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Abstract

INTRODUCTION: With the advent of disease-modifying therapies, accurate assess-

ment of biomarkers indicating the presence of disease-associated amyloid beta (Aβ)

pathology becomes crucial in patients with clinically suspected Alzheimer’s disease

(AD). We evaluated Aβ levels in cerebrospinal fluid (Aβ CSF) and Aβ levels in positron

emission tomography (Aβ PET) biomarkers in a real-world memory-clinic setting to

develop an efficient algorithm for clinical use.

METHODS: Patients were evaluated for AD-related Aβ pathology from two indepen-

dent cohorts (Ludwig Maximilian University [LMU], n = 402, and Medical University

of Vienna [MUV], n = 144). Optimal thresholds of CSF biomarkers were deduced from

receiver operating characteristic curves and validated against Aβ PET positivity.

RESULTS: In both cohorts, a CSF Aβ42/40 ratio ≥ 7.1% was associated with a low risk

of a positive Aβ PET scan (negative predictive value: 94.3%). Implementing two cutoffs

revealed 14% to 16% of patients with intermediate results (CSF Aβ42/40 ratio: 5.5%–

7.1%), which had a strong benefit fromAβ PET imaging (44%–52%Aβ PET positivity).

DISCUSSION: A two-cutoff approach for CSF Aβ42/40 including Aβ PET imaging at

intermediate results provides an effective assessment of Aβ pathology in real-world

settings.

KEYWORDS

Alzheimer’s disease, biomarkers, cerebrospinal fluid, dementia, positron emission tomography,

real world

Highlights

∙ We evaluated cerebrospinal fluid (CSF) and positron emission tomography (PET)

amyloid beta (Aβ) biomarkers for Alzheimer’s disease in real-world cohorts.

∙ ACSF Aβ 42/40 ratio between 5.5% and 7.1% defines patients at borderline levels.

∙ Patients at borderline levels strongly benefit from additional Aβ PET imaging.

∙ Two-cutoff CSF Aβ 42/40 and PETwill allow effective treatment stratification.

1 INTRODUCTION

With the possible approval of anti-amyloid therapies for Alzheimer’s

disease (AD) in Europe on the horizon, assessing the patient‘s extra-

cellular amyloid beta (Aβ) status before initiating drug treatment is of

utmost importance. According to currently approved tests, the Aβ sta-

tus can either be determinedbyAβ levels in cerebrospinal fluid (CSF) or

by positron emission tomography (PET) with Aβ radiotracers.1 Costs,

accessibility, and side effects of both assessments need to be consid-

ered togetherwith the costs of Aβ-lowering therapies to ensure proper

access to current health-care systems. In this regard, it is also crucial to

develop diagnostic algorithms that provide optimized accuracy at min-

imal cost. Several studies have compared diagnostic accuracies of CSF

and PET assessments and found considerable agreement.2–5 However,

regarding the determination of amyloid positivity, a discordance rate

of 10% to 20% between these two modalities has been reported espe-

cially in earlier stages of the disease,6–9 thus creating uncertainty in

clinical practice when only one investigation is performed at the indi-

vidual patient level. The implementation of blood-based biomarkers

may streamline the prognostic and diagnostic work-up of AD and fur-

ther reduce the number of invasive or cost-intensive examinations in

the future.

Real-world scenarios that allow conclusions of Aβ status assess-

ment at the individual patient level on an on-demand basis are still

rare. Thus, we aimed to investigate 10-year real-world data of mem-

ory clinics at tertiary centers comprising two independent German

and Austrian cohorts with the goal to set up an efficient algorithm

for Aβ status assessment. We used CSF Aβ and Aβ PET as currently

approved tests as a timely scenario due to the imminent approval

of anti-amyloid antibodies in Europe, but we note that integration of

blood-based biomarkers into the proposed two-cutoff approachwill be

straightforward upon approval.
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2 METHODS

