
This is a repository copy of Slow oscillation-spindle coupling predicts sequence-based 
language learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/220047/

Version: Accepted Version

Article:

Cross, Zachariah R, Helfrich, Randolph F, Corcoran, Andrew W et al. (8 more authors) 
(2024) Slow oscillation-spindle coupling predicts sequence-based language learning. The 
Journal of neuroscience : the official journal of the Society for Neuroscience. 
e2193232024. ISSN 1529-2401 

https://doi.org/10.1523/JNEUROSCI.2193-23.2024

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NoDerivs (CC BY-ND) licence. 
This licence allows for redistribution, commercial and non-commercial, as long as it is passed along 
unchanged and in whole, with credit to the original authors. More information and the full terms of the licence 
here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 1 

 

 

 

Slow oscillation-spindle coupling predicts sequence-based language learning 

 
 
 

Zachariah R. Cross1,2*, Randolph F. Helfrich3, Andrew W. Corcoran1,4, Mark J. Kohler5, Scott W. 
Coussens1,5, Lena Zou-Williams1, Matthias Schlesewsky1, M. Gareth Gaskell6, Robert T. Knight7,8, Ina 

Bornkessel-Schlesewsky1 

 
 
 
1Cognitive Neuroscience Laboratory, University of South Australia, Adelaide, Australia, 5072. 
2Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America, 60611. 
3Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany, 72076. 
4Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, Australia, 3800. 
5Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia, 5000. 
6Department of Psychology, University of York, York, United Kingdom, YO10 5DD. 
7Department of Psychology, UC Berkeley, Berkeley, California, USA, 94720. 
8Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, USA, 94720. 

 
*Corresponding author: zachariah.cross@northwestern.edu  
 

 
Abbreivated title: Neural correlates of sleep and language learning 
Number of pages: 27 
Number of figures: 7 
Number of tables: 2 
Abstract word count: 246 
Introduction word count: 797 
Discussion word count: 1327 
 

 

 

Conflict of interest. The authors declare no competing financial interests. 
 

Acknowledgements. We thank Alex Chatburn for helpful discussions and feedback on an earlier 
version of this manuscript. We also thank the research assistants at the Cognitive Neuroscience 
Laboratory. Particular thanks to Isabella Sharrad, Erica Wilkinson, Nicole Vass and Angela Osborn for 
help with data collection. Thank you also to the participants. 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2020.02.13.948539doi: bioRxiv preprint 

mailto:zachariah.cross@northwestern.edu


 2 

Abstract 

Sentence comprehension involves the rapid decoding of semantic and grammatical 
information, a process fundamental to communication. As with other cognitive processes, 
language comprehension relies partly on long-term memory. However, the 
electrophysiological mechanisms underpinning the initial encoding and generalisation of 
higher-order linguistic knowledge remains elusive, particularly from a sleep-based 
consolidation perspective. One candidate mechanism that may subserve the consolidation of 
language is the temporal coordination of slow oscillations (SO) and sleep spindles during non-
rapid eye movement sleep (NREM). To examine this hypothesis, we analysed 
electroencephalographic (EEG) data recorded from 35 participants (Mage = 25.4, SD = 7.10; 
16 males) during an artificial language learning task, contrasting performance between 
individuals who were given an 8hr nocturnal sleep period or an equivelant period of wake. We 
found that sleep relative to wake was associated with superior performance for rules that 
followed a sequence-based word order. Post-sleep sequence-based word order processing 
was associated with an increase in task-related theta power, an electrophysiological signature 
of successful memory consolidation. Frontal NREM SO-spindle coupling was also positively 
associated with behavioural sensitivity to sequence-based word order rules, as well as with 
task-related theta power. As such, theta activity during retrieval of previously learned 
information correlates with SO-spindle coupling, thus linking neural activity in the sleeping and 
waking brain. Taken together, this study presents converging behavioural and 
neurophysiological evidence for a role of NREM SO-spindle coupling and task-related theta 
activity as signatures of successful memory consolidation and retrieval in the context of higher-
order language learning. 
 
 
SIGNIFICANCE STATEMENT. The endogenous temporal coordination of neural oscillations 
supports information processing during both wake and sleep states. Here we demonstrate 
that slow oscillation-spindle coupling during non-rapid eye movement sleep predicts the 
consolidation of complex grammatical rules and modulates task-related oscillatory dynamics 
previously implicated in sentence processing. We show that increases in theta power predict 
enhanced sensitivity to grammatical violations after a period of sleep and strong slow 
oscillation-spindle coupling modulates subsequent task-related theta activity to influence 
behaviour. Our findings reveal a complex interaction between both wake- and sleep-related 
oscillatory dynamics during the early stages of language learning beyond the single word level. 
 
 
 

 

 

 

Keywords: Sleep and memory; language learning; sentence processing; neural oscillations; 
cross-frequency coupling. 
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Introduction 

The human brain is adept at extracting regularities from sensory input, a process 
pivotal for generating knowledge of one’s physical and social environment (Santolin and 
Saffran 2018). Learning of such regularities plays a key role in the development of linguistic 
competencies, enabling the implicit acquisition of grammatical rules embedded in ambient 
speech (Cross et al. 2021; Isbilen, McCauley, and Christiansen 2022; Romberg and Saffran 
2010, 2010). While this perspective of language learning has informed insights concerning the 
encoding of local dependencies, the acquisition of more complex linguistic structures remains 
less understood. Here, we address this gap from the perspective of sleep-based memory 
consolidation, a well-established mechanism governing the generalisation of knowledge from 
sensory experience (Brodt et al. 2023; Diekelmann, Wilhelm, and Born 2009; Xie, Earle, and 
Myers 2018). 

A plethora of evidence (for review, see Rasch and Born 2013) demonstrates that sleep 
plays an active role in memory by consolidating and generalising mnemonic information. This 
dynamic account of the sleeping brain is captured by the Active System Consolidation 
hypothesis (ASC; Born and Wilhelm 2012; Klinzing, Niethard, and Born 2019). Core to ASC 
is that sleep facilitates repeated reactivation of encoded memory representations (Rasch and 
Born 2013). This reactivation is dependent on cortical glutamatergic synapses, which weaken 
during prolonged wakefulness (Kavanau 1997; Rasch and Born 2013). The ASC is supported 
by electrophysiological evidence that learned sequences are replayed during non-rapid eye-
movement (NREM) sleep, potentially via sleep spindle and slow oscillatory (SO) activity. Sleep 
spindles are bursts of electrical activity occurring between 11 – 16 Hz, while SOs centred at 1 
Hz reflect synchronized membrane potential fluctuations between hyperpolarised up-states 
and depolarised down-states of neocortical neurons (Crunelli and Hughes 2010; Vyazovskiy 
and Harris 2013). The precise coupling between SOs and spindles provides a temporal 
receptive window for the replay of hippocampal memory traces and their transfer to cortex for 
long-term storage (Bastian et al. 2022; Mikutta et al. 2019). Critically, the transfer of newly 
encoded information from hippocampus to cortex enables generalisation of mnemonic 
information, allowing cortex to gradually learn the regularities of sensory input – a process 
known to support language learning (Cross et al. 2018; Davis and Gaskell 2009; Rasch 2017). 

