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Abstract 

Epistasis refers to changes in the effect on phenotype of a unit of genetic informa‑
tion, such as a single nucleotide polymorphism or a gene, dependent on the context 
of other genetic units. Such interactions are both biologically plausible and good can‑
didates to explain observations which are not fully explained by an additive heritability 
model. However, the search for epistasis has so far largely failed to recover this missing 
heritability. We identify key challenges and propose that future works need to leverage 
idealized systems, known biology and even previously identified epistatic interactions, 
in order to guide the search for new interactions.

Introduction

Epistasis refers to changes in the effect of a unit of genetic information (such as a sin-

gle nucleotide polymorphism or a gene) on a phenotype, dependent on the context of 

other genetic units. Such interactions are biologically plausible and offer a potential 

explanation for phenomena not fully accounted for by an additive heritability model. 

Heritability is a measure of the extent to which phenotypic variation is genetically 

determined. Broad-sense heritability refers to heritability measured by compari-

son of concordance rates for phenotype between monozygotic and dizygotic twins 

who share 100% or 50% of their genetics, respectively [1]. Missing heritability com-

monly refers to the gap between measured broad-sense heritability and heritability 

calculated by adding together the individual contributions of phenotype-associated 

SNPs genomewide (i.e., narrow-sense heritability). Missing heritability is important 

because it implies that we have an incomplete understanding of the genetic basis of 

health and disease. A number of possibilities could explain this missing heritability, 

including gene-environment interactions. Epistatic interactions are another candi-

date to explain a proportion of missing heritability but an alternative explanation is 
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that current knowledge is simply missing the statistical power to discover all impor-

tant additive effects. However, there is good observational evidence for epistasis, for 

example, from large-scale screens in yeast studying the effect of combinations of indi-

vidual gene knockouts [2, 3].

A meta-analysis of twin studies concluded that for 69% of traits the data was con-

sistent with an additive model whereby monozygotic twin correlations were almost 

exactly double dizygotic twin correlations [4]. However, even this study provides evi-

dence for non-additive genetic effects in a subset of traits. For traits such as depres-

sive disorder, hyperkinetic disorders, and atopic dermatitis, the authors observed 

monozygotic twin correlations which were greater than double the dizygotic twin 

correlations, consistent with a non-additive genetic effect. Moreover, even observa-

tions consistent with an additive model are not equivalent to actually demonstrating 

an additive model and the presence of an additive model does not necessarily rule 

out the possibility of an underlying epistatic model. Interestingly, the effect sizes of 

a majority of SNPs vary between genetic backgrounds [5], suggesting the presence of 

interactions between the genetic background and the SNP. Finally, in simulations of 

epistasis, additive models used to measure narrow-sense heritability fail to account 

for non-linear interactions between genetic variants and thus dramatically underesti-

mate true heritability [6].

The problem is that previous searches for epistasis have so far largely failed to recover 

missing heritability [7]. Various computational approaches using statistics, combinato-

rics, and machine learning have been applied to try and detect epistasis. Each of these 

approaches try to address the issue of identifying relevant potential epistatic interactions 

from an enormous search space, either by enumerating all possibilities or by finding an 

efficient way to move through the search space. Consideration of epistasis inherently 

leads to a combinatorial explosion: the number of potential interactions increases expo-

nentially with the number of genetic characteristics involved in each interaction.

During a workshop entitled “A multidisciplinary approach to epistasis detection,” held 

at the Lorentz Center in The Netherlands in July 2023, 41 experts on epistasis detec-

tion from a variety of fields came together. Through interactions and discussions, we 

identified challenges that need to be addressed in order to advance epistasis detection. 

We consider the central combinatorial challenge of epistasis identification through 

two perspectives: statistical and mathematical approaches to case–control studies ver-

sus leveraging biological knowledge and models (Fig. 1). Each of the two perspectives 

is addressed through three subtopics. For the statistical and mathematical perspective, 

we start by reviewing specific problems with popular model assumptions and pose the 

question of whether it is possible to avoid assuming any mathematical form. Next, we 

discuss the potential of novel generative AI models for the analysis of case–control 

cohort data. Third, we show empirically the importance of accounting for population 

structure in case–control cohort studies, which unfortunately is often overlooked. In the 

second half of this review, we discuss biological observations of epistasis. We start with 

the idea that search for epistasis should always start with biological models. Second, we 

discuss whether one should consider inter- and intragenic epistasis separately. Finally, 

we propose the use-case for a “database of epistasis” and provide guidelines for the char-

acteristics that such a database should have.
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What assumptions of epistasis are being made and what are their implications?

