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Abstract: Traditional rehabilitation training for stroke patients with ankle joint issues typically relies
on the expertise of physicians. However, when confronted with complex challenges, such as online
decision-making or assessing rehabilitation progress, even seasoned experts may not anticipate all
potential hurdles. A novel approach is necessary—one that effectively addresses these complexities
without solely leaning on expert experience. Previous studies have introduced a rehabilitation
assessment method based on fuzzy neural networks. This paper proposes a novel approach, which is
a VR-aided ankle rehabilitation decision-making model based on a convolutional gated recurrent
neural network. This model takes various inputs, including ankle dorsiflexion range of motion,
angular velocity, jerk, and motion performance scores, gathered from wearable motion inertial sensors
during virtual reality rehabilitation. To overcome the challenge of limited data, data augmentation
techniques are employed. This allows for the simulation of five stages of rehabilitation based on the
Brunnstrom staging scale, providing tailored control parameters for virtual training scenarios suited
to patients at different stages of recovery. Experiments comparing the classification performance of
convolutional neural networks and long short-term memory networks were conducted. The results
were compelling: the optimized convolutional gated recurrent neural network outperformed both
alternatives, boasting an average accuracy of 99.16% and a Macro-F1 score of 0.9786. Importantly,
it demonstrated a strong correlation (correlation coefficient r > 0.9) with the assessments made by
clinical rehabilitation experts, showing its effectiveness in real-world applications.

Keywords: stroke; rehabilitation; rehabilitation decision-making; convolutional gated recurrent
neural network; whale optimization algorithm

1. Introduction

According to data from the China National Stroke Survey, the prevalence of stroke
among the aged is 2.06%. Stroke often leads to abnormal ankle joint function, including
muscle weakness, spasms, and impaired motor control. Therefore, improving motor
function is pivotal in post-stroke rehabilitation plans [1]. The restoration of ankle joint
function not only facilitates the recovery of walking ability but also mitigates the risk
of falls. Rehabilitation robots promote the recovery of damaged muscles and nerves by
simulating real physiological movements, assisting patients in rebuilding motor function
and muscle control [2,3].

Virtual reality (VR) technology can create immersive and lifelike virtual environments,
which include immersion, imagination, and interaction [4]. VR can be categorized into
non-immersive and immersive types. Non-immersive VR allows users to interact with
the virtual environment, which offers cost-effectiveness, simplicity, and ease of adaptation
for rehabilitation training [5]. Immersive VR employs large-screen projections or head-
mounted displays to provide users with a fully immersive experience [6,7]. The integration
of virtual reality with rehabilitation robots has shown significant efficacy in enhancing
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motor function among stroke patients. Meta-analyses were conducted by Li et al. [8],
comprising 31 randomized controlled studies, which revealed that virtual reality training
outperforms conventional rehabilitation training in terms of motor function recovery for
stroke patients. Jonna et al. [9] developed a six-degree-of-freedom rehabilitation robot
system that integrated virtual reality technology and incorporated engaging virtual games
to enhance the enjoyment of rehabilitation training and assist patients in performing
complex shoulder and elbow joint movements. Lin et al. [10] devised a guidance control
rule with a variable stiffness term, enabling lower limb rehabilitation robots to automatically
adjust admittance parameters based on trigger feedback to respond to various virtual events.
Most current studies do not automatically output the control parameters of virtual reality
corresponding to different rehabilitation stages based on rehabilitation assessment results
during rehabilitation training. In addition, the search speed and optimization effect of the
model parameters of the adaptive rehabilitation training decision-making model need to
be strengthened [11,12].

This paper adopts the WOA-CNN-GRU model for rehabilitation decision-making
model, which has efficient feature extraction = and time series modeling abilities. The
SMOTE algorithm is adopted to solve the problem of a small or unbalanced dataset in the
training process. The whale optimization algorithm is employed to adjust the hyperpa-
rameters of the network to improve the search speed of optimal model parameters and
performance of the rehabilitation decision-making model. The WOA-CNN-GRU model
combines the advantages of various algorithms and can achieve better performance in
complex application scenarios.