Mechanisms of sleep-based memory consolidation have been associated with aspects 
of language learning, including novel-word learning (Bakker et al. 2015; James et al. 2017; 
Mirković and Gaskell 2016) as well as the generalisation of grammatical rules (Batterink et al. 
2014; Nieuwenhuis et al. 2013). However, work examining the association between sleep and 
language often only involves behavioural measures as proxies for memory consolidation (e.g., 
(Mirković and Gaskell 2016; Nieuwenhuis et al. 2013), or examines structure (e.g., grammar; 
Nieuwenhuis et al. 2013) and meaning (i.e., semantics; Bakker et al. 2015; Batterink and Paller 
2017; Batterink, Westerberg, and Paller 2017) in the language input separately (cf. Batterink 
et al. 2014). Neurobiological models of sleep and memory and language processing would 
benefit from a direct investigation of the relation between sleep and higher-order language, 
such as at the sentence level (Cross et al. 2018; Rasch 2017; Schreiner and Rasch 2017), in 
conjunction with online measures of neural activity. This would extend our understanding of 
the complexity of language learning beyond single words, and how the generalisation of newly 
acquired linguistic knowledge is supported by sleep (for review, see Cross et al. 2018) and 
how the brain learns environmental regularities that span multiple scales of complexity and 
how this information is organised across sleep and wake. 
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Here, we present data addressing the contribution of sleep-based memory 
consolidation to complex rule learning in language at the sentence level. We used the modified 
miniature language Mini Pinyin (Cross et al. 2021), which is modelled on Mandarin Chinese, 
to contrast rules that instantiate a fixed or flexible word order. Mandarin naïve Monolingual 
native English speakers completed a learning task where they were shown pictures of two-
person events, followed by a sentence describing the event in the picture. During this task, 
participants learned varying word order rules without explicit instruction and then completed a 
baseline memory task prior to either 8hr of sleep or an equivalent period of wake (Figure 1). 
Participants then completed a delayed memory task to assess changes in memory of the word 
order rules after the 8hr delay. 

We focussed on theta oscillations (~ 3 – 7 Hz), which were quantified using complex 
Morlet wavelets across sentence presentation during the memory tasks. Theta oscillations are 
implicated in relational binding and memory-based decision making (Backus et al. 2016; 
Buzsáki 2002; Jacobs et al. 2006). From this perspective, theta should track successful 
language learning and sleep-based consolidation (Cross et al. 2018). We further quantified 
whole-scalp NREM SO-spindle coupling. SO-spindle coupling as well as task-related theta 
power were used to independently predict language learning, and to determine whether task-
related theta is modulated by sleep-based memory consolidation. 

 
Fig 1. Illustration of stimulus presentation and experimental protocol. (A) Schematic 
representation of a single trial of a grammatical sentence during the sentence learning task. (B) 
Schematic representation of a single trial during the baseline sentence judgement task. This sentence 
is a violation of the verb-position, whereby the verb chile is positioned in the middle of the sentence 
when it should be positioned at the end of the sentence. Here, the participant incorrectly categorised 
this sentence as grammatical, and thus received feedback indicating that their response was incorrect. 
(C) Schematic diagram of the vocabulary test, which required participants to translate the nouns (e.g., 
yegou) into English (e.g., dog) using a keyboard. (D) Experimental protocol representing the time 
course of the conditions (sleep, wake) and testing sessions (sentence learning task, baseline, and 
delayed sentence judgement tasks). After completing the vocabulary test, participants were randomly 
assigned to either the sleep or wake conditions, with each participant only completing one of the two 
conditions. Time is represented along the x-axis, while each coloured block corresponds to a different 
task during the experimental protocol. 

 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2020.02.13.948539doi: bioRxiv preprint 



 5 

Methods 

Participants 

We recruited 36 right-handed participants who were healthy, monolingual, native 
English-speakers (16 male) aged 18 – 40 years old (Mage = 25.4, SD = 7.0). Participants were 
randomly assigned to either a Sleep (n = 18) or Wake condition. All participants reported 
normal or corrected-to-normal vision, no history of psychiatric disorders, substance 
dependence, or intellectual impairment, and were not taking medication that influenced sleep 
or neuropsychological measures. All participants provided informed consent and received a 
$120 honorarium. One participant from the Sleep condition was removed from the analysis 
due to technical issues during the experimental tasks and sleep period, resulting in a total 
sample size of 35 (Mage = 25.4, SD = 7.10; 16 males; Sleep n = 17). Ethics approval was 
granted by the University of South Australia’s Human Research Ethics committee (I.D: 
0000032556). 

Screening and control measures  

The Flinders Handedness Survey (FLANDERS; Nicholls et al. 2013) was used to 
screen handedness, while the Pittsburgh Sleep Quality Index (PSQI; Buysse et al. 1989) 
screened for sleep quality. PSQI scores ranged from 1-5 (M = 2.9, SD = 1.33) out of a possible 
range of 0 – 21, with higher scores indicating worse sleep quality. Prospective participants 
with scores > 5 were unable to participate. As an additional control, the Stanford Sleepiness 
Scale (SSS) was administered at the beginning and end of the experiment to measure self -
perceived sleepiness. 

Electroencephalography  

The electroencephalogram (EEG) was recorded during the learning and sentence 
judgement tasks and sleep opportunities using a 32-channel BrainCap with sintered Ag/AgCI 
electrodes (Brain Products, GmbH, Gilching, Germany) mounted according to the extended 
International 10-20 system. The reference was located at FCz, with EEG signals re-referenced 
to linked mastoids offline. The ground electrode was located at AFz. The electrooculogram 
(EOG) was recorded via electrodes located 1cm from the outer canthus of each eye (horizontal 
EOG) and above and below participants’ left eye (vertical EOG). Sub-mental 
electromyography (EMG) was added to facilitate accurate scoring of sleep periods. The EEG 
was amplified using a BrainAmp DC amplifier (Brain Products GmbH, Gilching, Germany) 
using an initial band-pass filter of DC – 250 Hz with a sampling rate of 1000 Hz. 