2.1 Study design and patient cohort

This retrospective, cross-sectional, bicentric study included partic-

ipants from two independent cohorts: patients recruited through

three specialized outpatient clinics at the Ludwig Maximilian Univer-

sity (LMU) hospital (Department of Psychiatry and Psychotherapy,

Department ofNeurology, Institute of Stroke andDementia Research),

n = 402, and the memory clinic of the Department of Neurology, Med-

ical University of Vienna (MUV), n = 144. The German cohort included

cognitively unimpaired individuals (either no objective cognitive con-

cerns or subjective cognitive decline [SCD]) and cognitively impaired

patients (categorized as havingmild cognitive impairment [MCI], prob-

able AD dementia, or other neurodegenerative disorders). Diagnoses

of MCI and probable AD dementia were based on core clinical criteria

according to the recommendations of the National Institute on Aging

and Alzheimer’s Association (NIA-AA).10,11 Patients with subjective

cognitive complaints who did not fulfill criteria for MCI were classified

as SCD. Patients with non-AD neurodegenerative disorders fulfilled

clinical criteria for frontotemporal dementia,12 non-fluent or semantic

primary progressive aphasia,13 corticobasal syndromes,14 progressive

supranuclear palsy,15 and vascular dementia.16 The Austrian cohort

consisted of cognitively impaired patients with a clinical diagnosis of

MCI due to AD and probable AD dementia, based on core clinical

criteria according to the NIA-AA recommendations.10,11

In the German cohort, subgroup analyses were performed in all

patients with cognitive impairment (AD and non-AD neurodegenera-

tive disorders, n = 351) and patients with a clinical diagnosis along the

ADcontinuum (i.e.,MCIdue toADandprobableADdementia,n=303).

In anext step,wecombinedpatientswithMCIandmilddementia (Mini-

Mental State Examination [MMSE] > 20, functional impact mainly on

instrumental activities of daily life),17 as this group of patients with

early symptomatic cognitive decline would be potential candidates for

anti-amyloid therapies.

In addition to a thorough standardized diagnostic examination

including neurological evaluation, neuropsychological testing, mag-

netic resonance imaging (MRI), and basic laboratory testing, all

patients underwent Aβ PET imaging and CSF analyses of established

AD biomarkers (Aβ42, Aβ40, total tau [t-tau], and phosphorylated

tau 181 [p-tau181]). On this basis, the amyloid ratio (Aβ42/40) was

determined.

2.2 Neuropsychological examination

Assessment of cognitive function and analysis of different domains

were conducted using the Neuropsychological Test Battery Vienna

(NTBV) and the Vienna Visuo-Constructional Test 3.0 (VVT 3.0)18–20

at the Department of Neurology, MUV. Adequate normative data

from cognitively unimpaired individuals were available, and z scores

for each variable were calculated and corrected for age, education,

and sex. Depressive symptoms were assessed using the Beck Depres-

RESEARCH INCONTEXT

1. Systematic Review: The authors systematically reviewed

the literature using PubMed. In light of the imminent

approval of disease-modifying therapies in Europe, accu-

rate and timely identificationof patientswhowouldbene-

fit fromthese treatments is of great importance.Although

growing evidence shows consistent results between cur-

rently approved biomarkers in cerebrospinal fluid (CSF)

and positron emission tomography (PET) imaging in up

to 90%, the widespread use of these biomarkers is still

limited, and algorithms on an individual patient level are

scarce.

2. Interpretation: We show that the implementation of

a two-cutoff approach would substantially reduce the

amount of additional biomarker testing. In both cohorts,

a CSF amyloid beta (Aβ)42/40 ratio ≥ 7.1% was associ-

atedwith a low risk of AβPET positivity, thus excluding an

underlyingamyloidpathologywithahighnegativepredic-

tive value. Patients exhibiting intermediate CSF Aβ42/40

results would benefit from additional PET imaging.

3. Future Directions: Follow-up studies regarding patients

with intermediate and discordant results will be nec-

essary, for example, with quantification tools for PET

imaging or ultrasensitive immunoassays inCSF andblood,

to better determine the diagnostic and prognostic value

of these findings in a real-world setting before adminis-

tration of anti-amyloid therapies.

sion Inventory (BDI-II).21 Similar assessments were performed at the

Department of Psychiatry and Psychotherapy, LMU.

At the Institute for Stroke and Dementia Research, LMU, and the

Department of Neurology, LMU, cognitive assessments were con-

ducted using the Consortium to Establish a Registry for Alzheimer’s

Disease (CERAD-NP) Plus battery, consisting of a standardized set of

neuropsychological tests including MMSE, word list learning test, Trail

Making Test Parts A and B, andword fluency test.22,23

The clinical distinction betweenMCI and dementia was determined

by the results of neuropsychological testing, as well as the assessment

of the individual’s ability to perform activities of daily living.