The structure of this paper is outlined as follows: The second section introduces the
ankle rehabilitation system and the clinical rehabilitation training mechanism. The third
section encompasses the results obtained from experiments and the evaluation analysis
of network performance. The fourth section summarizes the key findings and delves into
future research directions. The fifth section offers a concise overview of the paper.

2. Methods
2.1. Overview of the Proposed System

This study introduces a real-time decision-making algorithm for adjusting training
intensity within a self-developed virtual reality ankle rehabilitation platform. The algorithm
implementation process is depicted in Figure 1. Leveraging convolutional gated recurrent
neural networks for machine learning, the algorithm aims to monitor and adapt training
intensity across six parameters during rehabilitation sessions. These parameters encompass
three ankle kinematic metrics, one fuzzy neural network-based rehabilitation assessment
parameter, and two indicators of virtual scene training completion [13].

The algorithm outputs combinations of virtual scene control parameters aligned with
stages I–V of the Brunnstrom staging scale, ensuring precise tracking of rehabilitation inten-
sity [14]. The following is a concise overview of the algorithm designed for virtual reality
ankle rehabilitation tasks. The system architecture comprises five key modules: (1) the
virtual reality ankle rehabilitation platform, (2) the data acquisition module, (3) the reha-
bilitation training decision module, (4) data preprocessing, and (5) the training regulation
module, all dedicated to analyzing patient progress.

In this setup, Xt(z) = {xt, st} represents the data sequence of the rehabilitation
training cycle at time t within virtual rehabilitation scenes labeled z ∈ {s1, s2, s3}. Here,
xt denotes the current training feature parameters, while st indicates the rehabilitation
staging category assigned by experts. Initially, the virtual reality ankle rehabilitation
system’s microcontroller employs inertial motion sensors and accesses the virtual scene
database to capture the training data sequences of patients, extracting six key rehabilitation
training parameters. Subsequently, the rehabilitation training decision module categorizes
these processed parameters into staging categories. Finally, the repetition counter module
regulates virtual scenes using the following approach: considering the current training
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cycle as the focal point, it examines xt−2 and xt−1 as the preceding training cycle window
and xt+1 and xt+2 as the subsequent window (assuming each training cycle is effective).

Figure 1. The decision-making algorithm implementation flowchart.

2.2. Ankle Rehabilitation Robot

Research has shown that patients who are exposed to prolonged periods of uninspiring
and repetitive movement patterns may experience subpar rehabilitation outcomes and
a lack of motivation to engage in continued rehabilitation training [15]. Figure 2 depicts
schematic diagrams of the rehabilitation game virtual scenes. Leveraging Unity3D as the
development engine for virtual environments, the system delivers three highly immersive
virtual scenes and implements physics-based collision detection tailored for patients with
diverse needs, alongside virtual reality mapping for rehabilitation training.

This study employs a method of decomposing the Euler angles of the ankle–foot joint
within the real-world coordinate system. This process involves three consecutive rotations
around the x, y, and z axes, depicting a single pose transformation of the ankle–foot within
the virtual training scene. The representation of the transformation response matrix is
as follows:

RX(ϕ) = λX

 1 0 0
0 cos ϕ sinϕ
0 − sin ϕ cos ϕ

 (1)

RY(θ) = λY

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2)

RZ(ψ) = λZ

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (3)

We obtain the final transformation matrix A by stacking these three transformations,
reflecting the real-time adjustments:

A = RX(ϕ)× RY(θ)× RZ(ψ) (4)
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The core components of the rehabilitation robot consist of pneumatic muscle-driven
mechanisms for ankle rehabilitation, a hardware control box, and a PC, as shown in Figure 3.
Powered by five FESTO pneumatic muscles, the robot offers three degrees of freedom for
basic ankle joint movements. Flexible tendons link the pneumatic muscles to the motion
platform, driving it through the contraction motion of the pneumatic muscles. Compared
to rigid actuators, pneumatic muscle actuators boast advantages such as lightweight
construction, enhanced safety, and superior compliance. Utilizing flexible pneumatic
muscle actuators in ankle rehabilitation robots represents a significant advantage [16].

