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Abstract: High-flying insects that exploit tropospheric winds can disperse over far greater distances 
in a single generation than species restricted to below-canopy flight. However, the ecological con-
sequences of such long-range dispersal remain poorly understood. For example, high-altitude dis-
persal may facilitate more rapid range shifts in these species and reduce their sensitivity to habitat 
fragmentation, in contrast to low-flying insects that rely more on terrestrial patch networks. Previ-
ous studies have primarily used surface-level variables with limited spatial coverage to explore dis-
persal timing and movement. In this study, we introduce a novel application of niche modelling to 
insect aeroecology by examining the relationship between a comprehensive set of atmospheric con-
ditions and high-flying insect activity in the troposphere, as detected by weather surveillance radars 
(WSRs). We reveal correlations between large-scale dispersal events and atmospheric conditions, 
identifying key variables that influence dispersal behaviour. By incorporating high-altitude atmos-
pheric conditions into niche models, we achieve significantly higher predictive accuracy compared 
with models based solely on surface-level conditions. Key predictive factors include the proportion 
of arable land, altitude, temperature, and relative humidity. 
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1. Introduction 
Insects play a critical and multifaceted role in ecological systems. They serve as vital 

intermediaries within trophic networks, bridging the gap between producers and large-
bodied consumers [1–3]. The role that insects play in resource processing is central to nu-
trient cycling, facilitating decomposition and subsequent nutrient assimilation [3,4]. 
Moreover, insects act as keystone species that regulate plant community composition 
through herbivory and pollination services [1–4]. Due to their wide-ranging involvement 
in ecological processes, changes in insect population structure or distribution (e.g., range 
shifts, see Doak and Morris, 2010; Tomiolo and Ward, 2018 [5,6]) can produce impacts that 
have cascading effects across the entire ecosystem [2,7,8]. Ecosystem change brought 
about by insects is also not confined to the local population but can impact other nearby 
populations and habitats through the flows of individuals (and associated nutrients and 
biomass) among habitats [2,7,8]. 

The flow of insects and associated nutrients and functions is driven by the capacity 
for movement, of which flight is a common and highly effective mode. The ability of flying 
insects to enter the air column and traverse meaningful distances is a significant factor in 
insect dispersal capabilities and determines the exchange of individuals among habitats. 
However, there is a wide range of powered flight ability between families of insects with 
different morphotypes [9–12]. For example, odonates and lepidopterans have been found 
to be capable of long-distance migrations in a single generation [13–15], and lepidopterans 
have been shown to carry out directed flight while accounting for crosswinds [16,17]. 

Citation: Hodges, S.; Hassall, C.; 

Neely, R., III. Weather Radars Reveal 

Environmental Conditions for High 

Altitude Insect Movement Through 

the Aerosphere. Remote Sens. 2024, 

16, 4388. https://doi.org/10.3390/ 

rs16234388 

Academic Editors: Grant Hamilton 

and Evangeline Corcoran 

Received: 15 July 2024 

Revised: 29 October 2024 

Accepted: 5 November 2024 

Published: 24 November 2024 

 

Copyright: © 2024 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Remote Sens. 2024, 16, 4388 2 of 32 
 

 

Smaller, shorter-winged insects like aphids (3.2–4.3 mm, see Bell and Shephard (2024) 
[18]) and thrips are also found in large numbers in the air column during mass emergence 
events [18–20], although their mode of flight leaves them highly vulnerable to loss of flight 
control (aphids fly at up to 0.70 m·s−1 in laboratory conditions, see Bell and Shephard (2024) 
[18]), even under fairly slow windspeeds [21–25]. 

Regardless of flight ability, when insects fly above the canopy layer, even weak fliers 
become capable of travelling great distances by exploiting the wind. In contrast, dispersal 
through the terrestrial environment is limited to powered flight alone. Dispersal at higher 
altitudes is underexplored and rarely included by range shift and habitat connectivity 
studies, which have been used as the basis for future conservation and pest management 
policy [26–30]. For example, it is unclear to what extent tropospheric winds contribute to 
dispersal, how wind-assisted flight contributes to the functional connectivity of habitats 
that might be considered unconnected under conventional models of dispersal, and the 
taxonomic breadth of species exploiting high-altitude dispersal routes. Thus, the conse-
quences of high-altitude dispersal remain unexplored, but such a phenomenon raises the 
possibility of complex responses to habitat fragmentation and resulting climate change-
induced range shifts [31–34]. As high-flying insects (active at heights above the ground 
>100 m) could be capable of continuing dispersal or migration between increasingly iso-
lated terrestrial patches, using the aerosphere as a corridor, the functional connectivity of 
habitat patches could be greater than for below-canopy fliers [33,35–37]. However, the 
ecological modelling literature has largely neglected the aerosphere as a distinct habitat 
due to traditionally constrained observational capabilities, leading to the assumption that 
atmospheric interactions constitute only a brief phase in organism life histories [38,39]. 
Therefore, there is a need to recognise the ecological importance of ‘flight niches’ in insect 
dispersal ecology, a concept already applied to a few pioneering avian studies [40,41]. 

