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Abstract 

Background

Sensorimotor processes underpin skilled human behaviour and can 
thus act as an important marker of neurological status. Kinematic 
assessments offer objective measures of sensorimotor control but can 
generate countless output variables. This study sought to guide future 
analyses of such data by determining the key variables that capture 
children’s sensorimotor control on a standardised assessment battery 
deployed in cohort studies.

Methods

The Born in Bradford (BiB) longitudinal cohort study has collected 
sensorimotor data from 22,266 children aged 4–11 years via a 
computerised kinematic assessment battery (“CKAT”). CKAT measures 
three sensorimotor processing tasks (Tracking, Aiming, Steering). The 
BiB CKAT data were analysed using a “train then test” approach with 
two independent samples. Independent models were constructed for 
Tracking, Aiming, and Steering. The data were analysed using 
Principal Components Analysis followed by Confirmatory Factor 
Analysis.

Results

The kinematic data could be reduced to 4-7 principal components per 
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task (decreased from >600 individual data points). These components 
reflect a wide range of core sensorimotor competencies including 
measures of both spatial and temporal accuracy. Further analyses 
using the derived variables showed these components capture the 
age-related differences reported in the literature (via a range of 
measures selected previously in a necessarily arbitrary way by study 
authors).

Conclusions

We identified the key variables of interest within the rich kinematic 
measures generated by a standardised tool for assessing 
sensorimotor control processes (CKAT). This work can guide future 
use of such data by providing a principled framework for the selection 
of the appropriate variables for analysis (where otherwise high levels 
of redundancy cause researchers to make arbitrary decisions). These 
methods could and should be applied in any form of kinematic 
assessment.

Plain Language Summary  
Human movement guided by sensory input (e.g., vision) plays a key 
role in physical, mental, and educational development. These 
movements can be measured to see how body position changes over 
time (an approach known as “kinematic analysis”). Kinematic analysis 
can be used to assess a child’s movement skills and provides a “gold 
standard” measurement approach. These assessments provide a lot of 
information but the researcher then needs to decide which measures 
to analyse (decisions often made on intuition). We addressed this 
issue by analysing the “Clinical-Kinematic Assessment Tool” (CKAT) 
used in the Born in Bradford (BiB) study involving 22,266 children 
aged 4–11 years. We used powerful statistical techniques to 
determine which measures should be selected from the greater than 
600 measures available per child. We showed there are between four 
and seven measures for each CKAT task that researchers need to 
analyse when studying the development of a child’s movement skills. 
These measures provide a complete description of the child’s 
movement without requiring additional and uninformative analyses. 
We show that our measures describe the improved skill levels shown 
by children as they grow up. This work will help researchers be 
efficient and make effective use of valuable information that can help 
us understand child development. Our work focussed on CKAT 
measures within BiB but we argue that this approach should be used 
with all assessments of human movement.

Keywords 
sensorimotor, longitudinal cohort, kinematics, data reduction, 
principal components analysis, confirmatory factor analysis
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Introduction
Sensorimotor control enables voluntary, goal-directed move-
ments in response to sensory information (Ingram & Wolpert,  
2011; Tresilian, 2012; Wolpert et al., 1998). The measurement  
of sensorimotor control development is important because  
poor-for-age skills have far-reaching implications, including  
difficulties relating to: socio-emotional wellbeing (Hill  
et al., 2016); cognitive functioning (Klupp et al., 2021); and 
academic achievement (Cameron et al., 2016; Giles et al.,  
2018; Grissmer et al., 2010; Harrowell et al., 2017).

Unfortunately, good quality, valid, reliable, and objective meas-
ures of children’s sensorimotor status are relatively rare in  
large longitudinal birth cohort studies. Most large birth  
cohorts only collect parental reports comprising: (i) judgements  
of whether their child can perform certain motor skills by  
a specific age (i.e., “motor milestones”); (ii) estimated ages 
at which they recall their child achieving such milestones.  
Examples of this approach include the UK’s Millennium  
Cohort Study (Johnson et al., 2015); the Danish National  
Birth Cohort (Hestbæk et al., 2023); the Norwegian Mother,  
Father and Child Cohort (Øksendal et al., 2022); the  
Copenhagen Perinatal Cohort (Flensborg-Madsen et al., 2019).

Some cohort studies (e.g., the Avon Longitudinal Study of  
Parents and Children (Lingam et al., 2009); the Early Child-
hood Longitudinal Study-Birth cohort (Lee et al., 2017)), 
have introduced more rigor by designing their own in-person,  
observational assessment methods. These tools are typically 
“short form” versions of more comprehensive one-to-one  
clinical assessments used in the diagnosis of movement dis-
orders (Blank et al., 2019). For example, the ALSPAC Coor-
dination Test (Taylor et al., 2018) is a truncated version of 
the Movement Assessment Battery for Children 2 (Henderson  
et al., 2007). However, the time- and resource-intensive 
nature of such methods often means they are only practical 
to deliver at one timepoint (e.g., in ALSPAC approximately  
7,000 participants were assessed once, at seven years of age, 
as part of a voluntary visit to a larger assessment clinic). Fur-
thermore, this method of assessment relies heavily on the  
competence of the assessors, who require extensive training 
but remain susceptible to making inaccurate or biased inter-
pretations (Hróbjartsson et al., 2013; Smits-Engelsman et al.,  
2008).

In light of these challenges, the BiB longitudinal birth cohort 
study (Wright et al., 2013) selected a portable computerised 
assessment method to measure sensorimotor control. CKAT  
(Culmer et al., 2009; Flatters et al., 2014a; Mon-Williams et 
al., 2007) assesses performance on sensorimotor tasks that cap-
ture three different categories of visuomotor transformation.  
The three tasks require participants to use a handheld stylus to 
interact with visual stimuli presented on a touchscreen tablet  
computer. The assessment was conducted with circa 3,000 par-
ticipants between the ages of 4– 5 years (Shire et al., 2020)  
and a further 9,500 were tested between 7–10 years of age  
(Hill et al., 2022), many for a second time. In 2024, a third  
round of data collection started to capture performance through 
adolescence.