(a) (b)

(c)
Figure 2. Virtual reality ankle rehabilitation scene. (a) Spacewalking. (b) Mountain hiking.
(c) Flight simulation.

Figure 3. Flexible ankle rehabilitation robot platform.

2.3. Data Collection

Two healthy adults and four stroke patients volunteered to participate in the ex-
periments, providing written consent prior to their involvement. All subjects gave their
informed consent for inclusion before they participated in the study. The study was con-
ducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the Ethics Committee of Renmin Hospital of Wuhan University (Project identification
code: WDRY2020-K191). Under the guidance of medical experts, all participants engaged
in simulated ankle joint dysfunction training, wherein they autonomously maneuvered
their ankles through a full range of motions—such as inversion, eversion, dorsiflexion,
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and plantarflexion—ensuring the stability of the leg while focusing solely on ankle move-
ment. The physicians then provided comprehensive Brunnstrom assessment results to
evaluate their performance accurately.

To ensure optimal sensor placement, participants were instructed to wear ankle socks
and shorts. Initially, traditional guidance training involved equipping patients with three
wireless inertial sensors (IMUs) from Xsens Technologies, Enschede, The Netherlands.
These IMUs were strategically positioned on the inner ankle, tarsal center, and thumb joint
along the vertical axis, as illustrated in Figure 4. Each IMU unit was securely fastened with
a black strap and communicated data via Bluetooth at 60 Hz, capturing precise movement
details. Figure 5 shows the ankle–foot dorsiflexion/plantarflexion and inversion/eversion
movements mapped in virtual reality.

Figure 4. Motion data collection based on Xsens DOT.

Figure 5. The different actual movements corresponding to virtual reality.

Subjects were tasked with simulating the lower limb motor dysfunction stages of
Brunnstrom I–V as seen in stroke patients. This comprehensive training regimen involved
both traditional guidance training and virtual reality rehabilitation. In the traditional
approach, patients performed actions such as ankle inversion, eversion, dorsiflexion, and
plantarflexion, aiming to achieve key rehabilitation indicators. These actions were executed
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with the ankle moving at a constant speed of π/6 rad/s until reaching the maximum
voluntary range of motion. Patients were required to hold this position for 2 s upon reaching
maximum flexion, ensuring minimal muscle compensatory movements by keeping the legs
stationary. Each action was conducted 10–15 times for 6 sets with a 30-s rest between sets,
totaling a training session of 20–30 min for each lower limb. Motion sensors captured and
extracted features such as maximum ankle range of motion (AROM), maximum angular
acceleration α, and jerk indicators to derive normalized rehabilitation assessment scores.

Patients, strapped into an ankle rehabilitation robot, navigated virtual environments
by controlling a digital avatar. They were instructed follow predefined routes and com-
plete sets of tasks tailored to their initial clinical assessment. Difficulty levels adjusted
dynamically; encountering obstacles or exceeding time limits resulted in score deductions.
The ankle rehabilitation robot recorded the patient’s performance, and an internal state
machine generated a final completion evaluation score. In this study, the patient’s task
performance and evaluation data in the virtual scene served as inputs to a decision model.
This model predicted the current stage of the rehabilitation cycle based on the Brunnstrom
scale. These parameters, including collider settings and virtual reality mapping intensity,
automatically adjusted the difficulty of virtual tasks according to the patient’s progress,
ensuring engaging and effective rehabilitation.

The response coefficients of patients to the three degrees of freedom of the ankle joint
(λX, λY and λZ) were linked to the sensitivity of robot control. As shown in Figure 6,
the system configured different maximum contact distances for obstacles or routes tailored
to patients in various stages of rehabilitation.