Vocabulary and structure of Mini Pinyin 

Stimuli consisted of sentences from a modified miniature language based on Mandarin 
Chinese (Cross et al. 2021). This language contained 32 transitive verbs, 25 nouns, 2 coverbs, 
and 4 classifiers. The nouns included 10 human entities, 10 animals and 5 objects (e.g., 
apple). Each category of noun was associated with a specific classifier, which always 
preceded each of the two noun phrases in a sentence. As illustrated in Figure 2B, ge specifies 
a human noun, zhi for animals, and xi and da for small and large objects, respectively. Overall, 
this stimulus set contained 576 unique sentences (288 grammatical, 288 ungrammatical) 
which are divided into two equivalent sets (see Cross et al. 2021 for a complete description of 
the stimuli; for the complete set of stimuli, visit: https://tinyurl.com/3an438h2).  
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We focussed on a subset of sentence conditions to investigate the mechanisms 
underlying the learning of different word order rules, which fundamentally differs between 
natural languages (for review, see Bates, Devescovi, and Wulfeck 2001). Languages like 
English and Dutch rely primarily on word order, while languages like German and Turkish rely 
more on cues such as case marking and animacy (Bornkessel and Schlesewsky 2006; 
Bornkessel-Schlesewsky et al. 2015; MacWhinney, Bates, and Kliegl 1984). From this 
perspective, Mini Pinyin enabled a comparison between sentences with differing word orders 
(see Figure 3A), and the influence sleep may have on the respective consolidation of fixed 
and flexible word order rules. The subset of stimuli in the current analysis contained 96 
sentences in the sentence learning task and 144 sentences in the grammaticality judgement 
tasks. The remaining sentences were considered fillers. These filler sentences included 
sentences that violated classifier-noun pairs, and thus were not suitable for testing predictions 
regarding fixed and flexible word order processing (for a full description of all sentence 
conditions present in this language, please see Cross et al. 2021). 

As is apparent in Figure 3A, sentences that do not contain the coverb ba (i.e., actor-
verb-undergoer, AVU; undergoer-verb-actor, UVA) yield a flexible word order, such that 
understanding who is doing what to whom is not dependent on the ordering of the noun 
phrases. Instead, determining who is doing what to whom is facilitated by animacy cues. For 
instance, in the UVA condition, the bear is interpreted as the actor despite the first noun phrase 
being the apple, since it is implausible for an apple to eat a bear. Therefore, both AVU and 
UVA are grammatical constructions. By contrast, sentences such as AbaUV yield a fixed word 
order, such that the inclusion of ba strictly renders the first noun phrase as the actor. Note that 
the positioning of the verb is critical in sentences with and without a coverb. With the inclusion 
of a coverb, the verb must be placed at the end of the sentence, while the verb must be 
positioned between the noun phrases in constructions without a coverb. 

 

Fig 2. Example of images used in vocabulary and sentence learning phases. (A) Portion of the 25 
illustrations used in the vocabulary booklet, which included human, animal, and inanimate objects (i.e., 
bag, apple). (B) Portion of the illustrations used in the sentence learning task, illustrating the interaction 
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between two entities. Note that the entities used in sentence learning task are the same as the 
illustrations used in the vocabulary booklet. 

 
Fig 3. Exemplar word order rules and vocabulary items of Mini Pinyin. (A) Example of grammatical 
and ungrammatical fixed and flexible word order sentences. Classifiers and nouns are coded in blue, 
while verbs are red. The coverb ba is coded in green. For the ungrammatical sentences (right), the 
point of violation in the sentence is underlined. The direct English translation for each sentence 
construction is provided below (i.e., the bear eats the apple). (B) A sample of the linguistic elements 
present in Mini Pinyin and their English translation. Note that ba does not have a specific meaning, but 
when present in a sentence, instantiates a strict actor-undergoer-verb word order. 
 
Experimental protocol 

Participants received a paired picture-word vocabulary booklet containing the 25 
nouns and were asked to maintain a minimum of 7hrs sleep per night (see Figure 2A for a 
portion of nouns from the vocabulary booklet). Participants were required to learn the 25 nouns 
to ensure that they had a basic vocabulary of the nouns to successfully learn the 32 transitive 
verbs. They were asked to record periods of vocabulary learning in an activity log. Participants 
were instructed to study the booklet for at least fifteen minutes per day and were informed that 
they would need to pass a vocabulary test before commencing the main experimental 
protocol. After approximately one week, participants returned to complete the main 
experimental session, where EEG was recorded during a sentence learning task, baseline, 
and delayed sentence judgement tasks. 

Vocabulary test  

Participants completed a vocabulary test by translating the nouns from Mini Pinyin into 
English using a keyboard, as illustrated in Figure 1C. Each trial began with a 600ms fixation 
cross, followed by the visual presentation of the noun for up to 20s. Prospective participants 
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who scored < 90% were unable to complete the main experimental EEG session. As such, all 
36 participants included in the current paper obtained over 90% correct on the vocabulary test. 
The proportion of individuals who did not pass the vocabulary test was small (e.g., 
approximately less than 5 cases); however, the exact number was not recorded. 

Sentence learning 

Sentence and picture stimuli were presented using OpenSesame (Mathôt, Schreij, and 
Theeuwes 2012). During sentence learning, pictures were used to depict events occurring 
between two entities. The pictures and entities shown during the learning task were 
combinations of the static pictures shown in the vocabulary booklet (for an example of booklet 
versus sentence learning picture stimuli, see Figure 2A and 2B, respectively). 

While participants were aware that they would complete sentence judgement tasks at 
a later point, no explicit description of or feedback regarding grammatical rules was provided 
during the learning task. Each picture corresponded to multiple sentence variations, similar to 
the grammatical conditions in Figure 3A. Picture-sentence pairs were presented to participants 
as correct language input. Participants were presented with a fixation cross for 1000ms, 
followed by the picture illustrating the event between two entities for 5000ms. A sentence 
describing the event in the picture was then presented on a word-by-word basis. Each word 
was presented for 700ms followed by a 200ms ISI. This pattern continued for the 96 reported 
combinations, until the end of the task, which took approximately 40 minutes. The 96 
sentences included in this analysis included the flexible (i.e., AVU, UVA) and fixed (i.e., 
AbaUV) sentence constructions. Sentences considered as fillers contained a coverb that was 
not ba, and thus were not relevant to testing the predictions posited in the current analysis. 
During this task, participants were required to learn the structure of the sentences and the 
meaning of the verbs, classifiers and the coverb ba. Stimuli were pseudo-randomised, such 
that no stimuli of the same construction followed each other, and each sentence contained a 
different combination of nouns and verbs. This was done to encourage learning of the 
underlying grammatical rules rather than episodic events of individual sentences. Further, the 
two lists of sentences were counterbalanced across participants and testing session. 
Following the sentence learning task, participants completed the baseline judgement task. 