CKAT produces high-fidelity, end-point kinematic data for 
each participant on each task. These data describe the proper-
ties of movement in terms of the endpoint spatiotemporal char-
acteristics - including velocity and acceleration (Cunningham  
et al., 2019; Hall, 2018; Mon-Williams et al., 2007; Singer 
et al., 2016). In other words, kinematic recordings measure  
how a movement is performed (Eddy et al., 2020; Logan  
et al., 2018; True et al., 2017). Consequently, kinematic meas-
ures can reveal subtle differences in aspects of children’s  
sensorimotor control that are important in explaining population  
variation. For example, kinematic analyses can be used to 
identify specific impairments in the sensorimotor functioning  
of children with various neurodevelopmental disorders, 
including: DCD (Hyde & Wilson, 2011; Miller et al., 2019); 
22q11.2 deletion syndrome (Cunningham et al., 2019); ADHD  
(Laniel et al., 2020), and autism (Miller et al., 2019). Such  
differences are much less likely to be detected using more  
traditional, observational methodologies (Hulteen et al., 2020;  
Ramos et al., 1997).

Unfortunately, the complexity of the data output from  
kinematic assessments (e.g., CKAT) means that decisions need 
to be made about which variables should be used in analy-
ses given that analysis of an output containing hundreds of 
individual data points per participant is not always feasible  
(Wood et al., 2018). Principal Components Analysis (PCA) 
is a data reduction technique that can be used to determine 
which metrics explain the largest amount of variance of an 
attribute or variable within a large dataset (Jolliffe, 2002;  
Ringnér, 2008). A relevant example of its successful appli-
cation comes from research that has used this technique to 
reduce the complexity of the data collected by a kinematic 
assessment tool used to measure upper-limb functioning in 
stroke survivors (Wood et al., 2018). Wood and colleagues  
(2018) found that up to 20 kinematic variables could be reduced  
to just three to five independent components.

PCA identifies the most parsimonious model for summarising 
a dataset. However, subsequent Confirmatory Factor Analysis  
(CFA) is recommended to maximise confidence in the 
wider application of PCA informed statistical models. CFA 
is a hypothesis-driven approach that can be used to assess 
model fit following PCA (Brown, 2015; Jackson et al., 2009;  
Matsunaga, 2010). CFA can drive model re-specification 
(such as the omission of “poorly behaved indicators” (Brown,  
2006, p. 106)) and identify the most appropriate model from 
potential options. Thus, the most mathematically and theoreti-
cally plausible solution is retained through verifying replica-
ble patterns across more than one sample (Bandalos, 1996;  
Maccallum et al., 1999). 

The aim of the present study was to use exploratory data  
reduction and confirmatory techniques to identify a stable set 
of kinematic components that are valid descriptors of chil-
dren’s sensorimotor control as measured using the CKAT  
battery within the BiB cohort. We further aimed to check  
that the derived kinematic components showed the well docu-
mented changes in sensorimotor control with age (Flatters  
et al., 2014a).
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Methods
Ethical approval
Ethical approval for the re-analysis of these data was granted 
by University of Leeds ethics committee (reference: PSC-826).  
Ethical approvals for the Starting School data collection  
were obtained from ethics committees at the University  
of Leeds (reference: 13-0220) and the University of York  
(reference:12/26). Ethical approval for data linkage within 
the BiB cohort was obtained from the Bradford Leeds  
Research Ethics Committee (reference: 07/H1302/112). Ethical  
approval for the data collection for the Primary School  
Years sweep was obtained from the NHS Health Research 
Authority’s Yorkshire and the Humber - Bradford Leeds  
Research Ethics Committee (reference: 16/YH/0062) on the 
24th March 2016. All data were obtained via data requests  
from BiB’s Executive Committee.

Design
A “train then test” approach was used to first derive and vali-
date models that could then be used to obtain a novel set of  
kinematic metrics. This method required compiling two sam-
ples of CKAT data. The first of the two datasets was used 
as a “training” sample to develop the models, via PCA. The  
second dataset was then used to “validate” these models 
within a larger, novel sample of children participating in the  
BiB longitudinal birth cohort (Wright et al., 2013), via CFA. 
Following this validation, it was possible to use these models  
to derive a reduced subset of kinematic variables for each 
BiB participant from their CKAT data. These variables were  
then analysed as outcomes in a series of between-subject 
analyses that explored the relationship between these novel  
measures of sensorimotor control and age at the time of  
assessment.

Participants
The Training dataset was collated from five previously pub-
lished studies and PhD dissertations associated with BiB. 

All these projects involved the use of CKAT in school-based  
research conducted between 2012 and 2014 (Flatters et al.,  
2014a; Hill et al., 2016; Sheridan, 2015; Shire, 2016). It 
included 1740 participants from eight primary schools within  
West Yorkshire, UK, with an age range of 4-12 years (M = 7  
years, 10 months, SD = 2 years, 0 months). Missing data 
were excluded on a task-by-task basis if more than one data 
point on any metric was missing. Thus, the sample size for 
each CKAT sub-task varied: Tracking (n = 1730), Aiming  
(n = 1323), and Steering (n = 1727).

The validation data were collated from two datasets within 
the BiB longitudinal birth cohort study (Wright et al., 2013): 
Starting School (Shire et al., 2020) and Primary School Years  
(Bird et al., 2019; Hill et al., 2022). Data collection for the  
Starting School sub-cohort was conducted over the course 
of two academic years (2012–2014) and included 3,444  
children aged 4–5 years from 77 Bradford schools. The Pri-
mary School Years sweep consisted of 17,774 children aged  
7–11 years old with data collection running between 2016 
and 2019 across 86 Bradford schools. Participant data were  
again excluded on a task-by-task basis and thus the sample 
sizes for each CKAT sub-task varied: Tracking (n = 22,239);  
Aiming (n = 20,030); Steering (n = 22,266).

Although data in each of these datasets were independent 
and collected at different time-points, the demographics of  
each sample were similar (see Table 1)

Materials & procedure
Sensorimotor data were collected using CKAT. CKAT is a 
tablet-based kinematic device which measures sensorimotor  
behaviours via unimanual interactions with a hand-held 
manipulandum (Culmer et al., 2009). It comprises three  
sub-tasks: Tracking; Aiming; and Steering, each containing  
several conditions (see Figure 1). A more in-depth explanation  
of the CKAT battery (including the software architecture) 

Table 1. Demographic information for the Training and Validation samples.

Training Sample Validation Sample

n 1740 22406

Gender (%)

Males 862 (49.5%) 9042 (40.3%)

Females 878 (50.5%) 9397 (41.9%)

Not Specified 0 3967 (17.7%)*

Mean Age [Range] 7 yrs, 10 m [4 yrs, 0 m-12 yrs, 2 m] 7 yrs, 10 m [4 yrs, 0 m-11yrs, 9m]

Handedness (%)

Left 199 (11.4%) 2218 (9.9%)

Right 1535 (88.2%) 20143 (89.9%)

Not Specified 6 (0.3%) 45 (0.2%) 
* Note: A large proportion of unspecified gender for this sample was due to these data being unavailable 
for children who were included within the Starting School data sweep but who were not part of the 
original BiB birth cohort
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is published elsewhere (Culmer et al., 2009; Flatters et al.,  
2014a), as are detailed descriptions of its deployment as 
part of data collection sweeps carried out in the BiB cohort 
when children were aged 4–5 years (Shire et al., 2020) and  
7–9 years (Hill et al., 2022).