Figure 6. The effectiveness of collision detection for patients at various stages of rehabilitation.
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2.4. Rehabilitation Decision-Making Model Based on WOA-CNN-GRU

The model in this paper utilizes the gated recurrent neural network with gated re-
current units (GRUs) and the convolutional neural network (CNN). Recent studies [17]
have demonstrated that GRUs and CNNs exhibit superior learning capabilities when tack-
ling classification tasks in rehabilitation. GRUs tackle issues like vanishing gradients and
gradient entanglement, thus bolstering the model’s capacity to handle long-term rehabili-
tation training sequences and capture dependencies with significant temporal gaps [18].
The architectural framework of the WOA-CNN-GRU network model for rehabilitation
decision-making is depicted in Figure 7. Algorithm 1 provides an in-depth explanation of
the model training process.

Algorithm 1 Rehabilitation Decision-making Model based on WOA-CNN-GRU

Input: Dataset D = {EvalScore(n), T(n)
c , Completion(n)}N

n=1. (EvalScore—the normalized
rehabilitation assessment score of patients, Tc—the current training completion times
collection, Completion—the degree of completion of training tasks)

Output: Brunnstrom assessment scale
Initialization: SearchAgents ← 8, Max_iteration ← 5, dim ← 3, lblblb ← [1e−4, 10, 1e−5],
ububub← [1e−1, 30, 1e−2]
Randomly shuffle dataset D and split it into a training set and a test set.
repeat

repeat
f itness = f obj(SearchAgents_iSearchAgents_iSearchAgents_i)
if f itness < Best_Cost then

Best_Cost = f itness
Best_posBest_posBest_pos = SearchAgents_iSearchAgents_iSearchAgents_i

end if
until i← 1 <= SearchAgents
a = 2− t ∗ ((2)/Max_iteration)
repeat

Adjust parameter a to modify the speed and direction of the search, thereby
updating the position of SearchAgent_i.

until i← 1 <= SearchAgents_iSearchAgents_iSearchAgents_i
t← t + 1
[best_hd, best_lr, best_l2]← Best_posBest_posBest_pos

until t← 1 <= Max_iteration
InitialLearnRate← best_lr, L2Regularization← best_l2
repeat

running_loss = 0.0
sel f .gru = nn.GRU(input_size = 32× 1× 16, hidden_size = best_hd, num_layers = 1)
repeat

outputs = CNN − GRU_net(inputs)
loss = criterion(outputs, labels)
runningloss+ = loss.item()

until i← 1 <= Data_Size
until n← 1 <= Max_Epochs

Through extensive training iterations and optimizations, we meticulously chose the
best parameter combination. We assessed the model’s classification performance and its
ability to generalize using a variety of evaluation metrics, including accuracy percentage,
multi-class performance evaluation index, and the visual representation provided by the
confusion matrix graph. Moreover, employing the whale optimization algorithm, we
could fine-tune parameters such as the number of hidden layers, initial learning rate,
and regularization coefficient [19].
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Figure 7. The architecture of the WOA-CNN-GRU network.

In the initial phase, the prey surrounded by the current whales is regarded as the
ideal solution or an approximation of the optimal solution. Assuming a d-dimensional
space, the position of the current best whale individual X∗ is represented as (X∗1 , X∗2 ,..., X∗d )

and the position of the whale individual X j is denoted as (X j
1, X j

2,..., X j
d). Then, the formula

for calculating the next position X j+1 (X j+1
1 , X j+1

2 ,..., X j+1
d ) of the whale individual X j under

the influence of the best whale individual X∗ is as follows:

X j+1
k = X∗k − A1 · Dk (5)

Dk =
∣∣∣C1 · X∗k − X j

k

∣∣∣ (6)

C1 = 2r2 (7)

A1 = 2a · r1 − a (8)

where X j+1
k denotes the k-th component of the spatial coordinate X j+1. A1 stands for the

convergence factor coefficient, while C1 represents the coefficient vector of the oscillation
factor. The parameter a gradually decreases from 2 to 0 as the number of iterations increases.
Both r1 and r2 are random numbers ranging from 0 to 1.