Baseline and delayed judgement tasks  

The baseline sentence judgement task taken immediately after learning provided a 
baseline to control for level of encoding, while the delayed judgement task took place ~12hrs 
after the learning and baseline judgement tasks. During both judgement tasks, 288 sentences 
without pictures (144 grammatical, 144 ungrammatical), 156 of which are reported here, were 
presented word-by-word with a presentation time of 600ms and an ISI of 200ms. The 156 
included sentences included a combination of grammatical and ungrammatical flexible and 
fixed sentence constructions, while the 132 sentences that were considered fillers contained 
coverbs that were not ba, and classifier-noun pair violations, and thus were not relevant to 
testing the predictions of the current analysis. Participants received feedback on whether their 
response was correct or incorrect during the baseline but not the delayed judgement task. 
This was to ensure that participants were able to continue learning the language without 
explicit instruction. Figures 1A and 1B illustrate the sequence of events in the sentence 
learning and baseline judgement tasks, respectively. 
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Participants were instructed to read all sentences attentively and to judge their 
grammaticality via a button-press. As a cue for judgment, a question mark appeared in the 
centre of the monitor for 4000ms after the offset of the last word. Two lists of sentence stimuli 
were created, which were counterbalanced across participants and the baseline and delayed 
sentence judgement tasks. Half of the sentences were grammatical, with each of the 
grammatical constructions shown an equal number of times. The other half of the sentences 
were ungrammatical constructions. Stimuli were pseudo-randomised, such that no stimuli of 
the same construction followed each other. 

Main experimental procedure  

For the wake condition, participants completed the vocabulary test and EEG setup at 
~08:00hr. The learning task was administered at ~09:00hr, followed by the baseline judgement 
task, with EEG recorded during both the learning and judgement task. Participants then 
completed the behavioural control tasks and were free to leave the laboratory to go about their 
usual daily activities, before returning for EEG setup and the delayed judgement task at 
~21:00hr the same day. EEG was also recorded during the delayed judgement task. 

Participants in the sleep condition arrived at ~20:00hr to complete the vocabulary test 
and EEG setup before completing the learning task at ~21:00hr, followed by the baseline 
judgement task, with EEG recorded during both the learning and judgement tasks. Participants 
were then given an 8hr sleep opportunity from 23:00hr – 07:00hr. Polysomnography was 
continuously recorded and later scored. After waking, participants were disconnected from the 
head box and given a ~1hr break to alleviate sleep inertia before completing the delayed 
judgement task and behavioural control tasks. During this time, participants sat in a quiet room 
and consumed a small meal. Resting-state EEG recordings were obtained during quiet sitting 
with eyes open and eyes closed for two minutes, respectively. See Figure 1D for a schematic 
of the experimental protocol. 

Data Analysis 

Behavioural analysis  

Two measures of behavioural performance were calculated. For the behavioural 
analysis, grammaticality ratings were calculated on a trial-by-trial basis, determined by 
whether participants correctly identified grammatical and ungrammatical sentences. For EEG 
analysers, memory performance was quantified using the sensitivity index (d’) from signal 
detection theory (Stanislaw and Todorov 1999). Hit Rate (HR) and False Alarm rate (FA) were 
computed to derive d’, defined as the difference between the z transformed probabilities of 
HR and FA (i.e., d’ = z[HR] – z[FA]), with extreme values (i.e., HR and FA values of 0 and 1) 
adjusted using the recommendations of (Hautus 1995). 

EEG recording and pre-processing  

Task-related EEG analyses during the baseline and delayed sentence judgement 
tasks were performed using MNE-Python (Gramfort et al. 2013). EEG data (C3, C4, CP1, 
CP2, CP5, CP6, Cz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Fp1, Fp2, Fz, O1, O2, P3, P4, P7, 
P8, Pz) were re-referenced offline to the average of both mastoids and filtered with a digital 
phase-true finite impulse response (FIR) band-pass filter from 0.1 – 40 Hz to remove slow 
signal drifts and high frequency activity. Data segments from -0.5 – 6.5s relative to the onset 
of each sentence were extracted and corrected for ocular artefacts using Independent 
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Component Analysis (fastica; Hyvarinen 1999). Epochs were dropped when they exceeded a 
150 μV peak-to-peak amplitude criterion or were identified as containing recordings from flat 
channels (i.e., < 5 μV). 

Task-related time frequency analysis. 

To determine the individualised ranges used to define the theta frequency band, 
individual alpha frequency (IAF) was estimated from participants’ pre- and post-experiment 
resting-state EEG recording. IAFs were estimated from an occipital-parietal cluster 
(P3/P4/O1/O2/P7/P8/Pz/Oz) using philistine.mne.savgol_iaf (see Corcoran et al. 2018) 
implemented in MNE (philistine.mne). IAF-adjusted frequency bandwidths were calculated 
using the golden mean algorithm (Klimesch 2012). 

We conducted task-related time-frequency analyses by convolving the pre-processed 
EEG with a family of complex Morlet wavelets using the MNE function tfr_morlet. Theta activity 
was analysed using wavelet cycles, with the mother wavelet defined as the centre frequency 
value divided by four. Relative power change values in the post-stimulus interval were 
computed as a relative change from a baseline interval spanning -0.5s to the onset of each 
sentence. 500ms was added to the beginning and end of each sentence epoch to avoid edge 
artefacts. From this, we derived power estimates from individually defined (i.e., based on 
participants’ IAF values) theta activity from the start to end of each sentence stimulus, 
electrode, and from the baseline and delayed testing sessions. 

Finally, in order to determine whether changes in neural activity between the sleep and 
wake conditions were truly oscillatory, we used the irregular-resampling auto-spectral analysis 
toolbox (IRASA v1.0; Wen and Liu 2016) to estimate the 1/ƒ power-law exponent 
characteristic of background spectral activity (for a detailed description of this procedure, see 
the supplementary material), which was used as a covariate in EEG-based statistical models. 

Sleep parameters and sleep EEG analyses. 

Sleep data were scored by two sleep technicians (Z.R.C and S.C.) according to 
standardised criteria (Berry et al. 2012) using Compumedics Profusion 3 software (Melbourne, 
Australia). The EEG was viewed with a high-pass filter of 0.3 Hz and a low-pass filter of 35 
Hz. The following sleep parameters were calculated: total sleep time, sleep onset latency, 
wake after sleep onset, time (minutes) and percent of time spent in each sleep stage (N1, N2, 
N3 and R). Slow oscillation-spindle coupling strength was extracted via the YASA toolbox 
(Vallat and Walker 2021) implemented in MNE-Python based on published algorithms 
(Helfrich et al. 2018; Staresina et al. 2015).  

The EEG data were re-referenced to linked mastoids and filtered from 0.1 – 30 Hz 
using a digital phase-true FIR band-pass filter. Data were then epoched into 30 s bins and 
subjected to a multivariate covariance-based artifact rejection procedure. This approach 
estimates a reference covariance matrix for each sleep stage and rejects epochs that deviate 
too far from this reference, where deviation is established using Riemannian geometry 
(Barachant, Andreev, and Congedo 2013; Barthélemy et al. 2019). 