Tracking
The Tracking sub-task requires participants to use the stylus  
to track a moving target around the screen in a series of  
sinusoidal waves. It consists of two conditions related to the  
presence or absence of a visual guide that indicates the  
target trajectory (see Figure 2). The “No Guide” condition is  
completed first, with three revolutions completed at each 
of three variable speeds: slow, medium, and fast (nine trials  
in total). The same procedure is then repeated for the “With  
Guide” condition but this time with the assistance of a  
spatial guide.

For each of the six conditions, there are six sensorimotor  
metrics automatically produced as part of the output from 
the Tracking task (Path Length, X Gain, Y Gain, Mean Root  
Mean Squared Error, Standard Deviation of the Root Mean 
Squared Error, and Path Accuracy) which are described in  
Table 2. Prior use of CKAT in published peer-reviewed 
research has typically only used the mean Root Mean Squared 
Error (RMSE) to reflect performance on this task (Flatters  
et al., 2014a; Flatters et al., 2014b; Hill et al., 2016; Raw et al., 
2012). Thus, it is evident a large amount of information is  
recorded but not currently used within analyses. 

Aiming
Aiming requires participants to make a series of 75 aiming  
movements towards individually presented targets in a  
pseudo-randomised order as quickly and accurately as possible  
(see Figure 3). Upon arrival at each target, it disappears and  
is instantaneously presented in a new target location. The  
Aiming task comprises three target presentations which were  
included as independent conditions within the present  
analyses: Baseline, Jump, and Embedded-Baseline. The target  
locations are fixed during Baseline and Embedded-Baseline  

trials. During the Jump condition, however, the target loca-
tion changes to the next in sequence as the participant 
reaches within 40mm of it. This measure of online corrective  
movement is commonly used throughout the literature and 
often referred to as the “step-perturbation paradigm” (Hyde &  
Wilson, 2011; Mackrous & Proteau, 2016; Plumb et al.,  
2008). Table 2 displays shows the seven metrics (Path Length,  
Peak Speed, Time to Peak Speed, Deceleration Time, Reac-
tion Time, Movement Time, and Path Length Time) that are 
automatically outputted for the Aiming task. Previously,  
performance has been gauged using only the Path Length  
Time (Flatters et al., 2014a; Shire et al., 2016). 

Steering
The final task, Steering (previously referred to as “Tracing”; 
see (Flatters et al., 2014a) requires participants to accurately  
trace an abstract path (5mm wide) from one side of the screen 
to the other (see Figure 4). During this task, participants  
are also required to keep within a box which moves along  
the path to constrain movement speed (total time: 35 seconds).  
There are two conditions: Left to Right (L-R) and Right to  
Left (R-L) which are identical in shape but are mirrored  
vertically (see Figure 4). One trial per condition was analysed.

Fewer metrics are recorded for the Steering task: three met-
rics (Path Length, Path Accuracy, and Path Length Time) 
across the two conditions (see Table 2). Historically, studies of  
CKAT have computed a spatiotemporal measure termed  
“Penalised Path Accuracy” using Path Length Time and Path  
Accuracy. However, there are still aspects of performance 
which are not captured and, historically, analyses have not  
previously accounted for potential differences between the  
two paths.

Analysis
Data analysis was conducted in a two-stage process for each 
CKAT task. Firstly, PCA was conducted on the Training data  
to construct independent models for each of the tasks to dif-
ferentiate between the distinct components underpinning  
performance on each. Next, CFA was conducted on the  

Figure 1. Flow diagram of the conditions included within each task of the CKAT battery.
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Figure 2. Schematic of Tracking Sub-task. A) No Guide condition B) With Guide condition.

Table 2. Description of each metric automatically calculated by the Clinical-Kinematic Assessment Tool. 

Metric Unit of 
measurement

Description

All Sub-Tasks Path Length mm Distance travelled from start to end of movement 

Task-Specific

Aiming Only Peak Speed mm/s Fastest speed reached within the movement (mm/s) 

Time to Peak Speed Seconds Time taken to reach peak speed (secs) 

Deceleration Time Seconds Amount of time from peak speed to end of movement (secs) 

Reaction Time Seconds Time between presentation of the stimulus & reaching a threshold 
of specified speed*

Movement Time Seconds Time taken between movement first exceeding the velocity 
threshold then falling back below*

Tracking Only X Gain NA The degree to which the movement corresponds to the target sine 
wave on X axis by evaluating the normalised amplitude around the 
target frequency 

Y Gain NA The degree to which the movement corresponds to the target sine 
wave on Y axis by evaluating the normalised amplitude around the 
target frequency 

Mean RMSE NA The mean error related to both speed & spatial accuracy averaged 
across time points 

Standard Deviation 
of RMSE

NA The SD of the RMSE measurements referred to in the previous row 
(i.e., amount of variability in tracking errors) 

Tracking & Steering Path Accuracy NA Measure of spatial errors against a reference trajectory 

Aiming & Steering Path Length Time Seconds Time taken to create path length 

goodness-of-fit indices and corresponding thresholds: SRMR 
(<.08); RMSEA (<.08) and CFI (>.90). Hypothesis-driven  
amendments were made to increase the interpretability by  

making alterations which principally sought to reduce the-
oretical inconsistencies in the relationships between the 
observed variables and the latent variables (e.g., omitting items  
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Figure 3. Schematic of Aiming Sub-task.

Validation data to determine whether the models proposed 
by the PCA could be applied to a novel dataset. CFA also 
guided any necessary re-specification of the models. While  
PCA provides insight to the general shape of the latent 
structure, a larger amount of confidence can be placed in  
models that can be reproduced on data from new samples  
using CFA (Bandalos, 1996; Maccallum et al., 1999). This aids 
selection of the most suitable model from several plausible  
options suggested by the PCA.