Epistasis is a natural expectation of a complex system, but the search for epistasis is 

challenging primarily due to the combinatorial explosion of possibilities. In this sec-

tion, we delve into the assumptions, mathematical or otherwise, that underpin current 

methods of epistasis detection and posit the use of state-of-the-art machine learning 

approaches in a new generation of data-driven epistasis detection methods. Many exist-

ing approaches have been recently reviewed [8]; here we extend this analysis by consid-

ering the conceptual limitations of current works and more novel approaches.

Generalizing the functional form of epistasis

If epistasis is taken in its statistical sense as the deviation from the additive/linear base-

line, then all other terms—namely quadratic and higher order interactions—are epistasis 

[9]. The relation between genotype and phenotype can then be represented as a function 

Fig. 1 Key considerations for a comprehensive consideration of epistasis. Epistasis is posed to play a key role 
in genetic architecture and in the missing heritability problem. In this review, we look at epistasis from two 
perspectives: driven by genetic information (green circles) and by biological observations (blue circles). We 
discuss how genetic data can be used in a functional form or in generative models to detect epistasis, and 
that the inclusion of population structure information derived from genetic data is crucial. On the other hand, 
the discovery of epistasis can also be informed by biological observations. Ideally, both sides will lead to 
better detection of epistasis, ultimately leading to a key resource that is a database of epistatic interactions
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that maps a discrete sequence space onto one or more binary- or real-valued traits. 

Extending the formulation used in [10], a phenotype impacted by epistasis can be for-

mulated mathematically as:

where N  is the total number of SNPs in the data, xi encode the SNP information (e.g., 

allelic dosage), y symbolizes the phenotype, and

with d the order of the highest-order interaction. The parameter d allows one to choose 

a maximum order for the epistatic interaction, which can be at most N  . βα(a) are the 

parameters to be estimated denoting the magnitude of the epistatic effect of the vari-

ants corresponding to the vector a , where α(a) is the index corresponding to the vector 

a if one were to order all elements of A . The vector a thus indicates which variants are 

included in the α(a) th interaction. For example, in the case of N = 3 and d = 2 this 

would give:

Note that since d = 2 , the interaction between all three variants is not included.

In other words, epistasis is the combined effect of any combination of SNPs up to a 

certain order of magnitude. For binary traits, one can apply the logit function to the 

right-hand side of (1). Note that explicitly using formulation (1) leads to a combinatorial 

explosion in the number of terms and hence parameters to be estimated as the number 

of SNPs and the degree d increase, hence explicitly estimating the effect of all interaction 

terms is infeasible.

Any function can be represented as a series expansion with the commonly used Taylor 

and Fourier series expansion [11]. The difference between the two representations for 

modeling epistasis is the reference frame. The Taylor series uses the wild type as refer-

ence to quantify epistatic interactions and in the Fourier series epistatic effects are aver-

ages over all backgrounds [12]. With epistasis, a wide body of literature suggests that 

many different mathematical formulations can be linked using the weighted Walsh-Had-

amard transform [12].

Models that identify epistatic interactions from genotype data nearly always make 

assumptions on the form of the epistatic relationship (Table  1). There is a gradient in 

current approaches of epistasis detection: from models assuming a specific form of 

epistasis (e.g., BOOST [13], BitEpi [14], Fiuncho [15], IRELAND [16, 17], MDR [17]) to 

models that learn an epistatic relationship of any form (e.g., [12, 18–20]). These assump-

tions are described in the paragraphs below.

Approaches that assume a specific form of epistatic interaction, for example, pair-

wise, triplet, or quadruplet interactions, are often easier to understand and can pro-

vide directly interpretable outcomes. However, they still suffer from the combinatorial 

explosion if there is no constraint on the type and number of interacting variants. 

(1)
y =

a∈A

βα(a)

i∈(1,··· ,N )

x
ai
i ,

A := {a ∈ {0,1}N : 1Ta ≤ d}
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Consequently, several methods focus on two-way interactions only [13, 21, 22] while 

other more exhaustive search methods are limited by the computational complexity of 

the approach and often do not go beyond four-way interactions [14, 15, 23, 24]. Fiun-

cho and IRELAND do go beyond four-way interactions [14–17, 23, 24], though they are 

limited in the number of SNPs they can analyze simultaneously. Whether going beyond 

four-way interactions is clinically relevant and can be validated beyond statistical evi-

dence remains an open question. It is, however, biologically plausible that many SNPs 

are involved in the same epistatic interaction [25, 26].