For SOs, continuous NREM EEG data were filtered using a digital phase-true FIR 
band-pass filter from 0.3 – 2 Hz with a 0.2 Hz transition band to detect zero crossing events 
that were between 0.3 – 1.5 s in length, and that met a 75 to 500 microvolt criterion. These 
artifact-free epochs were then extracted from the raw EEG signal. For sleep spindles, the 
signal was filtered between 12 – 16 Hz with a wide transition bandwidth of 1.5 Hz, while the 
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amplitude was calculated by applying a Hilbert transform which was then smoothed with a 
200ms moving average. Events were only included if they were within 0.5 – 2 s. Artifact-free 
events were then defined as 4s (± 2 s) peak-locked sleep spindle epochs. 

We calculated an event-locked cross-frequency coupling metric (for a detailed 
description of this method, see Helfrich et al., 2018). We first filtered the normalized SO trough-
locked data into the SO component (0.1 – 1.25 Hz) and extracted the instantaneous phase 
angle after applying a Hilbert transform. Then we filtered the same trials between 12 – 16 Hz 
and extracted the instantaneous amplitude from the Hilbert transform. For every participant 
and epoch, we detected the maximal sleep spindle amplitude and corresponding SO phase 
angle at each channel. The mean circular direction (phase) and resultant vector length (mean 
vector length [MVL]; coupling strength) across all NREM events were then determined using 
circular statistics implemented in the pingouin package (Vallat 2018). This procedure also 
normalises the MVL value, yielding a z-score, an approach based on recommendations by 
(Özkurt 2012), and which is in line with previous work (e.g., Canolty et al. 2006; Combrisson 
et al. 2017). Further, such statistical normalization has been shown to provide more robust 
estimates of phase-amplitude coupling than non-normalised metrics (Combrisson et al. 2017; 
Özkurt and Schnitzler 2011). Finally, the Rayleigh test was used to test for circular non-
uniformity with p < .01. 

Statistical analysis  

Data were imported into R version 4.0.2 (R Core Team, 2020) and analysed using 
(generalised) linear mixed-effects models fit by restricted maximum likelihood (REML) using 
lme4 (Bates 2010). For the behavioural model, we used a logistic mixed-effects regression, 
modelling response choice (correct, incorrect) as a binary outcome variable. This model also 
factored in by-item and by-participant differences by specifying them as random effects on the 
intercept. The behavioural model took the following form: Logit(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑖) = 𝛽0 + 𝛽1𝑔𝑟𝑎𝑚𝑚𝑎𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑖 ∗ 𝛽2𝑡𝑦𝑝𝑒𝑖 ∗ 𝛽3𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖 + 𝛽4𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 + 𝛽5𝑠𝑠𝑠𝑖 + 𝑠𝑢𝑏𝑗𝑒𝑐𝑡0𝑖 + 𝑖𝑡𝑒𝑚 0𝑖+ 𝜖,  

Here, grammaticality encodes sentence grammaticality (grammatical, ungrammatical), 
type refers to word order (fixed, flexible), condition is sleep versus wake, baseline is 
performance on the baseline (i.e., pre-sleep and -wake) judgement task, and sss refers to self-
perceived sleepiness estimated from the SSS. Asterisks denote interaction terms, including 
all subordinate main effects; pluses denote additive terms.  

Cluster-based permutation testing (Maris and Oostenveld, 2007) on task-related EEG 
data was performed in MATLAB R2022a (v9.12.0.1884302; The MathWorks, Natick, MA, 
USA) using the FieldTrip toolbox (v20220810; Oostenveld et al. 2011). Baseline-corrected 
power estimates for each channel and frequency band (theta, alpha, beta) were averaged 
over the grammaticality factor for both fixed and flexible sentence types. The difference in 
spectral estimates between fixed and flexible word orders was calculated for each channel 
and frequency band within-subjects. These difference scores were then contrasted between 
sleep and wake conditions (thereby testing the interaction between type and condition). 
Between-subject t-statistics were computed using the ft_statfun_indepsamplesT function. 
Channels with t-values that exceeded an alpha threshold of .10 were considered as 
candidates for cluster inclusion. The t-values of resolved clusters were then summed and 
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compared to the null distribution of t-statistics obtained from 1000 random partitions of the 
data. The cluster-level statistic was considered significant if it attained a p-value < .05. 

Following the identification of significant topographical differences in oscillatory power, 
the following structure was used for the EEG models, where we were interested in predicting 
behaviour from task-related theta activity, and which did not include trial-based response 
accuracy: 𝑑𝑝𝑟𝑖𝑚𝑒𝑖 =  𝛽0 + 𝛽1𝑝𝑜𝑤𝑒𝑟𝑖 ∗ 𝛽2𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖 ∗ 𝛽3𝑡𝑦𝑝𝑒𝑖 + 𝛽4𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝛽5𝑎𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖 + 𝛽6𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖 + 𝑠𝑢𝑏𝑗𝑒𝑐𝑡0𝑖 + 𝜖,   
 

power is theta power from the post-sleep and -wake testing session, condition is sleep 
versus wake, and type is sentence word order (fixed, flexible). Baseline is theta power from 
the baseline judgement task (pre-sleep and -wake session). aperiodic refers to the 1/ƒ 
exponent estimated from the task-related EEG (see the supplementary material for full model 
summaries and visualisations of the influence of 1/ƒ on putative oscillatory activity), and 
channel refers to the significant channels isolated from the cluster-based permutation test. 
Subject was modelled as a random effect on the intercept. d’ was specified as the outcome. 
 For sleep-related analyses, we first constructed linear mixed-effects model to predict 
judgement accuracy from the combination of SO-spindle coupling strength, sentence type, 
sagittality, and laterality, while controlling for baseline (i.e., pre-sleep and -wake) judgement 
accuracy and sleep stage (N2, N3), with a random intercept of subject. A second linear mixed-
effects model was constructed predicting task-related theta power from SO-spindle coupling 
strength, sentence type, sagittality, and laterality, with random intercepts of subject and 
channel. 

P-values for all models were estimated using the summary function from the lmerTest 
package, which is based on Satterthwaite’s degrees of freedom (Kuznetsova, Brockhoff, and 
Christensen 2017), while effects were plotted using the package effects (Fox and Hong 2010) 

and ggplot2 (Wickham and Wickham 2016). Post-hoc comparisons for main effects were 
performed using the emmeans package (Lenth et al. 2019). The Holm–Bonferroni method 
(Holm 1979) was used to correct for multiple comparisons, while outliers were isolated using 
Tukey's method, which identifies outliers as exceeding ± 1.5 × inter-quartile range. Categorical 
factors were sum-to-zero contrast coded, such that factor level estimates were compared to 
the grand-mean (Schad et al. 2020). Further, for modelled effects, an 83% confidence interval 
(CI) threshold was used given that this approach corresponds to the 5% significance level with 
non-overlapping estimates (Austin and Hux 2002; MacGregor-Fors and Payton 2013). In the 
visualisation of effects, non-overlapping CIs indicate a significant difference at p < .05. 