One key limitation to studying flight niches is the difficulty of observing organisms 
at high altitudes. Previous aeroecological studies have addressed this challenge chiefly 
through vertical-looking radars (VLRs) and traditional field sampling. VLRs have been 
able to observe the stratification of insect activity into layers at given altitudes [16,42–44], 
as well as favouring of specific windspeeds (the flight boundary layer concept) and direc-
tions during flight [15,24,42,45]. However, VLR studies have been restricted to studying 
the vertical distribution of insects at single sites, over short timescales [42,46,47]. Field 
studies, on the other hand, have provided richer diversity and population data on flying 
insects over wide spatial scales, but with poor spatial resolution, and they are typically 
restricted to low-altitude observation [10,15]. 

Compared with VLR and field studies, weather surveillance radars (WSRs) like the 
NCAS mobile X-band [48] can provide greater coverage of insect aerial presence (the X-
band typically detects insects up to a ~30 km horizontal radius around the radar, and from 
100 to 3000 m altitude above sea level) and over annual to decadal timescales [9,13,49–51]. 
Unlike VLRs, which detect individual scatterers [52] in a thin, vertically pointing beam, 
WSRs have the advantage of a wide beam that scans along the horizontal as well as the 
vertical, allowing applications such as the estimation of the spread of insect outbreaks [9]. 
A further advantage to using WSR data is that a wide range of devices are already de-
ployed globally as part of national meteorological services, several of which make their 
data accessible to academics [50,53]. Observations from WSRs have been used to demon-
strate the weather-dependence of seasonality in insect and winged vertebrate mass emer-
gences over large spatial scales [41,53–55]. Thus, WSRs represent an underexplored op-
portunity to correlate high-altitude insect presence with meteorology to better our under-
standing of long-distance insect dispersal and aerial habitat connectivity [36,56–59]. 

Studies based on observations from WSRs and VLRs [38,60–62] have shown that pas-
sive dispersal models (e.g., the Lagrangian movement) do not offer an adequate descrip-
tion of insect flight behaviour, which appears to contain elements of both active and pas-
sive dispersal (see [63,64] for a comparison of active/passive dispersal concepts). Further, 
insects appear to prefer certain atmospheric conditions for flight, as shown in VLR studies. 
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Aeroecological studies have previously used the relationship between animal pres-
ence and environmental conditions to characterise active dispersal behaviour. For exam-
ple, Wang et al. (2023) [65] draw on several documented behavioural responses to envi-
ronmental thresholds, which they use to inform their dispersal model of fall armyworm 
[66,67]. Aralimarad et al. (2011) [42] also used correlations with windspeed direction to 
explain common orientation and clustering of individual insects around specific altitudes. 
However, establishing consistent correlations requires significant research efforts per spe-
cies, which limits the generalisability of this approach [28,65,68,69]. Furthermore, the at-
mospheric variables that have been used in previous ecological studies are often re-
stricted, with the majority focusing on more easily measured variables with an obvious 
biological impact, such as temperature and relative humidity [21,70–72]. These variables 
are also generally measured at the surface level or under controlled conditions, where 
vertical variability and multivariate collinearity are difficult to observe. 