On the other hand, freeform approaches such as deep neural networks (DNNs) [19, 20, 

27, 28], as supported by mathematical theorems (the universal approximation theorem, 

e.g., [29, 30]), can approximate arbitrary functional relationships, thereby in theory they 

can avoid the requirement to  impose any assumption in terms of functional relation-

ships driving epistasis. This makes them more flexible and less prone to computational 

limits. In practice, however, these approaches require additional steps, perhaps yet to be 

developed, to not only implicitly capture but also provide an explicit description of the 

epistatic interaction [18]. Because DNNs tend to use a large number of input variables 

for phenotype prediction, they arguably assume a highly polygenic or even omnigenic 

trait [29] in practice.

Many classical machine learning (ML) approaches sit between these two extremes, 

such as decision tree ensembles, i.e., random forest [31–35], boosting [36], and support 

vector machines [37–40]. These approaches make mild assumptions on the functional 

form of the epistatic interaction, allowing them to deal with higher-order interactions. 

For random forests, these assumptions include that SNPs forming interactions must be 

independent of each other. Random forests also assume that the relationship between 

epistasis and genetic variants can be described as a combination of decision trees, while 

support vector machines assume that one can separate cases from controls by using a 

hyperplane in the (transformed) variant space.

The standard formulations of epistasis presented above link genotype to phenotype by 

means of statistical models, machine learning approaches, or combinatorics, all based 

on large datasets. However, the joint probability structure of the dataset is never explic-

itly exploited during inference. Modelization and subsequent dissection of the joint 

Table 1 Table summarizing the assumptions made by various methodological approaches and 
tools for detecting epistasis

Assumption Approach/tool

Two‑way interaction only BOOST, GenEpi, EpiGWAS, MDR

Two‑, three‑, or four‑way interactions BitEpi (4‑way), LOBICO (4‑way), MDSN (3‑way)

Any order of interaction IRELAND, Fiuncho

Highly polygenic/omnigenic trait Deep neural nets

SNP interaction partners are independent Random forests; any tool which does not 
account for population structure

Variant interactions can be described through a combination of 
decision trees

Random forest

Cases can be separated from controls through a hyperplane in 
the (modified) variant space

Support vector machine

Epistatic interactions are described through logic statements LOBICO, IRELAND
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probability between genotypic features, and between genotypic features and a pheno-

type of interest, offer another approach to study epistasis.

Using generative approaches to model and explore epistasis

Apart from the classical ML approaches aforementioned, recent algorithmic and com-

putational advances have offered insight into the potential of deep generative models 

in genetics [41, 42]. Inspired by many successful applications in other scientific fields 

[43–45], we envision that leveraging generative approaches could offer a transformative 

approach to identify genetic interactions. Note that, just as for DNN based classifiers, 

universal approximation theorems for probability distributions [46] support the utmost 

flexibility of generative deep learning approaches. A large part of the advantage of this 

approach rests on the ability to perturb a latent space representation of genetic interac-

tions and make observations regarding the effect on phenotypes: in effect providing an 

experimental system with a tractable number of variables. We explain and explore this 

idea below.

A deep generative model aims to construct a condensed representation of the genetic 

information that accurately describes the distribution of genetic variance in the popula-

tion from which observed genetic data is sampled. That is, the generative model learns 

how to represent an individual’s genetic information in a condensed manner with mini-

mal loss of information, meaning that it can reconstruct the original genetic informa-

tion from this condensed representation with high accuracy. Deep generative models are 

typically composed of three components: the encoder, the latent space, and the decoder 