Principal Components Analysis (PCA)
Prior to analysis, a mean value for each metric within each 
task was calculated for each observation to minimise random  
trial-to-trial variability. Data were scaled and standardised. 
PCA was conducted in R (R Core Team, 2020) using the  
psych package (Revelle, 2019). When selecting the number  
of components to retain, Kaiser’s criterion suggests eigen-
values >1 are acceptable (Kaiser, 1974). However, it is rec-
ommended that these values are not inspected in isolation 
to avoid misinterpretation of the structure of the data. We  

therefore also considered scree plots and cumulative variance  
(Cattell, 1966; Jolliffe, 2002; Zwick & Velicer, 1986). Multiple  
potential models were interpreted further where the most 
appropriate number of components to retain was not obvious.  
Rotations were used to improve interpretability by making  
loading patterns more distinct (Finch et al., 2017; Kellow,  
2006; Yaremko et al., 1986). For models that were suffi-
ciently correlated, oblique rotations (Oblimin) were applied  
(Tabachnick & Fidell, 2019). Items with component load-
ings ≥.50 were deemed to contribute a substantial amount of  
variance and were retained in interpretations (Comrey &  
Lee, 1992). 

Confirmatory Factor Analysis (CFA)
Data preparation (averaging across trials, scaling, and stand-
ardising) was identical to the PCA to ensure uniformity.  
CFA was conducted using the lavaan package (Version  
0.6.5; (Rosseel, 2012) for R (Version 4.0.0; R Core Team,  
2020). Models were estimated using the Maximum Likelihood  
(ML) method and model fit was guided by the following  

Figure 4. Schematic of Steering Sub-task.
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which did not logically relate to other highly loaded items 
within that component). Lastly, Modification Indices (MI) 
were examined in parallel to Estimated Parameter Change 
(EPC) to identify metrics with high shared covariance (Brown,  
2015; Jöreskog, 1993; Kaplan, 1990). Additional paths were 
included in models to correlate error terms with a high MI 
value if sound theoretical justification could be provided.  
BIC values were inspected to assess and compare models  
following re-specification.

Use case: Exploring age-related differences in 
sensorimotor control within the BiB cohort
Following the PCA and CFAs, additional analyses were con-
ducted as a “use case” to sense-check the derived variables.  
Scores for BiB participants on validated dimensions were 
derived from their raw kinematic data via CKAT. Scores on  
each of these dimensions were then combined using weighted 
means within sub-tasks to increase interpretability. This  
produced three independent scores for Tracking, Aiming, and 
Steering which comprised appropriately weighted contribu-
tions of the most important dimensions of sensorimotor con-
trol. Higher scores indicated increased performance. These  
independent scores were then treated as outcome variables in 
a trio of between-subject ANOVA analyses that explored the  
effect of age in years (at time of CKAT testing) on each of 
these sub-task-specific measures of manual sensorimotor  
control. Where significant, subsequent post-hoc analyses were  
conducted using multiple comparisons with Tukey corrections.

Results
Tracking
PCA. The Kaiser-Meyer-Olkin (KMO) test verified the sam-
pling adequacy (KMO = .93) and the correlation between 
items was found to be sufficient (χ2 (630) = 72012.9, p < .001).  
Analyses indicated seven components were required to fit the  
data, explaining 79% of the total variance.

Six components were reflective of the six specific conditions 
within this task (Table 3), with the same four metrics loading  
consistently on each: X Gain, Y Gain, Mean RMSE and 
SD of RMSE (with the exception of the Medium + With  
Guide condition, where Mean RMSE was approaching the 
threshold at 0.49). The final component reflected perform-
ance on the Path Length metric specifically across five of 
the six conditions. The exception was path length for the  
Fast + With Guide condition which instead clustered with 
the other metrics in the Fast + With Guide condition (Mean  
RMSE, SD of RMSE, X Gain, Y Gain).

One metric, Path Accuracy, was inconsistent and only reached 
the threshold in the amount of variance explained in three  
of the six condition-specific components. This suggested that 
further exploration of Path Accuracy through CFA was needed 
to determine whether the metric systematically contributes  
to explaining unique variance or if it should be omitted.

CFA. An iterative process of re-specification indicated that  
several items should be omitted from the model when applied 

to the validation dataset. This included the omission of the  
Mean RMSE values, as it was redundant to include both 
the mean and SD of the RMSE value. In addition, the Mean 
RMSE did not consistently meet the threshold across all  
condition-specific components and fit statistics improved  
substantially when it was omitted from the model.

Fast + No Guide: Path Length was deemed anomalous by  
loading but inspection of the MI determined it was neces-
sary to allow this cross-loading. It was also evident that the  
inclusion of the Path Length metric was also necessary in 
the fastest speed conditions. This could be due to increased 
task difficulty resulting in poorer performance and thus 
requiring more information. Following these modifications,  
goodness-of-fit indices demonstrated that this was the most 
appropriate latent model to describe performance on the  
Tracking task from a theoretical, mathematical, and practical 
perspective, χ2(276, N = 22139) = 52498.84, p <.001, CFI = .89,  
SRMR = .08, RMSEA = .10, although the threshold for CFI  
was not quite reached. Thus, model was interpreted as  
comprising six condition-specific “Dynamic Accuracy” compo-
nents, plus one component representing (see Figure 5).

Aiming
PCA. The sampling adequacy was met (KMO = .81). All  
KMO values for individual items were >.67, and items were  
significantly correlated (χ2 (270) = 67578.46, p < .001). Analyses  
indicated a three-component solution was most appropriate  
(explaining 83% variance).

The three components were interpreted as representing  
General Speed; Movement Efficiency; and Peak Speed. For 
example, one component comprised metrics related to speed  
of response and the temporal aspects of movement; metrics 
primarily relating to Path Length and other aspects of spatial  
abilities loaded onto a second component. The final component  
almost exclusively contained metrics capturing Peak Speed  
(see Table 4).

CFA. The potential redundancy of some items was consid-
ered to make the model meaningful and interpretable. The  
Embedded-Baseline condition was omitted from the model as 
these trials were identical to the Baseline condition and sim-
ply used as a “filler” to insert between Jump trials; arguably  
explaining no additional systematic variation in sensorimotor  
control. In addition, Movement Time was also omitted as it 
was deemed redundant and did not load consistently on any  
of the PCA components.

Following inspection of the MI, the model was developed to 
allow correlated error terms between Baseline Reaction Time 
and Baseline Time to Peak Speed (MI = 26170.74, EPC = .44),  
plus Jump Path Length Time and Jump Time to Peak Speed 
(MI = 12167.06, EPC = .69). Thus, the final proposed CFA 
model approached good model fit and was intuitive with 
the same metrics generally clustering together (χ2 (30,  
N = 20035) = 15673.54, p < .001, CFI = .91, SRMR = .05,  
RMSEA = .16). Unlike the Tracking task, the metrics clustered 
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Table 3. Component loadings on a seven-component model for the Tracking 
Sub-task following oblique rotation (N = 1730). 