Here, we combine WSR-based observations of insects in flight with contemporaneous 
three-dimensional, high-resolution atmospheric data to characterise presence–environ-
ment correlations using environmental niche modelling (ENM). We demonstrate our ra-
dar-based niche modelling approach during the deployment of an X-band radar system 
over a year. We test the hypothesis that the incorporation of high-altitude meteorological 
variables enhances our ability to predict insect presence compared with models contain-
ing only surface-level predictors. If supported, these findings would indicate that insects 
are monitoring and responding to their environment after take-off to ensure they remain 
in suitable conditions for continued flight (active dispersal). We further investigate which 
atmospheric variables are the primary correlates of aerial insect activity within the region 
and time of our study and contrast the relative importance of surface variables with high-
altitude variables. Identification of key predictor variables would allow us to make mech-
anistic inferences about the link between environmental conditions and the behavioural 
strategies of flying insects. Finally, we illustrate the effect of the dynamic atmosphere on 
the spatial distribution of suitable tropospheric habitats over time. 

2. Materials and Methods 
2.1. Data Used in This Study 
2.1.1. The NXPol-1 Weather Surveillance Radar 

WSR observations were sourced from the NCAS (National Centre for Atmospheric 
Science) mobile dual-polarisation Doppler X-band WSR (NXPol-1, Meteor 50DX model, 
made by Selex-Gematronik, Neuss, Germany; [48]), which was deployed at the NERC Fa-
cility for Atmospheric Radar Research (NFARR) at Chilbolton (near Hampshire in the 
United Kingdom; 51.14N, −1.44E; [48]). The deployment took place from November 2016 
to June 2018. 

NXPol-1 was deployed on a scanning regime of 10 elevations over 0.5 to 20 degrees. 
A complete scanning regime took approximately 5 min, with a single 360-degree scan at 
one elevation taking close to 30 s. NXPol-1 collected observation data from 75 m to 150 km 
in range in 150 m bins, at an azimuthal resolution of 1 degree. The WSR data had also been 
pre-filtered based on a signal-to-noise ratio to remove non-significant echoes. This scan-
ning regime was repeated over the course of every active day during the deployment. We 
made an initial selection of hourly data from the 1 January to the 31 December 2017. 

2.1.2. The ECMWF Operational Forecast Model 
For this study, we chose to represent the atmospheric environment with data sourced 

from the European Centre for Medium Range Weather Forecasting (ECMWF) MARS op-
erational archive (© 2017 European Centre for Medium-Range Weather Forecasts 
(ECMWF), www.ecmwf.int (https://apps.ecmwf.int/datasets/licences/general/, accessed 
26 November 2023), CC BY 4.0, ECMWF does not accept any liability whatsoever for any 
error or omission in the data, their availability, or for any loss or damage arising from 
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their use). The ECMWF Operational Forecast provides high spatial and temporal resolu-
tion data, with a wide range of surface and tropospheric variables [73]. The data were 
downloaded at a resolution of 0.07 by 0.07 degrees (~4 × 8 km, longitude x latitude) across 
a bounding box of 49°–60°N and 12°W–5°E. Atmospheric variables were downloaded on 
pressure levels 1000, 900, 800, and 700 hPa (roughly corresponding to 0, 1000, 2000, and 
3000 m altitude above sea level) at an hourly interval for a 0–11 h range for forecasts 
started at 00:00 and 12:00 h (the initial conditions, equivalent to an analysis step; see 
ECMWF (2023) [73]) for the entire year of 2017. We also downloaded surface variables on 
the same grid, temporal resolution, and time range. The ECMWF operational forecast data 
effectively represents instantaneous values taken at every hour of the simulation [73], so 
we were able to consider the closest radar file in time as near-simultaneously observed 
with the conditions of the atmosphere. 

The ECMWF operational forecast offers variables that vary over pressure levels (alti-
tude) and ‘Surface’ variables that are independent of pressure levels, either because they 
affect the entire air column or are modelled to a fixed altitude (e.g., 2 m, 10 m). To test our 
hypothesis that atmospheric variability within the air column is a better predictor than 
surface-level measurements alone, we downloaded variables from both the pressure lev-
els and surface datasets. We divided them into ‘Aerial’ (pressure levels) and ‘Terrestrial’ 
(surface) categories for comparison in later niche modelling; see Table 1 for a complete list 
of the variables we selected. 

Table 1. Categorised list of ECMWF atmospheric variables and CEH land cover types used in this 
study. A description of all variables (except altitude band and time) in the ECMWF forecast model 
can be found at https://codes.ecmwf.int/grib/param-db/, accessed 26 November 2023 [73]. The land 
cover types are described in detail at https://catalogue.ceh.ac.uk/documents/f6f86b1a-af6d-4ed8-
85af-21ee97ec5333, accessed 26 November 2023, and in Morton et al. (2020) [74]. 