In a d-dimensional space, suppose the position of the current best whale individual
X∗ is (X∗1 , X∗2 ,..., X∗d ) and the position of the whale individual X j is also (X j

1, X j
2,..., X j

d).
The current whale individual spirals toward the current best whale individual, a process
described by the following equation:

X j+1
k = X∗k + Dk · ebl · cos(2πl) (9)

Dk =
∣∣∣X∗k − X j

k

∣∣∣ (10)
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where Dk signifies the distance between the current searching individual and the optimal
searching individual. Parameter b determines the shape of the logarithmic spiral, while l is
a random number within the interval [−1, 1].

Apart from bubble-net feeding behavior, there is a 50% chance of utilizing encirclement
predation. Hence, the mathematical model can be articulated as follows:

X j+1
k =

{
X∗k − A1 · Dk

X∗k + Dk · ebl · cos(2πl)
p < 0.5
p ≥ 0.5

(11)

where p is a random probability value ranging from 0 to 1. As the number of iterations,
denoted by j, increases, the value of the convergence factor A1 gradually decreases. Addi-
tionally, if |A| < 1, each whale progressively converges around the current optimal solution.

In the mathematical model of the predation behavior described above, the convergence
factor A1 is typically constrained within the range of [−1, 1]. Assuming the current space
is d-dimensional, let us denote a random whale individual Xrand in the population with
position (Xrand

1 , Xrand
2 ,..., Xrand

d ), while the position of the whale individual X j is also (X j
1,

X j
2,..., X j

d). The mathematical model for search predation behavior is as follows:

Dk =
∣∣∣C1 · Xrand

k − X j
k

∣∣∣ (12)

X j+1
k = Xrand

k − A1 · Dk (13)

C1 = 2r2 (14)

A1 = 2a · r1 − a (15)

where D represents the distance between the current whale individual and the randomly
selected individual from the population.

Given the limited number of recruited subjects during data collection, this study em-
ploys two data augmentation techniques, namely SMOTE and small window segmentation.
These methods transform and expand the dataset to generate more training samples.

In the sample collection process, the limited data availability for certain stages of
rehabilitation categories may result in an inadequate model understanding of these stages,
thus impacting performance [20]. To tackle this challenge, we propose leveraging the
SMOTE algorithm to augment the sample size of minority categories and enhance dataset
balance. The fundamental steps of this approach are as follows:

a. Begin by selecting samples from the original dataset that belong to the minority class.
b. For each chosen minority class sample, calculate its k nearest neighbors using the

Euclidean distance metric.
c. Randomly pick one neighbor from the k nearest neighbors for each minority class

sample and generate a synthetic sample along the line segment connecting them.
The synthetic sample C is determined using the following formula:

C = A + λ× (B− A). (16)

In this context, A denotes the chosen original sample, while B represents a randomly
selected sample from its k nearest neighbors, with λ being a random number within the
range of [0, 1]. For this study, the upsampling rate k is set to 100, and the data sampling
ratio is adjusted to roughly balance the number of minority class samples with that of the
majority class, aiming for a 1:1 ratio.

3. Results

In this study, the classification outcomes for six participants are summarized in Table 1.
To mitigate incidental biases, each approach underwent five repetitions of training. The find-
ings encompass the test set performance demonstrated by both the proposed method and two
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advanced benchmark methods, all employing the same data augmentation strategy. The re-
sults reveal that CNN-GRU achieved the highest average accuracy across all participants,
reaching 99.16%, whereas LSTM displayed the lowest accuracy at 96.08%. Discrepancies in
performance among the methods might have originated from their varying adaptability to
address specific task complexities. To affirm the superiority of the proposed approach over
existing conventional methods, a comparison between the proposed approach and existing
methods is conducted, leveraging various algorithmic performance evaluation metrics.