Item PC1 PC2 PC3 PC4 PC5 PC6 PC7

Slow + No Guide: Path Length .09 .05 .04 .61 .00 .15 .18

Slow + No Guide: Path Accuracy .15 -.03 .55 .12 .04 .25 .12

Slow + No Guide: X Gain .03 -.03 -.90 .13 -.07 .10 .07

Slow + No Guide: Y Gain -.09 .08 -.90 .08 .01 .00 .02

Slow + No Guide: RMSE .08 .12 .75 -.03 .15 .05 .01

Slow + No Guide: SD .03 .05 .89 .11 .01 -.02 -.01

Medium + No Guide: Path Length .08 .11 -.02 .74 -.14 .20 -.06

Medium + No Guide: Path Accuracy .09 .00 .13 .19 .34 .37 .15

Medium + No Guide: X Gain .11 .00 -.10 .13 -.83 .09 -.13

Medium + No Guide: Y Gain .02 .11 -.12 .03 -.80 -.08 -.05

Medium + No Guide: RMSE .03 .19 .14 .04 .63 .13 .10

Medium + No Guide: SD .01 .11 .07 .25 .75 .07 .04

Fast + No Guide: Path Length .08 -.07 -.07 .65 .04 .02 -.55

Fast + No Guide: Path Accuracy .07 .06 .09 .16 -.05 .40 .46

Fast + No Guide: X Gain -.06 -.17 -.01 .22 -.14 -.01 -.71

Fast + No Guide: Y Gain -.17 .02 .03 .02 -.15 -.01 -.77

Fast + No Guide: RMSE .12 .27 .08 .01 .14 .10 .53

Fast + No Guide: SD .13 .13 .02 .16 .12 -.05 .67

Slow + With Guide: Path Length .47 .05 .01 .54 .00 -.05 .06

Slow + With Guide: Path Accuracy .11 -.04 .19 .31 -.04 .50 .16

Slow + With Guide: X Gain -.85 .01 -.09 -.02 .05 -.08 -.07

Slow + With Guide: Y Gain -.92 .03 -.05 .03 .07 .00 -.05

Slow + With Guide: RMSE .85 .06 .10 -.04 .02 .02 .05

Slow + With Guide: SD .88 .04 .05 .11 .02 -.03 .02

Medium + With Guide: Path Length .08 -.04 -.10 .72 .25 -.07 -.05

Medium + With Guide: Path Accuracy -.01 -.03 .16 .27 .04 .66 .17

Medium + With Guide: X Gain -.30 -.14 .00 .12 -.16 -.62 .04

Medium + With Guide: Y Gain -.32 -.11 .02 .09 -.18 -.59 .06

Medium + With Guide: RMSE .31 .27 -.07 -.26 .25 .49 -.07

Medium + With Guide: SD .31 .19 -.09 -.12 .25 .54 -.08

Fast + With Guide: Path Length .16 -.78 -.07 .35 .15 -.04 -.02

Fast + With Guide: Path Accuracy -.13 .15 .20 .36 -.07 .54 .21

Fast + With Guide: X Gain -.06 -.81 -.05 -.06 .03 -.10 -.08

Fast + With Guide: Y Gain -.01 -.75 -.03 -.11 .00 -.14 -.07

Fast + With Guide: RMSE .05 .86 .04 .01 .06 -.04 .05

Fast + With Guide: SD .08 .89 .00 .14 .10 -.12 .00

Eigenvalues 5.02 4.63 4.24 3.27 3.61 4.06 3.44

% Total Variance 14% 13% 12% 9% 10% 11% 10%
Note: Component loadings over .50 appear in bold and red typeface. RMSE = Root Mean Squared 
Error; SD = Standard Deviation. PC = Principal Component.
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It was evident that there were some outliers present in the  
data that should be omitted from further analysis following  
checking of the data distribution. This was done using the  
interquartile range (i.e., omitting values 1.5 times lower than 
the first quartile or 1.5 times above the third quartile). In 
doing so, 1448 cases (7.2%) were removed from the Tracking  
sample, 1182 for Aiming (6.8%), and 1371 for Steering (6.9%).

For Tracking (Figure 8), there was a significant effect of age 
on performance (F(7, 18575) = 849.1, p<.001, η2 = 0.24).  
Post-hoc multiple comparisons found five year olds signifi-
cantly outperformed four year olds (Mean Diff. [95% CI] = 0.16  
[0.13, 0.20], p<.001), six year olds significantly outperformed  
five year olds (Mean Diff. [95% CI] = 0.39 [0.35, 0.44],  
p<.001), eight year olds significantly outperformed seven 
year olds (Mean Diff. [95% CI] =0.05, [0.04, 0.06]), nine 
year olds significantly outperformed eight year olds (Mean  
Diff. [95% CI] =0.09, [0.07, 0.10], p<.001), and ten year 
olds significantly outperformed nine year olds (Mean Diff.  
[95% CI] = 0.08, [0.06, 0.11], p<.001). No significant differ-
ences were found between six- and seven-year-olds, nor ten- and  
eleven-year-olds (p>.05).

For Aiming (Figure 9), there was a significant effect of age 
on performance (F(7, 16069) = 1068, p<.001, η2 = 0.32).  
Post-hoc multiple comparisons found that five year olds sig-
nificantly outperformed four year olds (Mean Diff. [95%  
CI] = 0.11, [0.07, 0.15], p<.001), six year olds significantly 
outperformed five year olds (Mean Diff. [95% CI] = 0.25  
[0.20, 0.30], p<.001), seven year olds significantly outper-
formed six year olds (Mean Diff. [95% CI] = 0.31, [0.27,  
0.36], p<.001), eight year olds significantly outperformed 
seven year olds (Mean Diff. [95% CI] = 0.13 , [0.12, 0.14],  
p<.001), and nine year olds significantly outperformed eight 
year olds (Mean Diff. [95% CI] = 0.11 [0.10, 0.13] p<.001).  
No significant differences were found between nine- and  
ten-year-olds, nor ten- and eleven-year-olds (both p>.05).

For Steering (Figure 10), a significant effect of age was found 
on performance (F(7, 18533) = 393.3, p<.001, η2 = 0.13). 
Post-hoc multiple comparisons found that five year olds  
significantly outperformed four year olds (Mean Diff. [95%  

Figure 5. Path diagram of the final model for the Tracking Sub-task. Note: NG = No Guide; WG = With Guide; RMSE = Root Mean 
Squared Error; SD = Standard Deviation.

without distinction across the conditions. Figure 6 shows  
the path diagram of the Aiming task.