Fig. 2 Example of how generative modeling can be employed to hunt for genetic interactions. Most deep 
generative models are made of two elements: the encoder, which reduces dimensionality, and the decoder, 
which can generate genetic profiles in silico (top panel). We present three problems where generative 
models can be employed. Interpretability: The output of the encoder, and input of the decoder, can be 
interpreted and related to phenotypes of interest. Perturbation: A patient’s genetic profile can be perturbed 
in silico and passed through the encoder. For instance, a patient with two wild‑type alleles (green circles) 
can be modified by induction of A or B (orange circles) or both at the same time (red circles). Study of the 
corresponding perturbation in the latent space can help prioritize potentially interacting genetic pairs. 
Optimization: Finally, a deep generative model could be directly employed inside an optimization strategy 
geared towards finding epistatic interactions, benefiting from two advantages of deep generative models: 
the auto‑differentiation of the decoder and the continuous character of the latent space
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(Fig. 2). Firstly, the encoder maps a sample to a space of much lower dimensionality. This 

so-called latent space offers an intriguing property—it is continuous, unlike the binary 

nature of genetic profiles (wild-type or mutated). Finally, the decoder takes a point 

within this latent space, whether it originates from the encoder or is chosen randomly, 

and reconstructs the corresponding sample. Note that this sample could be non-existent 

if the point in the latent space is chosen randomly. Although deep generative models 

come in various styles [47–49], the roles of the encoder and decoder may differ, but they 

all share these fundamental characteristics.

We foresee three kinds of applications that require the development of models with a 

disentangled latent space [48, 50]. Firstly, extrapolating from protein structure work, we 

expect that well-designed models will exhibit emergent information in the latent space 

[51]. In more concrete detail, using interpretable labels (such as diseased/non-diseased), 

one trains the encoder to map differently labeled data to distant parts of the latent space, 

while placing identically labeled data near to each other. Such training procedures can 

be implemented by the integration of contrastive loss functions [52] into the training 

of the encoder-decoder architecture. As per their definition, contrastive loss functions 

are exactly the drivers that keep similar things together, while keeping separate things 

apart when embedding data into latent space. As a result, the interpretability of the 

model obtained by an appropriately structured continuously valued latent space could 

be instrumental in increasing the power of standard analysis (Fig. 2, Interpretability). For 

example, linking parts of the latent space to known phenotypes (e.g. disease risk) could 

aid in identifying new disease-risk regions. This expansion of the available dataset would 

enhance the power of standard epistasis detection analyses. A second, more direct appli-

cation of such a model involves using it as an “oracle” that provides quantitative insights 

into the perturbation caused by a pair of genetic alterations (Fig. 2, Perturbation). For 

instance, given two alleles A and B at different loci, one could measure the perturbation 

in the latent space induced by each mutation and compare it to the perturbation in the 

latent space caused by A and B combined. If the combined mutation leads to the same 

perturbation as the two individual combinations together, then there is no indication 

of epistasis, else there is. Lastly, the model can be used in a more exploratory manner 

through the design of optimization routines (Fig. 2, Optimization). Using the decoder’s 

gradients enables the identification of genetic pairs that lead to maximal perturbations 

in the latent space, indicating interaction within these pairs and hence identifying poten-

tial epistatic interactions. These three directions, far from being exhaustive, showcase 

the potential of deep generative models in the detection of epistatic interactions. Since 

the use of these methods in genomic applications is still in its infancy but highly promis-

ing, extensive further research along these lines is necessary.

Population structure confounds regression‑based epistasis detection

In addition to the assumptions on the form of the epistatic interaction, there are under-

lying assumptions of genetic data that should inform epistasis detection models, par-

ticularly linkage disequilibrium (LD). However, many epistasis detection datasets and 

tools fail to account for LD structures which means they will be particularly vulnerable 

to population mismatch. Here we include a detailed consideration of this failure within 

epistasis detection and how this could be addressed.
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Events in human evolutionary history such as migration and admixture [53] are 

reflected in differences in allele frequencies (AFs) between different populations [54]. 

The concept of genetic populations is a simplified description of these genetic pat-

terns [55]. The differences in AFs between populations are called population structure 

and have been described as a confounding factor in genome-wide association studies 

(GWAS) [56–59]. In a naive association test, the samples are modeled as independent, 

an assumption that cannot hold when there are such systematic genetic trends within 

the data. Epistasis analysis, similar to GWAS, is vulnerable to confounding from pop-

ulation structure, which if uncorrected, can result in substantial p value inflation and 

false positives in analyses with no true epistatic interactions (Fig. 3). Furthermore, previ-

ous research has shown that a slight change in the AF of a SNP results in a substantial 

decrease in power to replicate the main effects of said SNP when there is an underlying 

epistatic model [60]. Detection and correction of population structure are thus of core 

importance to the study of epistasis. We propose that solutions to this problem can be 

informed by common practices from GWAS analysis.