Table 1. Comparison of WOA-CNN-GRU with benchmark algorithms.

Model Accuracy Mac_P Mac_R Mac_F1

WOA-CNN-GRU 99.16% 0.9915 0.9661 0.9786
CNN [21] 97.40% 0.9786 0.9162 0.9464
LSTM [22] 96.08% 0.9750 0.9171 0.9452

When assessing the performance of classification network models, a number of eval-
uation metrics are pertinent to this discussion, such as accuracy, precision, and recall.
Accuracy (α) indicates the ratio of correctly predicted samples to the total number of
samples. Its calculation formula is as follows:

accuracy =

n
∑

i=1
TPi

n
∑

i=1
TPi + FPi

(17)

where n represents the number of classes in the multi-class scenario. TPi = TiPi stands for
the number of samples correctly classified as class i by the model, while FPi = ∑4

j=1,j ̸=i FjPi
refers to the number of samples incorrectly classified as class i when the true class is j.

Accuracy serves as a straightforward and intuitive metric for assessing the model’s
overall performance. However, accuracy may not provide a fully accurate measure, as the
model may exhibit a tendency to favor the more prevalent classes. Hence, a set of evaluation
metrics with better balance for addressing class imbalance issues is introduced: macro-
Precision, macro-Recall, and macro-F1score.

macro−P =
1
n

n

∑ Pi (18)

macro−R =
1
n

n

∑ Ri (19)

macro−F1 =
2×macro−P×macro−R

macro−P + macro−R
(20)

where Pi represents precision rate, calculated as Pi =
TPi

TPi+FPi
, and Ri stands for recall rate,

derived from the equation Ri =
TPi

TPi+FNi
.

Table 1 showcases the performance metrics of the three methods with the best hy-
perparameter combinations, including patient training decision accuracy, macro-Precision,
macro-Recall, and macro-F1score. Among these, WOA-CNN-GRU, after evaluating var-
ious parameter combinations, exhibited the most optimal performance with a network
architecture featuring two convolutional layers, each with a kernel size of 3 × 1. This
configuration yielded the highest macro-Precision, macro-Recall, and macro-F1score, indi-
cating its effectiveness in capturing training samples across different stages of ankle joint
rehabilitation decision-making and providing comprehensive coverage for each category.
Figure 8 illustrates the promising results of the network’s final classification outcomes
after 600 epochs of training. In comparison, the two benchmark methods achieved similar
accuracies in the range of 97–98%, demonstrating their robust fitting capabilities to the
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training data. Additionally, Figure 9 illustrates the accuracy results of deep learning models
trained multiple times across various methods for multiple subjects, with each square
representing the average accuracy of the respective group.

Figure 8. Training loss and accuracy variations of deep learning models across different methods.

Figure 9. The accuracy of deep learning model.

To examine the impact of data augmentation techniques, we expanded the sample
data using various configuration combinations and compared the performance of the
corresponding augmented samples in the model. The results, shown in Table 2, reveal that
the size of the sample data is significantly influenced by the sliding window size and stride.
As the stride changes, the sample data size increases almost exponentially. All SMOTE
algorithms aim to balance the sample numbers across the six classification categories.
However, when the sliding step is set to 100% and the SMOTE data augmentation is 0,
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indicating the use of original samples without augmentation, the average accuracy is
relatively poor. This can be attributed to the model’s inability to effectively capture data
features because of the limited input samples. The table clearly illustrates the performance
of each category ratio under different augmentation data volumes. Notably, transitioning
from a 75% to a 50% sliding window step shows significant performance improvement.
Increasing sample diversity enhances the model’s tolerance to outliers, thereby improving
its stability. Moreover, when the data augmentation volume is set to 50%, the average
accuracy of each method surpasses that of other configurations, suggesting that the model
benefits from a relatively small-scale data augmentation.