Results 

Sleep supports the consolidation of fixed word order rules 

Across testing sessions and grammaticality, participants showed a moderate degree 
of accuracy for fixed (M = 64.00, SD = 48.00) and flexible (M = 58.00, SD = 49.00) word orders, 
with performance accuracy ranging from 37.18 to 93.75 percent. As shown in Table 1, 
performance also varied by sentence type, condition, and grammaticality, with the sleep 
relative to the wake condition performing higher for fixed word orders at delayed testing. 

Generalised linear mixed-effects modelling of single trial response accuracy 
(controlling for baseline performance) revealed a significant Grammaticality × Sentence Type 
× Condition interaction (𝛽 = 0.13, se = 0.03, p < 0.001; see Figure 4). Holm-Bonferroni adjusted 
post-hoc comparisons revealed that response accuracy was higher for the sleep relative to 
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wake condition for fixed grammatical (OR = 0.55, se = 0.12, z = −2.60, padj = 0.03) but not 
fixed ungrammatical (OR = 0.89, se = 0.19, z = −0.52, padj = 1.00) word orders.  

Response accuracy was also higher in the sleep condition for grammatical fixed 
relative to grammatical flexible word orders (OR = 0.58, se = 0.06, z = −4.63, padj < 0.001)., 
The sleep condition also judged flexible over fixed word order sentences as ungrammatical 
(OR = 1.59, se = 0.23, z = 3.10, padj = 0.01; for a full model summary, see the supplementary 
material). These results indicate that sleep may benefit the consolidation of fixed (but not 
flexible) word order rules, although this pattern may be due to differing response strategies 
adopted between the sleep and wake conditions. To address this in subsequent analyses, we 
examine the sensitivity index d’ to account for potential response biases (see Table 1 for d’ 
values). 
 
Table 1. Percent correct and the sensitivity index d’ by condition (sleep, wake), sentence judgement 
task (baseline, delayed), grammaticality (grammatical, ungrammatical) and sentence type (fixed, 
flexible). Standard deviations (SD) are given in parentheses. 
Condition Session Grammaticality Sentence Type Correct (SD) d’ (SD) 

Sleep 

Baseline 
Grammatical 

Flexible 65.14 (47.67) 0.79 (1.24) 
Fixed 67.44 (46.90) 0.90 (0.80) 

Ungrammatical 
Flexible 58.88 (49.26)  
Fixed 47.65 (50.00)  

Delayed 
Grammatical 

Flexible 57.92 (49.38) 1.00 (1.90) 
Fixed 71.28 (45.28) 1.50 (1.34) 

Ungrammatical 
Flexible 64.85 (47.80)  
Fixed 49.50 (50.00)  

Wake 

Baseline 
Grammatical 

Flexible 63.04 (48.28) 1.11 (1.34) 
Fixed 67.66 (46.81) 1.40 (0.91) 

Ungrammatical 
Flexible 68.88 (46.35)  
Fixed 51.14 (50.00)  

Delayed 
Grammatical 

Flexible 66.82 (47.10) 1.41 (1.48) 
Fixed 61.11 (48.80) 1.20 (1.42) 

Ungrammatical 
Flexible 71.12 (45.31)  
Fixed 51.50 (50.00)  
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Fig 4. Visualisation of the behavioural results. Relationship between the probability of correct 
response (y-axis; higher values indicate a higher probability of a correct response), grammaticality (x-
axis; grammatical, ungrammatical), sentence type (left column = flexible, right column = fixed), and 
condition (wake = salmon, sleep = purple). Bars represent the 83% confidence interval around group-
level expected marginal mean estimates. Dots represent individual data points per subject for 
aggregated data. 
 
Theta power after sleep is associated with increased memory for fixed, but decreased 

memory for flexible word order rules 

Based on the differences in behavioural performance between the sleep and wake 
conditions on fixed and flexible word orders, we asked whether task-evoked theta power 
predicts differences in behaviour across sleep and wake. A non-parametric cluster-based 
permutation test (see Methods) contrasting Condition (sleep, wake) and Sentence Type (fixed, 
flexible) revealed a significant difference in beaseline-corrected theta power during the 
delayed session (Monte Carlo p = .008; see Figure 5A for topography and demarcation of the 
cluster). No significant clusters were identified for alpha- or beta-band estimates. 

Given the significant theta-band effects, we constructed a linear mixed-effects model 
with judgement accuracy (d’) as the outcome and task-related theta power (drawn from the 
significant cluster identified above), Condition (sleep, wake) and Sentence Type (fixed, 
flexible) as predictors. This analysis revealed a significant Theta × Condition × Sentence type 
interaction (𝛽 = -1.09, se = 0.34, p = 0.001). Holm-Bonferroni adjusted post-hoc comparisons 
revealed that for flexible word orders, an increase in theta power was associated with poorer 
judgement accuracy for the sleep but not wake condition. However, the inverse was observed 
for fixed word order sentences, such that an increase in theta power was associated with 
improved judgement accuracy for the sleep but not wake condition (𝛽 = -4.70, se = 1.10, padj 
< 0.001). Coupled with the behavioural model, the current analysis demonstrates that sleep 
preferentially consolidates fixed word order rules at the expense of flexible word order rules, 
and that this is reflected in task-related theta power. For a visualisation of these effects, see 
Figure 5C. 
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Fig 5. Theta power and judgement accuracy. (A). Cluster-based permutation testing on the theta 
band contrasting differences between Condition (sleep, wake) and Sentence Type (fixed, flexible). 
Warmer colours denote a higher t statistic. Significant channels are indicated by white asterisks. (B) 
Raincloud plots illustrating average theta power over significant channels between sentence type and 
condition. Higher values on the y-axis denote increased theta power. (C) Modelled effects of task-
related theta power (x-axis; higher values indicate increased power) on judgement accuracy (y-axis; 
higher values indicate better performance) for the sleep and wake conditions (sleep = purple solid line; 
wake = dashed pink line) for flexible (left facet) and fixed (right facet) sentences. The black dashed line 
indicates chance-level performance, while the shaded regions indicate the 83% confidence interval. 
The x-axis reflects scaled power estimates, with negative values reflecting a decrease in power and 
positive values reflecting an increase in power from the pre-stimulus baseline period, respectively. 
Individual data points represent raw (single subject) values. 
 