In GWAS, there are two main approaches to correcting for population structure. The 

first includes principal components of genetic similarity as additional covariates in a 

linear model. Principal component analysis (PCA) aims to explain the variance–covari-

ance structure of a high-dimensional data set with a relatively small number of linear 

Fig. 3 Population structure confounds regression‑based epistasis detection. QQ plots for PLINK pairwise 
epistasis analysis on simulated null data with population structure and no true epistatic effects (interactions), 
i.e., only additive contributions (main effects), and trait heritability of 0.5 (details of simulation in Additional 
file 1: Supplementary Methods). Comparison of analysis corrected for population structure with 20 PCs (blue) 
and uncorrected for population structure (red) shows that population structure also leads to inflation of 
small p values and a large number of false positives in regression‑based genome‑wide association studies 
that model epistasis as a pairwise interaction term. The dashed horizontal line is the significance threshold 
after Bonferroni correction. Phenotype adjustment here is performed by regressing the phenotype against 
20 PCs in a multiple linear regression model and using the residuals as the “adjusted phenotype.” The facets 
labeled as “high” and “low” correspond to 1000 and 100 true causal variants respectively with additive‑only 
contributions to trait variance
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combinations of the original variables [61]. The first few principal components of genetic 

data often capture population structure and are suitable covariates for correcting this 

source of confounding [62]. The second includes a random effect that is informed by 

the genetic covariance between samples in a linear mixed model (LMM) approach. By 

including a random effect that covaries with the genetic similarity, the samples are no 

longer modeled as independent. This method, while computationally more costly, is able 

to account for population structure without overfitting; in the presence of cryptic relat-

edness LMMs outperform principal component-based correction methods [57, 63].

Analogous methods to those used in GWAS have been adopted to account for popula-

tion structure in some epistasis detection approaches, including methods adopting PCA 

correction (e.g., MBMDR-PC [64]) and LMMs (e.g., REMMA-epi [65] and FaST-LMM-

epi [66, 67]). Indeed, LMM approaches have been shown to produce significantly lower 

statistical inflation than PLINK’s pairwise epistasis method [65, 68]. Surprisingly, several 

commonly used methods for epistasis detection including PLINK epistasis and BOOST 

[13] do not have a built-in option for including covariates or otherwise correcting for 

population structure.

Our simulation analysis suggests that simply ignoring population structure in these 

cases is unwise and would lead to substantial statistical inflation and false positives 

(Fig. 3, Additional file 1: Supplementary Methods). Here we simulated traits with no true 

epistatic effects (only additive effects) in a structured population and performed plink 

epistasis detection to evaluate the impact of population structure on the resulting test 

statistics. We expect that if epistasis tests were inherently robust to confounding from 

population structure there would be no significant hits or p value inflation, as no epista-

sis was simulated. For population structure correction, the phenotype was adjusted 

using multiple linear regression on the first 20 PCs prior to analysis. The simulation code 

is open source at https:// github. com/ jdsta mp/ leiden_ paper. QQ plots of our simula-

tions show evidence of statistical inflation and large numbers of false positives only in 

the simulations with no correction for population structure (Fig. 3, “unadjusted” panels 

on right), indicating that population structure can confound epistasis detection meth-

ods, while analyses corrected for structure were well-controlled (Fig. 3, “PCA adjusted” 

panels on left). We thus recommend that researchers using methods without built-in 

population structure correction for epistasis analysis address population structure, for 

example, by first adjusting their phenotype using principal components (taking the 

residuals from a multiple regression), or alternatively using a suitable LMM approach.

Leveraging biology in the search for epistasis

The first part of this review focused on using statistical and mathematical approaches 

to identify epistasis from data. In this second part, we focus on if and how biological 

information can be leveraged to look for epistasis. We pose two questions surrounding 

the use of model systems and intergenic versus intragenic mechanisms in the search for 

epistasis, followed by a discussion on the usefulness of a database of epistasis.

Should a search for epistasis start with biological observations?

We assert that conclusive evidence for the role of epistasis in determining disease herita-

bility has come from interactions that have been identified in large case–control cohorts 

https://github.com/jdstamp/leiden_paper
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and model systems such as cell lines and organisms. We hypothesize that true epistatic 

interactions will be observable in both model systems and case–control cohorts. How-

ever, false positive epistatic interactions may be more likely in case–control datasets 

where, for example, population structure is imperfectly matched. On the other hand, the 

potential challenge with model systems is knowing whether the readout and the cell/tis-

sue context are a correct approximation of disease. Indeed, a model system may suggest 

an epistatic interaction which is specific to the genetic background of the model organ-

ism and may not be important in an outbred population.