Steering
PCA. The KMO test was relatively low, KMO = .47. Cor-
relations between items were deemed sufficient according to  
Bartlett’s test of sphericity, χ2 (15) = 2293.9, p < .001. It was 
evident that a three-component (Model A) or four-component  
(Model B) model were most appropriate, contributing 77% 
and 87% of the total variance, respectively. Once more, an 
oblique rotation was applied to improve interpretability. There 
was one instance of cross-loading (Path Length Time B)  
onto Components 1 and 3 (Table 5). It was hypothesised that 
this item might require omission when applying the model  
to the validation data. In contrast, the four-component 
model suggested no cross-loading items but did suggest 
some inconsistencies as to which metrics clustered together  
(see Table 5).

CFA. Some model re-specification was conducted to improve 
model fit and reduce inconsistencies across both potential  
models. The Path Length Time metric was omitted across 
both models as these metrics explained the smallest amount 
of unique variance and showed evidence of cross-loading  
(Model A) for both the Left-to-Right and Right-to-Left paths. 
This was supported by no component consisting solely of  
items related to Path Length Time. In addition, the Steering  
task was somewhat temporally constrained with the inclusion  
of the timed box (see Methods for further detail) and thus,  
it appeared that it might be less useful to include this temporal  
metric. The four-component model was most intuitive when 
this metric was omitted with each of the four remaining metrics  
loading onto independent components.

No further modifications were deemed necessary. The final 
model contained four components, interpreted as L-R Path 
Accuracy, R-L Path Accuracy, L-R Path Length, and R-L Path  
Length (Figure 7).

Use case
Analysis of age-related differences for each of the three  
sub-tasks was conducted using between-subject ANOVAs. 
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Table 4. Component loadings on a 
four-component model (Model A) 
and three-component model (Model 
B) for the Aiming Sub-task following 
oblique rotation (N = 1323).

Item PC1 PC2 PC3

Embedded RT 1.03 -.12 .09

Jump RT 1.02 -.18 .08

Baseline RT 1.02 -.11 .04

Baseline TPS .93 .02 -.03

Embedded TPS .89 .11 .06

Baseline PLT .79 .21 -.14

Jump PLT .76 .29 -.07

Jump TPS .71 .11 0.12

Embedded PLT .68 .38 -.07

Jump MT .66 .39 -.09

Baseline MT .51 .45 -.25

Jump DT .36 .37 .06

Embedded PL -.08 .94 .23

Jump PL .00 .87 .23

Embedded DT .07 .83 -.23

Embedded MT .25 .75 -.16

Baseline PL .25 .65 .24

Baseline DT .37 .51 -.29

Embedded PS -.03 .09 .92

Baseline PS .05 -.05 .87

Jump PS .09 .15 .88

Eigenvalues 9.07 5.45 2.87

% of Total Variance 43% 26% 14% 
Note: Component loadings over .50 appear in 
bold and red typeface. RT = Reaction Time, TPS 
= Time to Peak Speed, PLT = Path Length Time, 
MT = Movement Time, DT = Deceleration Time, 
PL = Path Length, PS = Peak Speed,  
PC = Principal Component.

CI] = 0.04 [0.02, 0.05], p<.001), six year olds significantly 
outperformed five year olds (Mean Diff. [95% CI] = 0.16  
[0.14, 0.19], p<.001), eight year olds significantly 
outperformed seven year olds (Mean Diff. [95% CI] = 0.02 
[0.01,  0.03], p<.001) nine year olds significantly outperformed 
eight year olds (Mean Diff. [95% CI] = 0.04 [0.03, 0.05], 
p<.001) ten year olds significantly outperformed nine year olds 
(Mean Diff. [95% CI] = 0.06 [0.04, 0.07], p<.001) and ten year 
olds significantly outperformed eleven year olds (Mean Diff.  
[95% CI] = 0.09 [0.04, 0.13], p=.005). No significant  
differences were found between six- and seven-year-olds  
(p>.05).

Discussion
We used data reduction and confirmatory techniques to iden-
tify the core kinematic components that captured individual  
differences in three sensorimotor processing tasks. Our findings  
showed that sensorimotor control could be quantified via 
seven dimensions within a Tracking task, three dimensions for  
Aiming, and four for Steering. Quantifying performance in 
this way provided an appropriate balance between theoretical  
and practical considerations. The factor structures had an 
acceptable model fit when validated against a large, novel  
dataset. Thus, we can place confidence in the ability of 
such model structures to account for performance on these  
sensorimotor tasks.

The reduction of data to a single measure has previously 
occurred in both kinematic (e.g., Hill et al., 2016) and traditional  
assessments of sensorimotor ability (e.g., Henderson et al., 
2007). However, our findings show that information is lost 
when research condenses motor control to a single “overall”  
measure (French et al., 2018). The use of the variables identified 
in this study better captures the multi-faceted nature of sen-
sorimotor control. For example, path length was better 
described as an independent component in the Tracking task  
(see Figure 5) but performance in Aiming was more appropri-
ately quantified by a variable which considered performance  
across several related metrics of sensorimotor control.

This study has identified additional metrics that have not been 
routinely analysed in previous studies (cf., Flatters et al.,  
2014a; Flatters et al., 2014b; Hill et al., 2016; Raw et al., 2012). 
For example, Tracking, Aiming, and Steering performance 
on the CKAT battery is most often quantified by Root Mean  
Squared Error, Path Length Time, and Penalised Path Accu-
racy, respectively. However, we found that Path Length explains 
9% of total variance in the Tracking task but has not been 
previously analysed. Likewise, Peak Speed independently 
accounted for 14% of the total variance in aiming but has not  
appeared in earlier analyses.

The findings also suggest where analyses are less useful.  
Step-perturbation tasks are common in the motor control lit-
erature (Heath et al., 1998; Pélisson et al., 1986; Plumb et al.,  
2008; Wilmut et al., 2006) and included in the CKAT  
battery. It is commonly accepted that the execution of such  
movements taps into online control mechanisms which are 
not captured by “Baseline” trials (Culmer et al., 2009; Latash,  
2012; Plumb et al., 2008). However, the present analyses 
did not find differentiation between jump and baseline trials  
suggesting that these conditions may not shed light on different  
sensorimotor processes as is often assumed.

A major strength of the current study is the large sample sizes 
used to train and validate these models. It is vital to conduct  
exploratory and confirmatory analyses on independent sam-
ples to prevent overfitting (Fokkema & Greiff, 2017). How-
ever, the validation sample did not contain any six-year-old  
children. This is due to the nature of the cohort, which tested 
children at school entry (aged 4–5 years) and then once 
again in English school years 3-6 (7–10 years). However,  
six-year-olds were included within the original PCA samples  

Page 12 of 22

Wellcome Open Research 2024, 9:381 Last updated: 13 NOV 2024



Figure 7. Path diagram of the final model for the Steering Sub-task. Note: L-R = Left-to-Right, R-L = Right-to-Left. 