SO-spindle coupling is predictive of memory for fixed but not flexible word order rules 

Having observed differences between the sleep and wake conditions on the 
relationship between task-related theta activity and behavioural performance, a logical next 
step was to test whether behavioural performance for fixed word order rules is associated with 
SO-spindle coupling. Based on previous work (e.g., Helfrich et al. 2018; Mikutta et al. 2019), 
we focussed on the coupling strength between maximal spindle amplitude and the phase of 
the SO (for a summary of typical sleep parameters and their correlation with d’, see Table 2). 
There was a significant non-uniform distribution for the precise SO phase during the spindle 
peaks (p < 0.0001; Rayleigh test). In predicting behavioural performance, mixed-effects 
modelling revealed a significant Coupling Strength × Sentence Type × Sagittality interaction 
(𝛽 = 7.94, se = 2.72, p = 0.003). Pairwise contrasts further revealed that this effect was largest 
anteriorly for fixed sentences (𝛽 = 35.76, se = 7.47, padj < 0.001), with a progressive 
degradation proceeding posteriorly (central region: 𝛽 = 15.31, se = 5.00, padj = 0.002; posterior 
region: 𝛽 = 8.45, se = 4.63, padj = 0.07). Figure 6A illustrates an exemplary full-night 
spectrogram, group-level comodulagram and preferred phase of SO-spindle coupling for 
NREM sleep. Figure 6D also visualises the effect of SO-spindle coupling across the three 
levels of sagittality (anterior, central, posterior). Here, as SO-spindle coupling strength 
increased, judgement accuracy for fixed word order sentences improved, while the inverse 
relationship was present for flexible word order sentences. 
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Table 2. Descriptive statistics for sleep parameters and correlations with the difference 
between d’ at delayed and baseline testing for fixed and flexible word order sentences. 
Sleep 
Parameter 

Mean Minutes 
(SD) 

% in Stage 
(SD) 

Correlations with d’ (Delayed – Baseline) 

   Fixed Flexible 

   r p r p 

TST 400.00 (67.02)  -.44 .42 .30 .96 

SOL 15.23 (12.23)  .45 .42 -.47 .35 

WASO 52.64 (55.60)  .41 .42 -.19 1.00 

N1 38.05 (29.47) 10.05 (8.21) .12 1.00 .10 1.00 

N2 196.30 (46.29) 49.52 (10.36) .26 .93 .33 .95 

SWS 104.23 (42.27) 25.84 (9.60) .02 1.00 -.48 .35 

REM  61.30 (39.39) 14.57 (8.56) -.46 .42 .04 1.00 
Note. SD = standard deviation. TST = total sleep time; SOL = sleep onset latency; WASO = wake after 
sleep onset; N1 = stage 1; N2 = stage 2; SWS = slow wave sleep; REM = rapid eye movement sleep. 
Significance values are Holm-Bonferroni corrected (Holm, 1979). 
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Fig 6. Sleep neurophysiology metrics and relationship between phase amplitude coupling and 

judgement accuracy. (A) Hypnogram and full-night multi-taper spectrogram for a single participant from 
channel Cz. (B) Group-level comodulagram illustrating the frequency for phase (x-axis) and frequency for 
power (y-axis) during NREM sleep SO-spindle coupling epochs from channel Cz. Across participants, the 
peak phase-amplitude coupling occurred for the amplitude at roughly 15 Hz coupled with the phase at 0.2 
Hz. To the right is the preferred phase of SO-spindle coupling for NREM sleep (red circles indicate individual 
participants). Note that 0 represents the peak of the SO. (C) Ridge plot illustrating the distribution of SO-
spindle coupling strength (x-axis; higher values indicate stronger coupling) across channels (y-axis). (D) 
Modelled effects of SO-spindle coupling strength (x-axis; higher values indicate stronger coupling) on 
judgement accuracy (y-axis; higher values indicate better performance) for fixed and flexible word order 
sentences (fixed = purple solid line; flexible = dashed pink line) across levels of anterior (left), central 
(middle) and posterior (right) regions. The black dashed line indicates chance-level performance, while the 
shaded regions indicate the 83% confidence interval. (E) Topographic visualisation of the relationship 
between SO-spindle coupling strength and judgement accuracy for flexible (left) and fixed (right) word 
orders. Warmer colours denote a higher rho value. Channels with a statistically significant relationship (p < 
.05) between SO-spindle coupling strength and judgement accuracy are indicated by red asterisks. (F) 
Scatterplot indicating the relationship between judgement accuracy (y-axis; higher values denote better 
memory performance) and SO-spindle coupling strength (x-axis; higher values denote stronger coupling) 
for flexible (left) and fixed (right) word order sentences at channel Cz. 
 

Frontal SO-spindle coupling predicts task-evoked theta power 

Having shown that SO-spindle coupling is associated with improved judgement accuracy 
for fixed word orders, and judgement accuracy is tracked by task-related theta power, we 
examined whether theta power is predicted by SO-spindle coupling strength. A mixed-effects 
model regressing SO-spindle coupling strength, laterality (left, midline, right), sagittality (anterior, 
central, posterior), and sentence type (fixed, flexible) onto task-related theta power revealed a 
significant four-way interaction between SO-spindle coupling strength, sentence type, laterality, 
and sagittality (𝛽 = 0.73, se = 0.33, p = 0.03). However, after performing Holm-Bonferroni adjusted 
pairwise comparisons, the only surviving effect was a contrast between right lateral anterior and 
central regions (𝛽 = 3.21, se = 1.08, padj = 0.009). As illustrated in Figure 7, stronger anterior SO-
spindle coupling was positively associated with post-sleep theta power irrespective of sentence 
type, while no such relationship was observed over central channels. 
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Fig 7. Theta power and SO-spindle coupling strength. Task-related theta power (y-axis; higher 
values denote increased power) and SO-spindle coupling strength (x-axis; higher values denote 
stronger coupling) average across left lateral regions and facetted by anterior (left) and central 
(right) channels. Fixed sentences are colour coded in teal, while flexible sentences are colour 
coded in yellow. 

Discussion 

Coordination between SOs and sleep spindles is hypothesised to provide an optimal 
temporal receptive window for hippocampal-cortical communication during sleep (Helfrich et al. 
2019; Staresina et al. 2015) in the support of memory consolidation. Here, we show that the 
beneficial effect of SO-spindle coupling on memory extends to  sentence-level regularities. 
Behaviourally, we demonstrated that a period of sleep compared to an equivalent period of wake 
benefits the consolidation of fixed relative to flexible word order rules, and that this effect is 
modulated by the strength of SO-spindle coupling. Our results further reveal that SO-spindle 
coupling correlates with changes in task-evoked theta activity during sentence processing. In sum 
our results establish converging behavioural and neurophysiological evidence for a role of NREM 
SO-spindle coupling and task-related theta activity as signatures of successful memory 
consolidation and retrieval in the context of higher-order language learning 

Beyond single word learning: a role for sleep in consolidating word order rules 

Using a complex modified miniature language paradigm (Cross et al. 2021), we 
demonstrated that a period of sleep facilitates the extraction of fixed relative to flexible word order 
rules. Importantly, the key distinction between these word order permutations is that successful 
interpretation of fixed word order sentences relates to the sequential position of the noun phrases 
and verb (i.e., the first noun phrase is invariably the actor, and the sentence is verb-final). By 
contrast, successful interpretation of flexible word order sentences depends more heavily on the 
animacy of the nouns. As such, fixed word order sentences, requiring a more sequential order-
based interpretation and are more compatible with an English word-order-based processing 
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strategy (Bornkessel and Schlesewsky 2006; Bornkessel-Schlesewsky et al. 2015; MacWhinney 
et al. 1984). Critically, this sleep-based enhancement for fixed word order rules was predicted by 
stronger SO-spindle coupling (Figure 6F). 