2.3 CSF AD biomarkers

CSF was obtained by lumbar puncture and handled based on current

international recommendations.24 Concentrations of Aβ42, Aβ40, p-

tau181, and t-tau in CSF were measured using commercially available

enzyme-linked immunosorbent assays (ELISA; Innotest beta-amyloid

1-42, Innotest beta-amyloid 1-40, Innotest phosphoTAU 181p, and

Innotest hTAUAg, Fujirebio Europe).25,26
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2.4 Aβ PET imaging

Aβ PET imaging was performed at the Department of Nuclear

Medicine, LMU, and the Division of Nuclear Medicine, MUV.

[18F]flutemetamol Aβ PET scans (LMU and MUV; average dose:

182 ± 11 MBq), [18F]florbetaben Aβ PET (LMU; average dose:

288 ± 14 MBq) or [11C]Pittsburgh compound-B (PiB, MUV; average

dose 400MBq) were performed 90 to 110minutes ([18F]flutemetamol

and [18F]florbetaben) or 40 to 60 minutes (PiB) after injection on

a Siemens Biograph 64 PET. Low-dose computed tomography (CT)

was acquired for attenuation correction. Scans were evaluated

daily by a visual read (resident with validation by an attending as

an expert reader with > 500 evaluated Aβ PET scans) as positive or

negative for the presence of cortical Aβ pathology. In the majority

of the cases, attendings evaluated the scan blinded to the resident’s

opinion. Both resident and attending physicians received certified

reader training for the interpretation of [18F]flutemetamol (Vizamyl)

and [18F]florbetaben (Neuraceq) scans, following the guidelines and

recommendations provided in the summary of product characteristics.

PET images of [18F]flutemetamol and PiB were analyzed using a rain-

bow color scale, while [18F]florbetaben images were analyzed using a

grayscale. The readers manually adjusted the threshold window using

the pontine/cerebellar white/gray matter contrast as a reference. All

readers had access to clinical information and morphology (i.e., MRI

in ≈ 80%, CT in ≈ 20%). All images were systematically evaluated,

starting at the level of the pons/cerebellum and moving upward

through the frontal lobes, anterior cingulate, posterior cingulate,

precuneus, temporoparietal regions (including the insula and lateral

temporal lobes), including the striatal region for [18F]flutemetamol and

PiB scans. The interpretation was performed visually by comparing

the tracer uptake in cortical gray matter to that in adjacent cortical

white matter. If any of these regions showed clear positive (abnormal)

activity, the imagewas classified as positive; otherwise, itwas classified

as negative. Semiquantitative Aβ PET data were additionally available

for [18F]flutemetamol and [18F]florbetaben as supporting information

to the readers, expressed as z scores in Aβ PET target regions (frontal,

parietal, temporal, posterior cingulate cortex) and their composite.

The pons was used as reference tissue for [18F]flutemetamol and the

cerebellar cortex was used as reference tissue for [18F]florbetaben.

In discrepant cases, the visual interpretation of the attending was

decisive (< 15%). The attending regularly consulted a second attending

before final decisionmaking in discrepant cases.

2.5 Statistical analysis

Diagnostic accuracy of CSF biomarkers for predicting the dichotomous

Aβ PET result were assessed using receiver operating characteristic

(ROC) curves. In this study, AβPETpositivity determined by visual read

was considered the standard of truth for Aβ status because agree-

ment of Aβ PET with autopsy validation was 95% to 96% in phase

3 studies.27,28 The predefined thresholds were successfully validated

with Aβ PET positivity as the standard of truth for the investigated

cohorts.Determinationofoptimal cutoffswasdeduced fromROCanal-

yses. A P value of < 0.05 was interpreted as statistically significant. All

calculations were performed in SPSS (version 29.0.1.0, IBM).

3 RESULTS

3.1 Classification of Aβ PET status and predictive

value of CSF biomarkers in the German cohort

Detailed characteristics of both cohorts are summarized in Table 1.