Variable Category Variable Type Variable Full Name Units 

Aerial 
(Pressure Levels) 

Wind 
Zonal Wind m s−1 

Meridional Wind m s−1 
Vertical Velocity Pa s−1 

Stability and Flow 
Divergence s−1 

Relative Vorticity s−1 
Potential Vorticity K° m−2 kg−1 s−1 

Temperature Temperature C° 
Precipitation Relative Humidity % 

Geometry Altitude Band m (±500 m) 
Time Hours 

Terrestrial (Surface) 

Wind 
10 m U-component of Wind m s−1 
10 m V-component of Wind m s−1 

Instantaneous 10 m Wind Gust m s−1 

Temperature 2 m Temperature C° 
Skin Temperature C° 

Precipitation Convective Rain Rate Kg m−2 s−1 
Large Scale Rain Rate Kg m−2 s−1 

Geometry Time Hours 

Land Cover Type 

Broadleaf Woodland % 
Coniferous Woodland % 

Arable % 
Grassland % 

Urban–Suburban % 
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The seven ‘Terrestrial’ variables were selected to include temperature and wind con-
ditions at ground level, to act as a control against vertical variability (Table 1). Surface-
level conditions have been frequently associated with the timing of insect mass dispersal 
events, such as soil temperature and humidity in the seasonal emergences of winged La-
sius niger [71,75,76], and wind direction in dragonflies [15]. 

2.1.3. Centre for Ecology and Hydrology Land Cover Maps 
In addition to the above atmospheric data, we included the proportion of land cover 

types inside the ECMWF grid cells. The Land Cover Data used in this study is owned by 
UK Centre for Ecology & Hydrology (© Database Right/Copyright UKCEH). Knop et al. 
(2023) [77] recently conducted an analysis that demonstrated a correlation between aerial 
insect abundance and the type of habitat at the surface of the atmospheric column, where 
the insects were observed. To test whether this produced similar effects on the spatial ex-
tent of aerial insect presence, we included a list of these habitat types from the Centre of 
Ecology and Hydrology (CEH) land cover maps [74] in the terrestrial variables we sup-
plied for niche modelling (Table 1). 

The CEH land cover map was downloaded for the year of 2017 on a 1 km resolution. 
The CEH maps are provided on the British National Grid (EPSG: 27700; [74]), so we repro-
jected the data onto longitude–latitude coordinates at a resolution of 0.04 × 0.04 degrees 
(approximately similar to the ECMWF grid, 0.07 × 0.07) using QGIS [78]. We transformed 
the data from the categorical land cover types to percentages of land cover contained in 
the new grid cells. Then, we averaged these percentages of land cover per ECMWF grid 
cell, to find the proportions of land cover type at surface level. As the Chilbolton study 
site was unlikely to contain certain habitat types in abundance, we limited our selection 
of land cover types to broadleaf and coniferous woodland, arable land, grassland and ur-
ban–suburban (built-up areas); see Morton et al. (2020) [74] for the full list of land cover 
types. 

2.2. Methodology 
2.2.1. Overview 

To address these research aims, we have developed a methodology that makes use 
of paired observations of insect aerial activity derived from WSR observations and ar-
chived data describing the atmospheric and other environmental conditions. In this and 
the following sections, we summarise the approach we have used to create this paired 
data (presence-absence-environment tables) and subsequent ENM analysis of their covar-
iance. The data analysis and storage of this project used JASMIN, the UK collaborative 
data analysis facility. 

The first step was to acquire WSR and atmospheric data. WSR observations had to be 
sourced from a dual-polarisation WSR system that recorded equivalent reflectivity factor 
in the horizontal and vertical (ZH/ZV), differential reflectivity (ZDR), and correlation coeffi-
cient (𝜌HV) (Figure 1, Section 2.1.1). Here, we used a signal-to-noise ratio filtered radar 
returns from the NCAS NXPol-1 X-band radar system [48]. Atmospheric data had to cover 
as much of the WSR’s spatial and temporal range and resolution as possible. We used 
weather forecast models from the ECMWF Integrated Forecasting System (IFS) as a source 
(Figure 1, Section 2.1.2). Weather forecasts were favoured over reanalysis as IFS reanalysis 
is limited to 6 h intervals. We rejected the hourly reanalysis, ERA5, due to poor spatial 
resolution (0.25° × 0.25°) compared with IFS forecasts (0.07° × 0.07°). Land cover data were 
included to test for the effect of habitat types that might have acted as sources of or desti-
nations for insects moving through the air column. We sourced land cover data from the 
UK Centre for Ecology and Hydrology UK land cover maps (see Section 2.1.3, CEH). 