Sleep-related memory effects are proposed to be biased toward stimuli following temporal 
or sequence-based regularities compared to relational information (for review, see Lerner and 
Gluck 2019). This is posited to occur via the hippocampal complex encoding temporal 
occurrences of sensory input (Durrant et al. 2011), which are replayed during SWS, potentially 
via SO-spindle coupling (e.g., Navarrete et al. 2020; Solano et al. 2020). Here, we provide 
evidence supporting this account. During learning, the hippocampus may have preferentially 
extracted the temporal regularities of fixed word order sentences. Sleep-associated memory 
processing, achieved via SO-spindle coupling, selectively strengthened these memory traces, 
facilitating the formation of neural representations of linguistic rules. During subsequent wake, 
these newly established representations would be used by cortical networks to detect the 
temporal regularities in novel sentences, resulting in greater sensitivity to fixed word order rules. 
From this perspective, sleep-based consolidation of higher order language favors sequence-
based regularities, with mechanisms of sleep-related memory consolidation generalizing fixed 
over flexible word order rules, indexed by task-related theta activity. 

It is important to note, however, that our sample of participants were native monolingual 
speakers, and as such, may have preferentially consolidated the fixed word order rules at the 
expense of the flexible rules. While behavioural work demonstrates sentence-level preferences 
of grammatical rules that are analogous to learners’ native languages (e.g., Cross et al. 2021), 
less is known regarding the neural underpinnings of this phenomenon. We now turn to how the 
neurobiological processes underpinning the beneficial effect of SO-spindle coupling on memory 
consolidation extends to higher order language learning. 

 
Slow oscillation-spindle coupling as a marker of sleep-associated memory consolidation 

and higher-order language learning 

Coupling between SOs and spindles predicts successful overnight memory consolidation 
(Hahn et al. 2020, 2022; Helfrich et al. 2018; Mikutta et al. 2019). However, these studies often 
use old-new paradigms with single words (e.g., Helfrich et al. 2018; Mikutta et al. 2019) or word-
image pairs (e.g., Muehlroth et al. 2019), leaving the role of NREM oscillations to more complex 
linguistic information unknown. Here, we found that the generalisation of sequence-based (or 
fixed word order) rules is facilitated by the strength of NREM SO-spindle coupling. 
Mechanistically, during SWS, the cortex is synchronised during the up state of the SO, allowing 
effective interregional communication, particularly between the prefrontal cortex and hippocampal 
complex (Helfrich et al. 2019). It is during this SO up-state that spindles induce an influx of Ca2+ 
into excitatory neurons, enabling synaptic plasticity and the generalisation and stabilisation of 
memory traces (Niethard et al. 2018). Here we revealed that the interaction between these 
cardinal markers of sleep-related memory processing extend to sentence-level regularities. In the 
following, we discuss how SO-spindle coupling, as a marker of sleep-associated memory 
consolidation, modulates task-related oscillatory activity and how these interactions affect 
sentence processing. 
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Task-related theta oscillations index successful memory consolidation of complex 

linguistic rules 

Theta is the dominant frequency in the hippocampal complex and surrounding structures 
during wake (Covington and Duff 2016; Duff and Brown-Schmidt 2012). Oscillations in this 
frequency range are critical for associative memory formation and coordinating hippocampal-
cortical interactions, having been related to associative memory formation (Tort et al. 2009), 
tracking sequential rules (Crivelli-Decker et al. 2018) and predicting words based on contextual 
linguistic information (Corcoran et al. 2023; Piai et al. 2016). In the sleep and memory literature, 
increased theta oscillations have been reported for successfully remembered items, interpreted 
as reflecting a stronger memory trace induced by sleep-based consolidation (Köster et al. 2017; 
Schreiner and Rasch 2015). Here, we observed that an increase in theta oscillations predicted 
higher sensitivity for fixed word order rules after a 12hr delay period, and that the effect of theta 
on fixed word order processing was more pronounced in the sleep relative to wake condition. This 
finding accords with the general memory literature, possibly reflecting the binding of linguistic 
items in a sequence to generate a coherent sentential percept. 

We also observed that NREM SO-spindle coupling was positively associated with task-
evoked theta power. In line with systems consolidation theory (Born and Wilhelm 2012), NREM 
oscillatory activity contributes to the consolidation of newly encoded memory representations, 
which may manifest in stronger theta power during retrieval, indicating a stronger neocortical 
memory trace (Schreiner and Rasch 2015). From this perspective, when SO-spindle coupling is 
strong, hippocampal-based memory traces may become neocortically distributed and integrated 
with existing associative memory networks (Maingret et al. 2016; Navarrete et al. 2020), 
manifesting in stronger post-sleep, task-related theta oscillations. 

Future directions and concluding remarks 

Future studies may include groups in AM-PM (12h Wake), PM-AM (12h Sleep), PM-PM 
(24h Sleep early) and AM-AM (24h Sleep late), as recommended by (Nemeth, Gerbier, and 
Janacsek 2019). We did, however, model participants’ sleepiness levels and the 1/ƒ exponent in 
our statistical analyses, which partially controlled for potential time-of-day effects. Further, the 
evidence presented here is correlational and neuroanatomical inferences are unable to be drawn 
based on scalp-recorded EEG. However, this is the first study to relate sleep-based memory 
consolidation mechanisms to sentence-level oscillatory activity, and as such, has set the 
foundation for future work using techniques with greater spatial-temporal resolution. For example, 
electrocorticography and stereoelectroencephalography would allow for a better characterization 
of task-evoked cortical dynamics and SO-spindle coupling between cortical regions and the 
hippocampal complex, respectively (e.g., Helfrich et al. 2018, 2019). This approach could be 
complemented by demonstrating a selective reinstatement of memory traces during SO-spindle 
coupling using representational similarity analysis (Zhang, Fell, and Axmacher 2018). Identifying 
stimulus-specific representations during the encoding of sentence-level regularities and tracking 
the replay of stimulus activity related to SO-spindle coupling events would further demonstrate 
the critical role of sleep-based oscillatory mechanisms on higher-order language learning. 
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Taken together, our results demonstrate that the temporal coupling between NREM SOs 
and spindles supports the consolidation of complex sentence-level rules. We demonstrated that 
SO-spindle coupling promotes the consolidation of sequence-based rules and modulates task-
evoked theta oscillations previously implicated in language learning (e.g., de Diego-Balaguer, 
Fuentemilla, and Rodriguez-Fornells 2011; Kepinska et al. 2017) and sentence processing 
(Vassileiou et al. 2018). Critically, these findings add to models of sleep-based memory 
consolidation (e.g., Born and Wilhelm 2012; Lewis and Durrant 2011) and help characterise how 
effects of sleep-related oscillatory dynamics on memory manifest in oscillatory activity during 
complex language-related operations. 
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