Considered alone, CSF Aβ42 levels (changing cutoff during the

10-year period: 375/450 pg/mL) demonstrated very low sensitivity

(14.6%) and high specificity (94.7%) in detecting positivity in Aβ PET

at the individual patient level in the German cohort. The CSF Aβ42/40

ratio (cutoff: 5.5%) showed superior performance, with 86.7% sensi-

tivity and 87% specificity. CSF p-tau181 (cutoff: 61 pg/mL) showed a

sensitivity of 74.1% in detecting positivity in Aβ PET, with a specificity

of 67.1%. Additionally, the optimal cutoff values for the CSF biomark-

ers in this cohort were determined. These were calculated as 5.5% for

the CSF Aβ42/40 ratio (area under the curve [AUC] = 0.92, 95% con-

fidence interval [CI] = 0.89–0.95, P < 0.001), 689 pg/mL for CSF Aβ42

(AUC = 0.85, 95% CI = 0.81–0.89, P < 0.001), and 63.4 pg/mL for CSF

p-tau181 (AUC= 0.78, 95%CI= 0.74–0.83, P< 0.001).

Next, we focused on patientswith discrepant classification between

Aβ PET and CSF to determine an optimized algorithm for the deter-

mination of the individual Aβ status. Considering the Aβ42/40 ratio

the CSF test with the best performance (negative predictive value

[NPV] 82.6%, positive predictive value [PPV] 90.2%), 31 of 178 (17.4%)

patients did not show evidence of AD-related Aβ pathology in the CSF

Aβ42/40 ratio based on a 5.5% threshold but a positive Aβ PET scan.

Furthermore, 22 of 224 patients (9.8%) with diagnostic CSF Aβ42/40

ratio (i.e., a ratio≤ 5.5%) exhibited a negative Aβ PET scan.

Within the subgroup of CSF Aβ42/40 ratio non-diagnostic cases

(CSF Aβ42/40 ratio> 5.5%), a data-driven cutoff of 7.1% discriminated

best betweenAβPETpositive and negative cases (n=178, AUC=0.85,

95%CI= 0.77–0.93, P< 0.001, Figure 1). Patients with a CSF Aβ42/40

ratio between 5.5% and 7.1% (n = 55, 13.7%) revealed Aβ PET posi-

tivity in 43.6%, meaning that only 2.3 patients of this subpopulation

had to be scanned to identify an additional case with Aβ positivity.

To the contrary, patients with a CSF Aβ42/40 ratio ≥ 7.1% (n = 123,

30.6%) showed only 5.7% cases with Aβ PET positivity, indicating that

17.5 patients of this subpopulationwould need to be scanned to detect

an additional case with Aβ positivity (Figure 1). Subgroup analyses in

patients with all-cause cognitive impairment (n = 351) and a clinical

diagnosis of AD (MCI due to AD and probable AD dementia, n = 303)

confirmed the value of a two-cutoff approach (Figures S1 and S2 in

supporting information).

In contrast, within the subgroup of CSF Aβ42/40 ratio–positive

patients (n= 224), no suitable cutoff value was identified to detect dis-

crepant cases (9.8%)withnegativeAβPET (AUC=0.61, 95%CI=0.47–

0.76, P = 0.129; Figure 1). The application of two cutoffs resulted in a

higher NPV (94.3%), while the PPV remained unchanged (90.2%).
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TABLE 1 Patient characteristics of the German and Austrian cohort.

German cohort

n= 402

Austrian cohort

n= 144

Age 70.9 (64.2–76.1) 66.4 (59.3–75.1)

Sex (f) 189 (47%) 70 (48.6%)

MMSE 26 (23-28) 26 (22–28)

Amyloid PET tracer

[18F]florbetaben 86 (21.4%) –

[18F]flutemetamol 316 (78.6%) 67 (45.6%)

[11C]Pittsburgh compound B – 77 (53.5%)

Diagnoses

CU/SCD 51 (12.7%) –

MCI/AD dementia (mild) 267 (66.4%) 124 (86.1%)

ADdementia (moderate-severe) 36 (9.0%) 20 (13.9%)

Non-AD neurodegenerative disorders* 48 (11.9%) –

Note: Data are presented asmedian and interquartile range (25th to 75th percentile) or n (%).

Abbreviations: AD, Alzheimer’s disease; CU, cognitively unimpaired; f, female; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; PET,

positron emission tomography; SCD, subjective cognitive decline.

*Non-AD neurodegenerative disorders included patients with frontotemporal dementia, primary progressive aphasia, corticobasal syndrome, progressive

supranuclear palsy and vascular dementia. Patients were categorized either asMCI /mild dementia (n= 41) or moderate to severe dementia (n= 7).