The second step was to classify and filter the radar data so only insect presence–ab-
sence observations remained. The filtering procedure had to exclude meteorological scat-
terer and correspond to known patterns of insect signatures in WSR observations. The 
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filtering steps produced a spatiotemporal record of true/false presence–absence for a de-
fined biological scatterer class (in the case of this study, Insecta) on the spherical coordi-
nate system of the radar, defined by its range gates and scanning regime (which defined 
the azimuthal resolution and elevation angles). 

Next, the spherical presence–absence data were paired with atmospheric data by 
gridding them to the geographic coordinate system used by the atmospheric data (Figure 
1, Section 2.2.3). The presence–absence data points were treated as single voxels (a ‘voxel’ 
being equivalent to a radar range bin in 3D space), representing the centroid of their spher-
ical coordinate voxel. The voxels were then counted per atmospheric grid cell. Then, we 
assigned each cell a single value dependent upon whether it contained absences, 
presences, or neither (see Section 2.2.3). The gridding process was performed for each 
timestep of atmospheric data to get paired presence–absence and environment observa-
tions as close in time as possible. Gridding resulted in a presence–absence–environment 
table including all the observations of true presence and true absence with the correspond-
ing states of the environmental variables of interest. 

The presence–absence–environment tables need to be reduced due to the high reso-
lutions of the radar and atmospheric data. High resolution and range (compared to bio-
logical field surveys) result in a large number of observations even after filtering, so the 
tables are often too big to analyse efficiently with R implementations of niche modelling 
(see Thuiller et al. (2023) [79] for a package list) and contain a large number of redundant 
observations (identical data). Therefore, our next step was to reduce the number of rows 
in the table through random subsampling or another equivalent method (Figure 1, Section 
2.2.3). We implemented a constrained random subsampling process, which preserved the 
proportion of presences to absences and the distribution of values for the environment 
variables. In this way, we subsampled the data to much smaller tables, while limiting in-
troduced bias from random sampling. 

The final step was to carry out niche modelling on the subsampled presence–ab-
sence–environment tables (Figure 1, Section 2.2.4). We implemented niche modelling us-
ing the ‘biomod2’ package, using the ‘tree’, ‘glm’, ‘rpart’, and ‘randomForest’ R packages 
[79]. ENMs produced several types of assessment statistics to investigate the quality of the 
model and the roles of predictor variables. In this study, we addressed our research aims 
by analysing model assessment statistics under different variable selections (surface level, 
high-altitude, and both combined, see Section 2.2.4), followed by a comparison of variable 
importance metric, and then the response curves of the most important variables (Figure 
1, Section 2.2.4). These models could then be projected onto gridded environment data to 
picture how the atmospheric data could influence spatial distributions of flying organisms 
(Figure 1, Section 2.2.4). 
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Figure 1. A high-level, generalised overview of our WSR-ENM procedure. The procedure can be 
considered to comprise two principal stages, radar filtering into insect presence–absence data and 
the pairing of 3D gridded atmospheric data with insect presence–absence [80]. This procedure pro-
duces Species with Data tables which can be used with a range of niche modelling approaches. 

2.2.2. WSR Filtering Procedure 
We first selected processed WSR data (see Section 2.1.1) from the recordings to create 

an hourly resolution dataset, spanning 2017 from the 1 January to the 31 December. All 
radar voxels in each of these files were then transformed from a list of radar measurements 
to a classification of presence or absence under the following procedure. 

First, we used the 95% confidence thresholds reported by Kilambi et al. (2018) [80] 
for classifying radar signals as meteorological scatter and non-meteorological scatter 
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(Figure 2a,b). These thresholds were based on a maximum threshold for reflectivity (ZH < 
35 dBZ) and the depolarisation ratio (DR < −12), which was calculated from the linear scale 
differential reflectivity (Zdr) and correlation coefficient (𝜌HV) using Equation (1) (repro-
duced from Kilambi et al., 2018 [80]). 