Many double mutant genetic knockout screens have been performed, both in model 

organisms and human cell lines [69]. The problem with the use of organisms for epista-

sis detection is, again, the size of the search space. Extensive large-scale screens have 

been performed in yeast, focusing on large-scale characterization of cells with combina-

tions of two or more individual gene knockouts or temperature alleles [2, 70, 71]. Such 

screens have proved useful, for example, in delineating biological pathways containing 

genes with similar interaction profiles. However, they have not, as yet, provided the scale 

necessary for an exhaustive search for epistasis. Indeed higher organisms such as mice 

are not at all suitable for large-scale screens due to the practical undertaking involved in 

exhaustive characterization.

Unlike organisms, cells are more tractable. In mammalian cells, many double mutant 

screens have been performed, mostly in the context of cancer where gene knockouts 

have important therapeutic implications since gene knockouts can represent drug-tar-

geting conditions. For example, in one recent study double mutant screens were per-

formed for ~ 34,937 gene pairs in MCF-10A breast cell lines, and their effects on tumor 

growth were examined in mice [72]. Statistically significant gene pairs were identified 

and grouped into interacting modules. Interestingly, the genes within a group exhibited 

epistatic effects on gene expression of other group members. Overall, this study revealed 

the gene interaction network of tumor growth and has important implications for ther-

apeutic strategies. Another recent work examined 1191 putative functional gene pairs 

and/or paralogs in human melanoma lines and identified 109 pairs that affected fitness 

[73]. An important consideration in a biological experiment is context, for example, epi-

static interactions may only be apparent in a specific environment; when that environ-

ment is the presence of a particular toxin or therapeutic, this observation can be used to 

identify epistatic interactions which have the potential to guide personalized medicine 

[74].

An important and well understood biological consideration is the separation between 

intergenic and intragenic mechanisms of epistasis. There is good evidence for intragenic 

interactions such as haplotypes associating with altered gene expression depleted for 

deleterious coding alleles [75]. Similarly, there is evidence for intergenic epistasis, par-

ticularly between genes of similar function [76], where an established example concerns 

mutations within different hemoglobin beta-chains [77]. Intergenic epistasis across dif-

ferent functional pathways also tends to be the result of compensatory adaptation [78] 

and typically genes within the same pathway have a similar interaction profile [70]. The 

problem with separating intergenic and intragenic epistasis is that both are combined in 

real-world biological systems. To circumvent this, we suggest a stepwise approach where 
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intergenic epistasis is analyzed and identified before searching for intragenic epistasis 

within each intergenic interaction.

An alternative framing is that the search for epistasis should prioritise variants where 

biological evidence for an effect is provided by a case-control cohort instead of a model 

system. If there is an epistatic interaction, we might expect to be able to measure the 

association between phenotype and genotype even with only one of the involved vari-

ants. Intuitively, this will depend on the frequency of the alleles in question, the size of 

the study population, and the effect size of the genetic variants. If true, then we should be 

able to use prioritization methods based on independent models (i.e. an additive model) 

to reduce the search space size for epistasis. One study has already applied this princi-

ple [21] where the search for epistasis was focused on additional genetic variants which 

increased the effect of another, significant in isolation, genetic variant. Their results are 

promising, showing that in several datasets this method outperforms GBOOST and 

Lasso. A future extension for this approach might be to use symbolic regression [79, 80] 

to detect epistasis between genetic variants with nominal significance and to determine 

the mathematical formulation of the relationship without a pre-specification.

A database of epistasis

An obvious approach to leveraging known information in the search for epistasis is to 

use the literature of known epistatic interactions. There have been efforts to collect large 

amounts of epistasis data in one platform. For example, using pre-selected gene-specific 

transcription factors in Saccharomyces cerevisiae [3], SynLetDB provides a database spe-

cifically for synthetic lethality cases. However, most studies report genome-wide epista-

sis which are restricted to one organism or are phenotype-specific such as Alzheimer’s 

disease [81, 82] or in cancer [83], and are not collated and standardized into a single 

database. A database that does exist for epistasis across multiple diseases is driven by 

a single methodological approach (https:// epist asis- disea se- atlas. com, [84]), therefore is 

limited in the types of epistatic interactions it contains. Furthermore, it remains difficult 

for researchers to reuse epistasis data because of the different definitions of epistasis, 

and different experimental and computational techniques used to identify epistasis.