F IGURE 1 Data-driven cutoff for the CSF Aβ42/40 ratio regarding Aβ PET positivity and evaluation of a two-cutoff approach in the German

(LMU) and Austrian (MUV) cohort. ROC curves were constructed to determine the optimal cutoff for the CSF Aβ42/40 ratio in predicting Aβ PET

positivity in the CSF Aβ42/40 negative cohort (> 5.5%, A) and positive cohort (≤ 5.5%, B). These data-driven thresholds were further used to

implement two cutoffs, which categorized patients as at low, intermediate, and high risk of harboring a positive Aβ PET scan (C). AUC, area under

the curve; Aβ, amyloid beta; CSF, cerebrospinal fluid; LMU, LudwigMaximilian University; MUV,Medical University of Vienna; PET, positron

emission tomography; ROC, receiver operating characteristic

3.2 Performance of CSF biomarkers regarding

cerebral Aβ PET status in the Austrian validation

cohort

In the Austrian cohort, both CSF Aβ42 (cutoff 500 pg/mL) and CSF

Aβ42/40 (cutoff 7.0%) demonstrated higher sensitivity (80% and

93.3%, respectively) but lower specificity (65.5% and 79.8%, respec-

tively) in detecting cerebral amyloidosis on Aβ PET imaging compared

to theGerman cohort. CSF p-tau181 (cutoff 61 pg/mL) showed a sensi-

tivity of 81.7% and specificity of 85.7% to detect positivity in Aβ PET.

Similar to the German cohort, CSF Aβ42/40 showed the best

performance (NPV 94.4%, PPV 76.7%) regarding the prediction of
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positivity in Aβ PET imaging. By applying the predefined threshold

of 7.0%, 21 out of 144 patients (28.9%) yielded discordant results

(Aβ42/40 > 7.0% and positive Aβ PET scan 5.6%, Aβ42/40 ≤ 7.0% and

negative Aβ PET scan 23.3%). Using the predefined threshold of the

German cohort (cutoff ≤ 5.5%), 23 of 144 patients (30.9%) yielded

discordant results (Aβ42/40 > 5.5% and positive Aβ PET scan 17.2%,

Aβ42/40≤ 5.5% and negative Aβ PET scan 13.7%), resulting in an NPV

of 82.8% and PPV of 86.3%.

When the optimized two-cutoff approach of the German cohort

was applied (≤ 5.5% and ≥ 7.1%), 16% of the patients were classified

in the intermediate range, again with a high frequency of a positive

Aβ PET scan in 52.2% of these cases. Notably, in patients with a CSF

Aβ42/40 ratio ≥ 7.1%, only 5.7% of the patients showed positive Aβ

PET scans, which is consistent with the findings of the German cohort.

Comparing the two-cutoff approachwith the threshold of the Austrian

cohort (7.0%), the NPV remained high (94.3%), while the PPV was

improved (86.3%).

3.3 Diagnostic accuracy of CSF Aβ42/40 in

predicting Aβ PET status in early symptomatic

cognitive decline

In the next step, we focused on patients with MCI and mild dementia

in the German cohort (n = 308). By applying a threshold of 5.5% for

the CSF Aβ42/40 ratio, 28 of 122 patients (23%) showed discordant

results, with positive Aβ PET scans and a ratio > 5.5%. Furthermore,

18 of 186 patients (9.7%) exhibited a ratio ≤ 5.5% with no evidence of

cerebral amyloidosis in Aβ PET imaging.

In this cohort, the optimal cutoff value for the CSF Aβ42/40 ratio

was 5.4% (AUC = 0.90, 95% CI = 0.86–0.94, P < 0.001), resulting in

a sensitivity of 84.7%, specificity of 85.7%, NPV of 76.2%, and PPV

of 91.2%. Additionally, in the subgroup of patients with a negative

CSF ratio (i.e., > 5.5%, n = 122), a cutoff value of 7.2% differentiated

best between Aβ PET positive and negative cases (AUC = 0.85, 95%

CI= 0.76–0.94, P< 0.001).