DR ൌ Zୢ୰  1 െ 2Zୢ୰ଵଶ ρୌZୢ୰  1  2Zୢ୰ଵଶ ρୌ (1) 

After this classification was applied to the radar voxels, we removed all isolated 
voxels of non-meteorological scatter, using the despeckling filter provided in the Py-ART 
Python package. This was applied directly to the classified data, using a threshold of 0.5 
(where a non-meteorological voxel is represented as 1, see Table 2) and a group size of 30 
[81]. Beam blockages were manually removed within sets of predefined azimuths (54–65°, 
82–91°, 128–155°, 175–185°), and ground clutter was removed by excluding voxels from 
elevations below 2°. Finally, we manually filtered the data of extraneous events that could 
be misidentified as insect scatter. This included melting layers, sun spikes, interference 
from other radio sources, chaff from aircraft over the site, and ice-bearing clouds. Unfor-
tunately, as there is no dependable method to remove reflectivity caused by birds from X-
band radar scans, we have to admit the possibility of contamination. The outcome of our 
filtering was a collection of clear-air days containing spatially congruent, non-meteoro-
logical scatter, which bloomed from the centre of the radar in accordance with diurnal 
cycles. An example plan positional indicator (PPI) plot is shown in Figure 2, and we fur-
ther provide a video overview of all radar moments filtered from over our study period 
in the Supplementary Materials. 

Table 2. Final designations of signal types in our WSR-ENM procedure, the corresponding data 
code, and abbreviated rules for determining type. Az—azimuth, El—elevation, DR—depolarisation 
ratio, ZH—horizontal reflectivity, SNR—signal-to-noise ratio, NA—not available, ‘|’—or, ‘&’—and. 

Signal Type Presence/Absence Code Determinants 
Non-Meteorological (TP) 1 DR > −12 & ZH < 35 & SNR > 0.5  

No Signal (TA) 0 ZH = NA | SNR < 0.5 
Weather (FA) −1 DR < −12 | ZH > 35 | SNR > 0.5  

Beam Blockage (FA) −2 54° < Az < 65° | 82° < Az < 91° | 128° < Az < 155° | 175° < Az <185° | El < 2° 
Indeterminate Scatter (FA) −3 ZH!= NA & ZV = NA 

 

 
 

(a) (b) 



Remote Sens. 2024, 16, 4388 9 of 32 
 

 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 2. Outcome of radar filtering applied to NXPol-1 observations (Section 2.1.1) on 10 May 2017 
at ~12:00, demonstrated with plan position indicator (PPI) plots at 2.0° (a,c,e,g) and 4.5° elevation 
(b,d,f,h) in the radar antenna. See Table 2 for the list of classification rules per signal type. See Figure 
1 of Lukach et al., (2022) [82] for a visual depiction of a PPI in real space. (a,b) ZH. (c,d) ZDR. (e,f) 𝜌ு. (g,h). Classifications based on DR (Table 2) (Kilambi et al., 2018) [80]. ‘Indeterminate’ scatter 
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beyond the range of insect presence is due to a lack of ZV and consequently Zdr, resulting from at-
tenuation in the vertical polarisation, which prevents classification by DR. 

2.2.3. Pairing of WSR and Atmospheric Data 
WSR and atmospheric data were paired using a simple grid-based approach. We 

used the longitude latitude grid from the atmospheric data to partition the radar voxels 
(centroids) into raster grid cells. We then counted the number of true presences and true 
absences (Insects, No Signal; Table 2) per grid cell. Based on the counts of true presence–
absence, we then gave each grid cell a single classification: where any true presence data 
were found, the cell was classified as ‘present’, regardless of the number of true absences 
recorded (Table 3). Where no presence data were found, but there were true absences, the 
grid cell was classified as ‘absent’ (Table 3). Where no presence or absence data were found 
(i.e., the cell was outside the radar’s effective range or only contained false presences/ab-
sences), the cell was classified as ‘NA’ (Table 3). 

Table 3. Designations of presence or absence for ECMWF PA tables, corresponding data code, and 
abbreviated rules for each type. 