Table 5. Component loadings on a three-component model (Model 
A) and four-component model (Model B) for the Steering Sub-task 
following oblique rotation (N = 1727).

Model A Model B

Item (Condition) PC1 PC2 PC3 PC1 PC2 PC3 PC4

Path Length (L-R) .29 .86 .04 .89 .05 .01 .23

Path Length (R-L) .10 -.01 .95 -.02 .05 .97 -.01

Path Length Time (L-R) -.36 .79 -.03 .74 -.07 -.02 -.44

Path Length Time (R-L) -.62 .09 .56 .12 -.73 .46 -.02

Path Accuracy (L-R) .79 -.08 .06 .05 .03 -.02 .94

Path Accuracy (R-L) .84 .12 .12 .08 .88 .25 .06

Eigenvalues 1.93 1.40 1.26 1.38 1.39 1.22 1.21

% of Total Variance 32% 23% 21% 23% 23% 20% 20%
Note: Component loadings over .50 appear in bold & red typeface. L-R = Left-to-
Right; R-L = Right-to-Left. 

Figure 6. Path diagram of the final model for the Aiming Sub-task.

in which the original models were built and so perform-
ance from this population is still represented. In addition, the 
final models do reflect some additional ad hoc refinement  
(e.g., allowing the error to co-vary across items or truncating  

the battery by omitting conditions). However, all modifications 
made were driven by existing theory to prevent the risk 
of a Type 1 error as recommended by Schreiber et al.  
(2006).
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Figure 8. Age distribution of performance on the Tracking subtask.

Figure 9. Age distribution of performance on the Aiming subtask.

Conclusions
The collection of kinematic data at scale is increasingly fea-
sible (Brookes et al., 2020; Schwarz et al., 2019). However,  
investigation into the most theoretically and empirically  
justifiable analyses is required to fully leverage the value of  
these new technologies (An & Chao, 1984). Thus, the meth-
ods described in this manuscript could and should be applied 

in any form of kinematic assessment (for examples of  
tablet-based tools that use kinematic outputs see (Accardo 
et al., 2013; Lee et al., 2014; Matic & Gomez-Marin, 2019;  
Vianello et al., 2017). These methods will then unleash the  
power of kinematic analysis in a wide range of settings includ-
ing intervention efficacy review; investigation of develop-
mental trajectories in healthy and clinical populations; and  
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deeper exploration of the theoretical mechanisms of senso-
rimotor control. The present study has identified key vari-
ables for analysis in the large cohort studies (such as BiB) that  
use CKAT. Our hope is that this framework can now guide 
researchers in the selection of appropriate metrics to use 
when exploring sensorimotor control and its relationship with  
multiple life outcomes in rich datasets such as BiB.
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Data availability
Underlying data
Scientists are encouraged to make use of the BiB data, which  
are available through a system of managed open access.

Before you contact BiB, please make sure you have read our 
Guidance for Collaborators. Our BiB executive review pro-
posals monthly and we will endeavour to respond to your  
request as soon as possible. You can find out about all the  

different datasets which are available here. If you are unsure 
if we have the data that you need, please contact a member  
of the BiB team (borninbradford@bthft.nhs.uk).

Once you have formulated your request please complete the 
‘Expression of Interest’ form available here and email the  
BiB research team (borninbradford@bthft.nhs.uk).

If your request is approved, we will ask you to sign a data  
sharing contract and a data sharing agreement; if your request  
involves biological samples, we will ask you to complete a  
material transfer agreement.

Extended data
Open Science Framework: Markdown report containing expla-
nation of how to derive the sensorimotor variables from the  
raw CKAT output. https://doi.org/10.17605/OSF.IO/TSVX6.

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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Figure 10. Age distribution of performance on the Steering subtask.
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The authors aim to determine key variables that capture sensorimotor control among children at 
different ages (and presumably motor development). This was specifically done in a large study 
sample of more than 22000 healthy children (the Born in Bradford (BiB) cohort). The authors used 
data reduction (principal component analysis) and confirmatory factor analyses in their design, 
which is a considerable strength given the large sample size of both the training and validation 
samples. The analysis was based on three tablet-based tasks – Tracking, aiming and steering – 
from which kinematic data were extracted. Notably, kinematics in this context refers to 
performance-based variables and not biomechanical variables such as joint angles, angular 
velocities etc.). 
Although a well-designed study, several issues need to be addressed:

While an adequately performed methods paper, I find myself questioning its applicability to 
other populations. The purpose seems to show the feasibility of these methods on large 
cohorts, that also contain such kinematic data. This is not that common for patient 
populations, it would seem. What is the applicability of this study then for smaller cohorts? 
Alternatively, with such robust methods, I would expect some discussion on the actual 
results regarding typically developing children. Yet this is absence. 

1. 

The constant use of the term “sensorimotor control” as the construct of evaluation is 
misplaced in my view. The term refers to complex integrated processes (both internal and 
external) of obtaining, processing and translating of sensory information into complex 
motor actions. I hardly think that three specific and relatively similar upper limb tasks (the 
steering in particular seems to share quite a lot with the tracking task), and the inclusion of 
functional summary outcome measures can provide sufficient information to quantify such 
a complex term. For example, a statement in the second paragraph of the discussion refers 
to the "multi-faceted nature of sensorimotor control" and explains how it was captured in 
the current study in a rather unconvincing way. The authors provide an example of two 
specific variables but it is unclear how these selected variables support their argument. 
Throughout the paper, the authors also use wording like “sensorimotor data”, sensorimotor 
behaviour”, “sensorimotor metrics” and “manual sensorimotor control”, which are often a 
bit of empty terms in the context of their mentioning. Moreover, prominent features of 
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movement control (e.g., smoothness, muscle synergies, inter-joint variability) are not 
considered in this an analysis, despite reflecting various features of "sensorimotor control". 
The authors can perhaps change this to ‘sensorimotor function’ but should also modify and 
tone-down the generalisability of their findings and put them in a more appropriate 
context. Moreover, statements such as “the power of kinematic analysis” should also be 
toned down, given the wider context of the term “kinematic analysis”. Other possible types 
of analyses often delve into the inspection of movement patterns by inspecting multi-joint 
coordination patterns. As such, they are clearly distinct from functional outcome inspections 
or the use of more general kinematic measures such as movement time, path length time 
and path accuracy. 
On a related topic, the authors seem to generalise their findings to the general population 
and neglect to touch upon the issue of motor development, which is likely the main 
contributor to the observed differences and consequently to the variables that contribute 
the most to the variability. They should perhaps try to discuss the inherent 
age/developmental differences in sensorimotor integration, as this is most likely the source 
of the observed age effects. In fact, reading through the discussion and conclusion, I forgot 
for a moment that the cohort was comprised of pre-pubertal children, as the implications 
seem to refer to the “healthy and clinical populations” (i.e., all ages). Sentences such as: 
“…suggesting that these conditions may not shed light on different sensorimotor processes 
as is often assumed” miss the context of it being tested on still-developing children. There 
seems to be something missing here and there are various potential discussion points that 
should be explored. Yet, the discussion seems a bit superficial in most places, with several 
“we found this, others found that” statements with little elaboration as to what the findings 
actually means. I encourage the authors to develop their arguments more. 
Granted, this is a method paper and the purpose is to demonstrate the method’s feasibility 
on large samples. Still, why were these particular dimensions / variables the relevant ones? 
What do they signify? Given my first argument on the applicability to smaller (and 
heterogeneic) samples, the authors should consider at least discussing their results in the 
context of their significance to 'sensorimotor control'. 
As a reader, I would be interested in some assumptions of causation and suggested 
explanations to the findings, rather than just “Path length explains 9% of the total variance 
in the Tracking task”. Especially if people are to apply the findings to other populations. I do 
not see any reason why path length would be more or less relevant than path length time. 
Without any hypothesis, this seems like fishing given based only on a probable selection 
from a large number of variables without any motivation or explanation of what they might 
signify.