Using both data-driven cutoffs, 15.6% of the patients (n = 48)

obtained intermediate results (ratio between 5.4% and 7.2%), indicat-

ing positive Aβ PET scans in 52.1%. Notably, in those with a ratio ≥

7.2%, positive Aβ PET scans were revealed only in 6.4%. Again, the

two-cutoff approach acquired a higher NPV (93.6%), while the PPV

remained unchanged (91.2%).

In the subgroup of early symptomatic patients with MCI due to

AD and mild AD dementia (n = 267), who would be in-label can-

didates for anti-amyloid therapies, the optimal cutoff for the CSF

Aβ42/40 ratio was 5.3% (AUC = 0.89, 95 CI% = 0.83–0.94, P < 0.001).

In patients with a negative CSF ratio (i.e., > 5.5%, n = 84) a data-

driven cutoff of 7.1% distinguished best between Aβ PET positive

and negative cases (AUC = 0.89, 95% CI = 0.81–097, P < 0.001).

Using both calculated thresholds, 16.1% of patients showed a CSF

ratio in the intermediate range (i.e., CSF Aβ42/40 between 5.3%

and 7.1%) with Aβ PET positivity in 62.8% of cases (Figure S3 in

supporting information). Above a ratio of 7.1%, 10% of patients

F IGURE 2 Discrepancies of cerebral Aβ status based on PET and

CSF results in both cohorts at different cutoffs as well as proportions

of Aβ PET positive and negative findings in the proposed borderline

range of CSF Aβ42/40. Findings are displayed in both whole cohorts

and subsets of early symptomatic patients. Frequencies of each group

are illustrated in each bar (markedwith X). Aβ, amyloid beta; CSF,

cerebrospinal fluid; LMU, LudwigMaximilian University; MCI, mild

cognitive impairment; mD, mild dementia; MUV,Medical University of

Vienna; PET, positron emission tomography

exhibited positive Aβ PET scans, resulting in an NPV of 90% and PPV

of 93.1%.

In MCI and mild dementia cases of the Austrian cohort (n = 124), a

CSFAβ42/40 thresholdof 7.0%resulted in a sensitivity of 93.2%, speci-

ficity of 81.3%, NPV of 95.6%, and PPV of 73.2%. Discordant results

were obtained in 18 patients (31.2%; Aβ42/40 > 7.0% and positive Aβ

PET scan: 4.4%,Aβ42/40≤7.0%andnegativeAβPET scan: 26.8%). The

predefined threshold of 5.4% of the German cohort led to an improve-

ment of the PPV (82.1%), but a deterioration of the NPV (85.9%). The

proportion of patientswith discordant results remained similar (n=19,

32%), with more patients exhibiting positive Aβ PET scans and a ratio

> 5.4% (14.1%) and fewer patients with a ratio ≤ 5.4% and negative

Aβ PET scans (17.9%). When applying both predefined cutoffs (≤ 5.4%

and ≥ 7.2%), 21 out of 124 patients (16.9%) ranged between the two

cutoffs, with positive Aβ PET scans in 47.6%. Above the ratio of 7.2%,

only 3.1% showed positive Aβ PET scans. Compared to the threshold

of the Austrian cohort (7.0%), bothNPV (96.9%) and PPV (82.1%)were

improved. Figure 2 summarizes discrepancies between Aβ status def-

inition by PET and CSF in both cohorts at different cutoffs as well as

proportions of Aβ PET positive and negative findings in the proposed

borderline range of CSF Aβ42/40.

4 DISCUSSION

In this retrospective study, we aimed to evaluate the diagnostic

workflow for the assessment of cerebral Aβ status in a real-world

memory-clinic setting in two independent cohorts. Using Aβ PET

as the standard of truth, we identified borderline cases with a high

 2
3

5
2

8
7

2
9

, 2
0

2
4

, 4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://alz-jo
u

rn
als.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/d
ad

2
.7

0
0

3
1

 b
y

 U
N

IV
E

R
S

IT
Y

 O
F

 S
H

E
F

F
IE

L
D

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
6

/1
1

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



BRENDEL ET AL. 7 of 10

probability of Aβ PET positivity despite non-diagnostic CSF. By

applying a two-cutoff approach based on the CSF Aβ42/40 ratio, we

categorized patients as exhibiting a low, intermediate, and high prob-

ability of having an abnormal Aβ PET scan that could guide diagnostic

algorithms of Aβ status determination inmemory clinics.