Table 2. Model accuracy varies with different data augmentation configurations.

Window Stride WOA-CNN-GRU CNN [21] LSTM [22]

50 (100%) 0.9752 0.9711 0.9610
35 (70%) 0.9731 0.9794 0.9692
25 (50%) 0.9916 0.9789 0.9895
15 (30%) 0.9910 0.9778 0.9778

The whale optimization algorithm (WOA) was chosen for its efficiency in searching a
relatively small search space and its ability to handle optimization objective searches in par-
allel. Based on the experimental findings mentioned earlier, experiments were conducted
using a sliding window step size of 50% and an upsampling rate of 100% as the optimal
solution. The WOA optimization group achieved an average classification accuracy of
99.16%, with an average Macro-Precision of 0.9915, average Macro-Recall of 0.9661, and av-
erage F1-score of 0.9786. In contrast, the control group’s network hyperparameters were
determined based on expert experience, with predefined hidden layer nodes of 10, an initial
learning rate of 10−3, and L2 regularization coefficient of 5× 10−5, resulting in an average
classification accuracy of 97.55%, average Macro-Precision of 0.9672, average Macro-Recall
of 0.8817, and average F1-score of 0.9225. Figure 10 and Table 3 display the classification
confusion matrix for the models, indicating the effective enhancement of model prediction
and convergence performance through the hyperparameter optimization algorithm.

Table 3. Comparison of WOA algorithm and control group.

Method Accuracy Macro-
Precision Macro-Recall F1-Score

WOA 99.16% 0.9915 0.9661 0.9786
Control group 97.55% 0.9672 0.8817 0.9225

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. Comparison of optimization algorithms using confusion matrices. (a) Training set (WOA).
(b) Test set (WOA). (c) Training set (control group). (d) Test set (control group).

The results of the WOA algorithm are compared with the GA algorithm and PSO al-
gorithm. The PSO algorithm converges quickly, and the algorithm is simple and easy to
implement, but it may fall into local optimal solutions. The GA algorithm has a strong global
search capability but is computationally intensive and has many iterations. The WOA algo-
rithm is simple and easy to implement and performs well on specific optimization problems.
As shown in Figure 11 and Table 4, the WOA algorithm shows excellent searching ability and

optimization ability in F1 and F2 one-dimensional test functions, where F1(x) =
n
∑

i=1
x2

i and

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi|, and the WOA algorithm can quickly find the global optimal solution

in the two test functions because of the strong evolutionary ability and fast search speed.
Furthermore, the WOA algorithm also shows excellent performance in multidimensional

test functions, where F6(x) =
n
∑

i=1
[xi + 0.5]2 and F7(x) =

n
∑

i=1
ix4

i + random(0, 1). Multidimen-

sional problems usually have higher complexity and more local optimal solutions, and the
WOA algorithm is still able to find the global optimal solution.

Table 4. The result of optimization algorithms based on different test functions.

Function WOA GA PSO

F1 1.6895× 10−85 1.0052× 10−4 2475.6950
F2 5.7741× 10−58 0.0269 1.2004
F6 7.7469× 10−4 2.5192 2301.6360
F7 7.7469× 10−3 0.0529 0.3621

(a) (b)

Figure 11. Cont.
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(c) (d)

Figure 11. The result of different optimization algorithms based on different test functions. (a) F1.
(b) F2. (c) F6. (d) F7.

4. Discussion

This study presents an innovative WOA-CNN-GRU model designed to enhance
decision-making in virtual reality ankle rehabilitation training for stroke patients. The
model’s innovation lies in its capability to classify features of patient motion data collected
during training using non-invasive wearable motion sensor units. Despite having just
400 trainable input samples, the model achieved an impressive classification accuracy of
99.16%, showcasing its remarkable performance in addressing multi-label classification
problems, particularly in the realm of decision-making for rehabilitation training programs.

