotherms (Figure 5). Approach B is more general than
Approach A because derivatives can always be calculated from
any isotherm equations as long as they are differentiable, which
provides a more general understanding of the underlying
solubilization mechanism, via

• the first-order derivative (isotherm gradient), Ar,
representing the solute-solubilizer association;

• the second-order derivative (isotherm curvature), Br,
representing the enhancement of self-association around
the solute than in the bulk

that can be calculated at reference solubilizer activity (a2 = ar)
via eq 4 (Figure 4).

Our goal is to reveal the mechanism underlying the solubility
peak modeled by multiplicative isotherm (eq 12). To this end,

let us calculate the derivative, ( )cx
T P N

ln

, , ;

u

u

2
1

, using the

Figure 5. Multiplicative isotherm (eq 12; solid lines) can model
complex solubility isotherms of syringic acid (solute) in water
(solvent) by 1,2-alkanediols (solubilizers), with the fitting parameters
summarized in Table 1. The experimental data, published by
Abranches et al.,44 includes 1,2-Ethanediol (blue circles), 1,2-
Propandiol (green diamonds), 1,2-Butanediol (magenta triangles
up), 1,2-Pentanediol (orange triangles down), and 1,2-Hexanediol
(red squares) as solubilizers.
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multiplicative isotherm (eq 12), which can be achieved using
the characteristic equations for the unconditional and condi-
tional isotherms (eq 4 with Br = 0 and eq 8a), leading to
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where cu
I refers to the cooperative isotherm as the uncondi-

tional process, which is the same as cu in the left-hand side of

eq 9. Plotting ( )cx
T P N

ln

, , ;

u

u

2
1

via eq 13 for alkanediols for the

entirety of x2 shown in Figure 8(a) reveals complex functional
shapes whose functional behavior in the entire range of x2

cannot be captured easily via polynomials of x2 (Supporting
Information: Section D). Nevertheless, we can focus around
the peak of the isotherm and elucidate its underlying
mechanism, i.e., why the solubility peak exists. To do so, we
employ the isotherm expansion around x2 = xr, which has been
chosen as the position of the peak of lncu, at which
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= . Incorporating up to x2 − xr in eq 12

(Supporting Information: Section E) yields
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where the constant α(>0) comes from the activity-mole-
fraction conversion via a2 − ar ≃ α(x2 − xr). Comparing eq 14
with the experimental solubility isotherms around the peak
(Figure 8(b)), the sign of Br can be seen as negative, signifying
a weakened self-association of the solubilizer around the solute
compared to the bulk (Figure 4 and Supporting Information:
Section A). The same behavior was observed previously for
bell-shaped isotherms (commonly referred to as the “syner-
gistic” solvation) that were captured successfully by the
quadratic isotherm (Figure 1(a)).25 Here, despite the
complexity of the multiplicative isotherm, self-association
around the solute is weakened by a combination of saturating
cooperative solubilization (that increases the isotherm) and the
conditional exclusion of further solubilizers (that decreases the
isotherm), driving the solubility to go through a peak.

Thus, the multiplicative isotherm can capture both (i)
enhanced self-association at low solubilizer concentration

Figure 6. Contributions from (a) the cooperative solubilization and (b) preferential exclusion to (c) the multiplicative solubility isotherms for the
solubilizers 1,2-Ethanediol (blue solid lines), 1,2-Propandiol (green solid lines), 1,2-Butanediol (yellow solid lines), 1,2-Pentanediol (orange solid
lines), and 1,2-Hexanediol (red solid lines) calculated by eq 12.

Table 1. Fitting Parameters of Equation 12 for the Solubilization of Syringic Acid by 1,2-Alkanediols in Figure 5

solubilizer ethanediol propanediol butanediol pentanediol hexanediol

m 1.7 2.1 2.0 1.58 1.3

xs 0.95 0.33 0.20 0.16 0.15

cu
∞/cu

o 62 52 73 97 67

A 0.037 −0.35 −0.97 −1.2 −0.95

Figure 7. A schematic representation of the additivity of Nu2

underlying isotherm multiplicativity: (a) initial association between
solute (red) and solubilizer (orange), (b) conditional preferential
exclusion of solubilizers from the solute, (c) the resultant isotherm as
the multiplicative process of (a) and (b).

Figure 8. (a) (∂lncu/∂x2)T,P,N d1;μ du
calculated from the solubility

isotherm of syringic acid for the solubilizers 1,2-Ethanediol (blue
solid lines), 1,2-Propandiol (green solid lines), 1,2-Butanediol (yellow
solid lines), 1,2-Butanediol (magenta solid lines), 1,2-Pentanediol
(orange solid lines), and 1,2-Hexanediol (red solid lines) calculated
by eq 12, using the parameters in Table 1. (b) The behavior of (a)
around (∂lncu/∂x2)T,P,N d1;μdu

= 0.
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responsible for the onset of solubilization and (ii) weakened
self-association of the solubilizer around the solubility
maximum.

■ CONCLUDING REMARKS

Insights into the mechanism underlying solubilization can be
gained from the shape of a solubility isotherm (namely, how
the solubility of a solute changes with solubilizer concen-
tration), with the help of the isotherm equations derived from
the statistical thermodynamic fluctuation theory. So far, a
simple fitting of cooperative (sigmoidal) and quadratic (bell-
shaped) isotherms to experimental solubility data led to
mechanistic insights through their fitting parameters. However,
these isotherm equations failed to capture more complex
solubility isotherms, such as a combination of (i) sigmoidal
solubilization at lower solubilizer concentrations and (ii)
declining solubilization at higher solubilizer concentrations,
that have been observed widely (Figures 2 and 3).

Our goal was to establish a general strategy to model
complex solubility isotherms that combine the features of
simpler isotherms (such as the cooperative and quadratic),
directly from the fundamental relationship for solubility
isotherms that link the isotherm gradient exactly to the excess
number of solubilizers around the solute. From the excess
number relationship alone, we could derive the isotherm
multiplication rule when solubilization consists of uncondi-
tional and conditional processes. Based on this general
principle, we have derived a multiplicative isotherm consisting
of (i) initial cooperative association of solubilizers that increase
the solubility and (ii) conditional exclusion of further
solubilizers from the already crowded solute’s locality, leading
to solubility decrease. Such a conditional process could capture
the complex isotherm shape of solubilizing syringic acid with a
series of alkanediols as hydrotropes.

The excess number relationship is useful not only in
establishing the isotherm multiplicativity rule but also in
deriving isotherm equations directly from it. Combining it with
the characteristic equation (i.e., how the excess number
changes with solute or solubilizer concentration) leads to a
systematic derivation of simple solubility isotherms, as has
been demonstrated for the quadratic and cooperative
isotherms. Such a twofold efficacy of the excess number
equation mirrors the recent progress in sorption isotherms that
can be derived systematically by solving differential equations
of combined excess number relationship and the characteristic
equation,50,51 as well the discovery of multiplicative sorption
phenomena at work in membrane polymers.47

The multiplicative solubilization is not limited to hydro-
tropes; the solubility and stability of proteins in the presence of
salts can also be elucidated from this perspective. We
emphasize that the solubility maximum (that emerged from
the combination of saturating solute-solubilizer association and
the exclusion from the already crowded locality) gives rise to
the weakening of self-association of the solubilizer around the
solute than in the bulk. This underscores the importance of
comparing the local and bulk solution structures in the
mechanism of solubility isotherms universally across hydro-
tropy, synergistic solvation, and micellar solubilization.
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