Recent studies have also proposed the application of a two-cutoff

threshold to improve the diagnostic accuracy of fluid biomarkers.29–31

This would enhance the diagnostic certainty as well as reduce the

number of additional confirmatory biomarker testing. The main find-

ing of our study was that in both cohorts, patients with a CSF Aβ42/40

ratio ≥ 7.1% had a low risk of harboring a positive Aβ PET scan,

resulting in a high NPV of 94.3%. In line with current proposed Euro-

pean recommendations regarding biomarker-based diagnosis,1 these

results would exclude an underlying AD pathology and require a

reconsideration of the diagnostic suspicion.

In both cohorts, a small but relevant proportion of patients (13.7%

and 16.0%) showed intermediate results (i.e., CSF Aβ42/40 ratio

between 5.5%–7.1%), thus representing a group that should undergo

additional Aβ PET imaging after CSF assessment to reevaluate brain

amyloidosis and identify those patients who would benefit from anti-

amyloid therapies. Future studies may also determine which patients

should be referred to Aβ PET directly and which should receive CSF

assessment first. Notably, these borderline cases may display patients

with intermediate values not just in CSF but across different diagnos-

tic modalities, particularly Aβ PET imaging, which could indicate the

presence of an early AD-related neuropathological change in these

patients.29 Quantification of Aβ PET imaging and further standardiza-

tion of collected data to reduce variability across tracers and sites (i.e.,

Centiloid Project)32 may be of benefit in the future.

A CSF Aβ42/40 ratio ≤ 5.5% was considered Aβ positive in both

study populations, with just a small proportion of patients exhibiting

discordant Aβ PET results (i.e., negative, 9.8% and 13.7%). This may be

in linewith the hypothesis that a change ofCSFAβ42 andCSFAβ42/40

occurs before the accumulation of dense, fibrillar Aβ plaques visualized

by Aβ PET imaging, as both tests are likely assessing different species

and states of Aβ accumulation.33 In clinical practice, the concomitant

assessment of CSF p-tau181 could potentially aid in ascertaining the

detected brain amyloidosis as the underlying cause of the cognitive

impairment, as tau pathology is the second essential proteinopathy

required for the neuropathological diagnosis of AD.1,17 Furthermore,

theAβ42/p-tau181 ratio has also demonstrated high concordancewith

Aβ PET imaging and is therefore included in the clinical routine assess-

ments of CSF biomarkers in many memory clinics, particularly when

Aβ40 is not available.2,34–36

In line with the whole study cohort, the values of the optimized

thresholds remained unchanged in the subgroup of patients with cog-

nitive impairment (CSFAβ42/40 ratio≤ 5.5% and≥ 7.1%). The number

of patientswith intermediateCSFAβ42/40 resultswas similar (13.4%),

displaying positive Aβ PET scans in half of these cases, further empha-

sizing the need for additional biomarker testing in this patient group.

In patients with a clinical AD diagnosis, the lower threshold for the

CSF Aβ42/40 ratio was calculated as 5.3%, while the upper threshold

remained the same (≥ 7.1%); 16.5% of patients showed intermediate

CSF results with an even higher rate of positive Aβ PET scans in this

group. Patients with a CSF Aβ42/40 ratio ≥ 7.1% showed positive Aβ

PET results in 9.3% of patients, resulting in a slightly lower NPV of

90.7%, while the PPV was higher than in the whole cohort (93.5%).

Similar results were obtained in the group of patients with MCI and

mild dementia due to AD. This could be explained by the fact that the

prevalence of amyloid positivity was higher in the group of patients

with clinically suspected AD compared to the other groups that were

analyzed. This led to a distinctly smaller group of amyloid-negative

patients, which could potentially influence these results. However, it

exemplifies the real-world setting of memory clinics, in which amyloid

testing inCSFandPET imaging is not routinelyperformed inall patients

with cognitive impairment.

When focusingonpatientswithearly symptomatic all-causedemen-

tia (i.e., MCI and mild dementia), the data-driven optimal cutoffs of the

CSF Aβ42/40 ratio only slightly shifted to 5.4% and 7.2%, which may

indicate the need for different thresholds depending on the clinical

stage of the disease. The rate of intermediate results remained simi-

lar (15.6% and 16.9%), with only a few patients exhibiting a positive Aβ

PET scan above the threshold of 7.2% (6.4% and 3.1%, NPV 93.6% and

96.9%).