In a virtual reality rehabilitation setting, real-time feedback on patient motion data
allows for the dynamic adjustment of training parameters. This means that the difficulty
of rehabilitation tasks can be fine-tuned according to this feedback. This highlights the
exceptional capability of virtual reality rehabilitation systems to create a closed-loop train-
ing environment, enabling seamless interaction between humans and technology. Such
interaction not only promotes patient compliance but also ensures ongoing improvements
in training effectiveness. Similarly, in real medical practice, healthcare providers pay close
attention to these aspects. Rehabilitation specialists must promptly adapt training tasks to
address patient discomfort or unexpected events, preventing improper training that can
hinder rehabilitation progress or lead to further injuries [23]. Apart from introducing a
high-performance rehabilitation training decision-making model, this paper also employed
various advanced techniques to provide accurate training feedback. By integrating data
augmentation and hyperparameter search algorithms, challenges associated with small or
imbalanced datasets during the training process were effectively overcome. Experimental
results indicated that adopting smaller sliding window strides could enhance the classifi-
cation accuracy of the three models, demonstrating improved performance and stability.
This confirms the effectiveness of sliding window techniques in capturing local features of
time-series data. Additionally, the whale optimization algorithm significantly boosted the
classification accuracy and generalization capability of the models in the corresponding
experiments. Its efficiency and global search capability enable the models to better adapt
to different data features and rehabilitation training scenarios. The integrated application
of these two techniques offers valuable insights for addressing multi-label classification
problems in rehabilitation training decision-making.

An efficient decision-making model needs to be paired with suitable rehabilitation
training environments. This paper designs various virtual training scenarios tailored to
patients with different ankle movement characteristics. These scenarios integrate terrain
creation tools, physics engine libraries, particle engine libraries, and collision detection com-
ponents. Through these tools, a virtual rehabilitation training environment for ankle reha-
bilitation robots was successfully constructed, incorporating appropriate human–machine
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interaction design. During the initial software debugging phase, the system’s optimization
effect was already evident, and further enhancements are planned for the future.

Looking forward, future research will prioritize enhancing the model’s stability and its
compatibility with clinical rehabilitation training. Firstly, we will delve deeper into refining
parameter configurations. This means fine-tuning and optimizing various parameters
within the model to ensure top-notch performance across diverse patient datasets. For in-
stance, we may need to tweak parameters like learning rates, regularization parameters,
or network architectures to cater to the unique characteristics and rehabilitation needs
of different patient demographics, including age, gender, rehabilitation stage, and goals.
Moreover, we will strive to seamlessly integrate these personalized rehabilitation training
methods into clinical practice. This will involve close collaboration with clinical physicians
and rehabilitation experts to co-create and adjust rehabilitation plans that perfectly fit the
actual conditions and requirements of patients. By further boosting the model’s usability
and practicality in clinical settings, we aim to deliver even more effective rehabilitation
treatments to patients.

5. Conclusions

The primary goals of ankle rehabilitation are to boost muscle strength and enhance
flexibility, aiming to restore a normal range of motion. However, traditional ankle reha-
bilitation methods lack real-time monitoring and feedback mechanisms, hindering the
timely acquisition of patient training data and rehabilitation progress monitoring. Conse-
quently, therapists struggle to adjust training plans and control training intensity effectively.
To address these challenges, this paper proposes a training decision model tailored for
ankle rehabilitation robots and their virtual rehabilitation environments. This model lever-
ages performance indicators extracted from patients’ engagement in serious gaming tasks
within virtual reality settings to establish an objective classification mapping based on
the Brunnstrom staging scale I–V. Ultimately, it outputs corresponding control parameter
combinations for rehabilitation scenes. In the experimental phase, we not only analyze
classification models employed in other authoritative literature but also explore the impact
of model optimization techniques. Overall, the proposed method significantly enhances
the personalization and efficiency of ankle rehabilitation training.
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