Raster Box Designation Presence/Absence Code Determinants 
True Presence (TP) 1 TP count > 0 
True Absence (TA) 0 TP count = 0 & TA count > 0 

No Data NA TP count = 0 & TA count = 0 

We gridded the WSR data to the atmospheric grid. However, there may still be data 
redundancy (repetitive presence–environment observations) to consider when employing 
datasets with extensive spatial and temporal range and resolution (e.g., for our selection 
of data, this resulted in ~24 h × 31 days × 12 months × 1600 cells = ~14.2 million table rows). 
To reduce redundancy, we used a random subsampling approach to reduce the presence–
absence table length by a set of three pre-determined fractions, which we refer to as sub-
sampling factors. The method randomly subsampled presences and absences inde-
pendently to preserve their proportions in the new table for a user-defined number of 
iterations (n = 100 in this study). After random subsampling, we selected the table that was 
the closest fit to the distributions of the atmospheric variables in the original table, based 
on a least-squares difference between quartile values (See Supplementary Materials for a 
complete description of this method). To check whether our random subsampling method 
significantly affected later niche modelling, here we used subsampling factors of 0.01, 
0.005, and 0.001. 

2.2.4. Niche Modelling with Biomod2 
We organised the experimental design for our niche modelling using the biomod2 R 

package [79]. We selected four widely used algorithms from biomod2 to use in niche mod-
elling to test whether the model assessment statistics (see following paragraph) were in-
fluenced by the choice of algorithm, thus inappropriately biasing our ecological interpre-
tations. We selected modelling algorithms to represent two simple implementations of the 
decision tree family of niche models, as well as the generalised linear model family, and 
further included a complex algorithm from the decision tree family to allow for a range of 
species response curve relationships (e.g., thresholds, splines, gradients). These algo-
rithms included Classification Tree Analysis (CTA), Random Forest (RF), and the Gener-
alised Linear Model (GLM). All three algorithms were applied with 100 replications to 
each subsampled presence–absence–environment table, per selection of environment var-
iables (Aerial, Terrestrial, Aerial and Terrestrial; see Table 1). We therefore produced niche 
models under three different treatment groups—model algorithm, subsampling factor, 
and variable types. The model algorithm and subsampling factor treatment groups both 
served to detect bias in the models resulting from our analytical process, whereas 
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assessment of the effect of the variable types included was used to answer our primary 
and secondary science questions. We did not alter any other settings from their defaults 
in biomod2. 

Biomod2 includes a range of model assessment statistics. We chose to use the area 
under the curve for Receiver Operator Curve (ROC) and True Skill Statistic (TSS) to assess 
model accuracy, which we used to answer our primary science question by conducting a 
statistical analysis of these metrics across our three treatment groups, via an analysis of 
variance (ANOVA). We included TSS alongside ROC as, although ROC is the more tradi-
tional metric, it has faced criticism, with TSS being proposed as a more reliable alternative 
[83–85]. The ANOVA, coupled with a Tukey HSD post hoc test, revealed the treatments 
associated with the highest accuracy per group and the relative contribution of each treat-
ment group to model predictive skill. We also assessed variable importance—the relative 
contribution of each variable to model predictions—using biomod2’s variable importance 
metric. 

The variable importance metric was based on the response in predicted probability 
of presence, as the variable of interest was allowed to vary. The variable’s values were 
then ‘shuffled’ with their spatial coordinates to randomise the variable’s spatial distribu-
tion. The new values were then fed back into the niche model to obtain a new response 
value. The response from this random spread was then tested using Pearson’s correlation 
against the original response in probability of presence, using the true data. The resulting 
Pearson’s correlation coefficient was subtracted from 1 to give the variable importance 
value. Therefore, the more the predictions changed due to spatial randomisation, the 
higher the variable’s importance in the model. The whole process was carried out for a set 
number of repetitions by the user, with another variable selected randomly for compari-
son each time (See Thuiller et al. (2023) [79] for more details). Biomod2’s variable im-
portance statistic was used to answer our second science question by using a similar 
ANOVA procedure to the one described for ROC and TSS. 

We also produced response curves for variables scoring highly in importance to iden-
tify critical limits of presence probability. Finally, we created a simple spatial projection 
using the GLM onto four days from our dataset, chosen to provide a range in seasonal 
meteorology. The days chosen were 17 February 2017, 17 April 2017, 17 July 2017, and 17 
September 2017. We used these projections in conjunction with our response curve plots 
for a speculative analysis of the mechanisms influencing insect flight. 