In terms of predicting Aβ PET positivity, the CSF Aβ42/40 ratio

demonstrated higher performance than the individual CSF biomark-

ers alone, which is consistent with previously published studies and

might be explained by the control of interindividual variations regard-

ing the natural fluctuations of the proteins as well as preanalytical

factors.2,35,37

The recent US Food and Drug Administration approval of disease-

modifying therapies in the United States has emphasized the urgent

need for an accurate and timely diagnosis of AD pathology in patients

with cognitive impairment. The use of currently available biomarkers

is still limited due to the high costs of PET imaging and the inva-

siveness of CSF analysis, which hampers their widespread routine

application. Additionally, a biomarker-based approach is reliant on geo-

graphic differences, particularly in terms of availability, accessibility,

and feasibility.38–40 Consequently, the decision onwhich biomarkers to

use is frequently guidedmore by organizational and logistical consider-

ations than by clinical and patient-related factors.1,41,42 Furthermore,

the application of multiple biomarkers may complicate the diagnostic

process, making it challenging for clinicians to interpret the results.

Thus, it is of great importance to implement an algorithm for routine

clinical practice.

Althoughmany studies show a strong concordance betweenCSFAβ

biomarkers and Aβ PET status, clinicians often encounter discordant

results between these two investigations in everyday practice, which

causes difficulties in the clinical routine for the specific diagnosis of

individual patients. This issue will become even more relevant in the

future when targeted therapies depend on it. Blood-based biomark-

ers may be of great value in the future regarding screening and risk

stratification of patients with cognitive impairment but they still need

to undergo validation in real-world cohorts before clinical implemen-

tation. Hence, appropriate use of available resources is crucial to

ensure an accurate diagnosis with the lowest number of examinations.
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The proposed workflow with a two-cutoff approach could assist in

both confirming (rule in) as well as excluding (rule out) the presence

of AD-related amyloid pathology and further identify those patients

who would need additional biomarker testing before administration

of anti-amyloid therapies. Future steps will need to improve method-

ologies and harmonize quantitative analyses of fluid biomarkers to

establish standardized cutoffs and reference values across different

assays and laboratories to grant equivalent and reliable results.43

Because Aβ PET imaging in clinical practice is visually assessed for the

absence or presence of Aβ deposits, interrater variability can display a

problem, especially in borderline cases.44 The implementation of new

tracers and additional quantification tools could aid in providing a stan-

dardized quantitative measure for amyloid burden, allowing a better

comparison across different tracers and sites, and facilitating fast and

consistent analysis. In addition, Aβ PET imaging may gain a new sig-

nificance once anti-amyloid therapies are approved in Europe, as the

duration of the administration may depend on the removal of cerebral

amyloid plaques visualized and quantified by PET imaging, which could

lead to fewer infusions and lower treatment costs.45–47

The main strength of our study is the replication of our real-world

data in an independent real-world cohort, which supports the general-

izability of the proposed two-cutoff approach. This approach is ready

to use in imminent anti-amyloid therapy evaluation. However, several

limitations must be acknowledged. As classification of Aβ PET scan

was assessed through visual read, we did not include quantification

data, whichwould be of special interest in discordant and intermediate

results. Furthermore, we did not obtain longitudinal analyses of CSF

biomarker concentrations or plasma biomarkers. During the conduct

of our study, analyses of core AD biomarkers in CSF were performed

with commercially available ELISA in both cohorts. Hence, it would be

of great interest to further validate the obtained results on automated

platforms.

Due to the cross-sectional design of the study, we lack follow-up

data on clinical outcomes to assess future cognitive decline and dis-

ease progression in cognitively unimpaired individuals. Our results do

not clarify if specific patient subpopulations should undergo Aβ PET

imaging before CSF assessment.

5 CONCLUSION

In conclusion, our data demonstrate the utility of a two-cutoff

approach for CSF Aβ42/40 assessment in a real-world setting of

two independent cohorts. This approach would enhance the detec-

tion and, more importantly, exclusion of underlying amyloid pathol-

ogy, especially in patients with MCI or mild dementia. Furthermore,

we identified patients with borderline CSF results (14%–16%), who

would strongly benefit from additional Aβ PET biomarker testing, and

ultimately, reduce the number and costs of further examinations.
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