3. 

Some details of the methods are missing or unclear. Specifically, the PCA details. The 
authors mention that Kaiser’s criterion was considered when determining the numbers of 
components to retain (which is the standard). Yet, the authors “considered” scree plots and 
cumulative variance. Which one was it? Was the elbow criterion of the scree plot considered 
the one used? Then, the Kaiser’s criterion should generally be redundant. What was the 
criterion for the cumulative variance? Certainly not too high since this would also include 
eigen values < 1. The authors then state that that they selected the most appropriate 
number of components. Considering the different criteria, what was considered 
appropriate?

4. 

Regarding the age comparisons, have the authors considered the influence of sex? The 
participants’ sex should potentially be included as factor/covariate in the statistical models. 
It might influence to some degree given possible sex differences in motor development.

5. 
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Specific issues:
Please change “gender” to “sex”, as is more appropriate in such studies.1. 
Note an incomplete sentence – the last sentence of the “Tracking” section of the results 
seems to be cut and with some grammatical issues: “Thus, model was interpreted as 
comprising six condition-specific “Dynamic Accuracy” components, plus one component 
representing (see Figure 5).”

2. 

In the second paragraph of the discussion, the word “occurred” should be changed to 
‘utilised’ / ‘used’ or similar.

3. 

 
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes
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The paper by Wood and colleagues reports on the unique Born in Bradford (BIB) study of over 22 
thousand children aged 4-11. A battery of tests involving three main tasks (Tracking, Aiming, and 
Steering) was applied followed by the principal component analysis (PCA) with factor extraction. 
The three tasks required participants to use a handheld stylus to interact with visual stimuli 
presented on a touchscreen tablet computer. The kinematic data measured at the level of the 
implement were reduced to 4-7 PCs per task. The authors conclude that analysis at the level of a 
few kinematic characteristics can be used to track the progression of sensorimotor development. 
They also discuss possible applications of the method to analysis of sensorimotor control in 
children with atypical development. 
 
The study seems to be well designed (see below) and the dataset is unique. A strong feature of the 
design is that the researchers used a training set to develop their models and the second dataset 
to validate the models. The biggest problem with this “Methods” paper is in the presentation of 
the experimental procedures, some of the steps in the analysis, and statistical methods, which is 
too brief and incomplete to allow other researchers to use this method for studies of typical and 
atypical motor development. 
 
For studies of children, the appearance of targets and their specific features, including sizes and 
colors, may be very important. These details are not presented.  The description of the Tracking 
task includes: to track a moving target around the screen in a series of sinusoidal waves. This 
description is too general. What were the frequencies and amplitudes of the waves? What were 
the specific features of the “box” mentioned in the description of the Steering task? 
 
The principal component analysis (PCA) is described too briefly. This analysis involves factorization 
of correlation or covariation matrices computed across pairs of variables within a large set. It is 
not clear what data were used to assemble the matrices, how the values were computed, and 
whether correlation or covariation matrices were used. Some of the expressions are too general to 
allow reproduction in future studies. In particular, what are “sufficiently correlated models”? The 
text describes software packages and specific names of the software tools without explaining 
what these tools do and what the limitations of their application are. 
 
Further description of the data handling and statistical tools is also too scanty. How was “sense-
check” performed? What are “validated dimensions”? What are “appropriately weighted 
contributions”? It is not clear how the “independent scores” were computed. Were the data 
checked for normality and sphericity before ANOVA? Were corrections of degrees-of-freedom 
applied? What were the factors and levels in the ANOVA? Was this a single-factor ANOVA with Age 
as the factor? If so, what were the age bins used as levels? The reader has to guess answers to all 
these questions, which are frequently not obvious. 
 
The design of the study involved testing a large group of children multiple times at different ages 
and measuring a set of outcome variables expressed in different units. In general, this design 
requires repeated-measures MANOVA. However, ANOVA was used, and repeated measures are 
not mentioned. This has to be justified. The large number of subjects is a very important feature of 
the study. Recommending the method for studies of persons with atypical development when the 
number of subjects is commonly on the order of 10-20 and outcome variables are compared 
across groups requires more detailed analysis of statistics. 
 
The main goal of the study is presented as to capture children’s sensorimotor control. For 
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example, the following statement is quoted from the Abstract: “The aim of the present study was 
to use exploratory data reduction and confirmatory techniques to identify a stable set of kinematic 
components that are valid descriptors of children’s sensorimotor control.“ The methods, however, 
capture features of behavior of a hand-held implement, which are equally affected by neural 
control factors, body biomechanics, reflex feedback loops, and external forces (gravity and 
friction). It needs to be proven that the identified variables of interest indeed reflect sensorimotor 
control processes (which is not a well-defined construct to start with). It seems more prudent to 
describe the study as one addressing issues of sensorimotor behavior. It is also recommended to 
emphasize in the title and Abstract that the kinematic analysis used only the data of the 
implement, because most studies at the level of kinematics involve variables related to anatomical 
elements of the body such as joints and segments. 
 
A couple of minor comments related to Results. What does it mean that a solution is “most 
appropriate”? PCs are usually numbered in the order of descending values for the variance 
accounted for (VAF). In Table 2, the PCs are ordered differently. Are these PCs or factors?
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
No

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes
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