We argue that although studies on epistasis can be highly diverse, there is a core set of 

data and metadata that can and should be reported for all studies to be able to effectively 

leverage known epistatic interactions. This set of minimum reporting standards could 

be based on other guidelines available such as MIAME/MINSEQE [85] that are used 

in sequence-based platforms, for example, the EGA (https:// web2. ega- archi ve. org/) or 

GEO (www. ncbi. nlm. nih. gov/ geo/), and should include metadata per study, per sample, 

and per interaction, as outlined in Table 2. If all studies publishing epistasis information 

adhere to the same set of minimal reporting standards, referencing and using known 

epistasis would become much simpler. Additionally, it would facilitate the collection of 

epistasis information into one large database, which would benefit many researchers 

in the field of epistasis. Because epistasis is such a complex phenomenon, generating 

a database would be helpful to explore available data or validate new results (Fig. 4B). 

Additionally, a database could identify genes of interest, or other studies using a specific 

method of epistasis detection.

https://epistasis-disease-atlas.com
https://web2.ega-archive.org/
http://www.ncbi.nlm.nih.gov/geo/
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It is important to consider which types of researchers may use a database of epistasis. 

For example, researchers studying a certain gene or SNP may want to query that gene/

SNP to get an overview of potential epistatic interactions, while studies identifying epi-

static interactions may query specific interactions to validate their findings, or search for 

orthogonal sources of validation, e.g., knock-out studies for specific interactions dem-

onstrating a phenotypic effect or reduced expression level at the mRNA or protein level. 

On the other hand, researchers focusing on a specific disease or other phenotype may 

query that phenotype to find any associated interactions.

However, because epistasis is such a diverse phenomenon, creating a comprehensive 

database to capture this information poses several challenges. For example, it would be 

ideal for a database to contain curated positive (i.e., epistatic interaction occurs) and 

negative (i.e., epistatic interaction does not occur) cases. A further complication is that 

computational methods use a range of measures of confidence for epistatic interactions 

Table 2 The set of minimum reporting standards for a database of epistasis

Per study [1] Phenotype description [2] Experimental 
method [3] Computational method [4] 
Study sample size

Per sample [1] Organism/cell line [2] Sample description

Per interaction [1] SNP ID or SV gene loci [2] Associated 
HUGO gene symbol [3] Value of phenotype 
measure (e.g., gene expression, disease, trait, 
cell growth) [4] Confidence or significance 
score [5] Validation status [6] Nature of inter‑
action (e.g., pairwise/higher order)

Fig. 4 The need for an epistasis database. A It is currently difficult to compare epistasis data between studies, 
as there are many different approaches, models, and even definitions of epistasis. B Use cases of an epistasis 
database. By collecting epistasis data into one coherent framework, researchers can more easily find relevant 
information about their genes/SNPs and interactions of interest. Additionally, collecting epistasis data into 
one large framework would benefit from the creation of a reporting standard for epistasis data, such that 
epistasis data can be more easily collected and reused in the future
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(e.g., statistical significance (p value/FDR), feature weight, knock-out experiments), 

and thus defining and standardizing positive and negative epistatic interaction is not 

straightforward. Likewise, these computational methods use different approaches (e.g., 

neural nets, random forests, regression), and thus have different metrics to detect epista-

sis, which may not be directly comparable (Fig. 4A). Hence, the provenance of each epi-

static interaction, as suggested in Table  2, is essential to filter data and find epistatic 

interactions with multiple sources of evidence.

Conclusion

The search for epistatic interactions which influence disease heritability is challenging 

but essential to facilitate effective personalized medicine. We have outlined some of the 

challenges, particularly the intractability of modeling epistasis. While we have suggested 

some modeling approaches that may be fruitful in the future, we have also considered 

real steps that could be used to improve models by integrating known biology. In par-

ticular, we suggest that all models of epistasis in the future should include an explicit 

correction for population structure and we show the importance of this through simu-

lation. We make the case for a database of epistasis to bring together what is already 

known in the hope that this is a firmer foundation for discovery than strict model defini-

tions, which may or may not be representative. Using generative models may be a way in 

which these biological observations can be summarized in a meaningful fashion.
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