3. Results 
After we applied our radar filtering procedure to the radar returns from NXPol-1 

(Figure 2), we found that insect aerial activity detected across the radar range was highly 
variable by season in 2017 (Figure 3). While some background activity remained over au-
tumn (particularly October), most activity took place from April to August (on average, at 
least 1500 forecast grid cells registered presence at midday, Figure 3), with July proving 
to be the most active month. Insect activity was also observed to be highly diurnal, the 
majority taking place between 0800 and 1700 (UTC). The diurnal cycle of activity was 
largely preserved between months. However, activity appeared to be prolonged in June 
over the morning and evening (Figure 3).



Remote Sens. 2024, 16, 4388 12 of 32 
 

 

 
Figure 3. Hourly mean counts of filtered insect presence (blue) over the diurnal and seasonal cycles. The grey area represents the 95% confidence interval built 
from daily data. Time is given in hours from midnight (00:00), in UTC. These lines were derived using the LOESS curve function in the ggplot2 package (version 
3.4.4; Wickham, 2016 [86]) for R 4.2.2; R Core Team, 2022 [87]. 
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In our analysis of the outcomes of niche modelling, which compared response of in-
sect aerial activity to high-altitude (‘Aerial’) versus surface (‘Terrestrial’) level conditions, 
we identified that the strongest source of variability in model predictive skill (in terms of 
the ROC and TSS statistics) was the level of subsampling performed prior to modelling 
(ANOVA, F2,2693 = 223.67, p < 0.001; Tukey HSD, 0.01 vs. 0.001, diff = 0.117, p < 0.001; 0.01 
vs. 0.005, diff = −0.068, p < 0.001; 0.001 vs. 0.005, diff = 0.185, p < 0.001). The model algorithm 
also produced a relatively strong impact on predictions (ANOVA, F2,2693 = 154.05, p < 0.001; 
Tukey HSD, RF vs. CTA, diff = 0.138, p < 0.001; RF vs. GLM, diff = 0.131, p < 0.001; CTA vs. 
GLM, diff = 0.008, p = 0.629) compared with our choice of variables, which overall pro-
duced a weak impact on the average model accuracies (ANOVA, F2,2693 = 55.91, p < 0.001; 
Tukey HSD, Aerial vs. Terrestrial, diff = 0.05, p < 0.001; Aerial vs. Aerial + Terrestrial, diff 
= 0.09, p < 0.001; Terrestrial vs. Aerial + Terrestrial, diff = −0.043, p < 0.001). Next, we tried 
to predict insect aerial presence with niche models based on atmospheric variables sam-
pled from high-altitude (aerial) versus surface conditions (terrestrial). Comparing find-
ings from the aerial and terrestrial models, we found that niche models using only terres-
trial variables (Table 1) outperformed those built with aerial variables during model eval-
uation (Table 1) (one-tailed Welch’s t-test, T = −5.43, p < 0.001). However, a model combin-
ing both aerial and terrestrial conditions outperformed models containing only aerial or 
terrestrial variables in both instances (one-tailed Welch’s t-test, Aerial + Terrestrial vs. Aer-
ial, T = 9.57, p < 0.001; Aerial + Terrestrial vs. Terrestrial, T = 9.14, p < 0.001). The average 
predictive skill for niche models, including aerial variables, was 0.785 for ROC and 0.557 
for TSS statistics, while the average predictive skill for models built only using terrestrial 
variables was 0.819 ROC and 0.607 TSS (Table A4). Although both surface-level conditions 
and aerial conditions contain good predictors of aerial insect activity, when taken inde-
pendently (Figure 4, ROC >> 0.5, TSS >> 0), the models with the best predictive skill in our 
analysis combined variables from both the surface and the aerial environments (Table A4, 
Figure 4). The average predictive skill for these combined models was 0.837 for ROC and 
0.651 for TSS statistics. We also observed an average gain of 0.018 ROC and 0.043 TSS, 
whenever aerial variables were included in addition to terrestrial, in the ENM. 

Of our chosen model algorithms, GLMs performed only marginally better than CTAs 
(Tukey HSD, GLM versus CTA, diff = 0.008, p = 0.629), whereas RFs were significantly 
more accurate models than GLMs and CTAs on average (Tukey HSD, RF versus GLM, diff 
= 0.131, p < 0.001; RF versus CTA, diff = 0.139, p < 0.001; Table A4; Figure 4). There were no 
substantial differences in predictive skill between decision tree models and linear regres-
sion in this analysis (Table A4; Figure 4). Thus, we do not observe significant effects from 
algorithm complexity or type on model predictive skill for aeroecological data, meaning 
we cannot offer a conclusive recommendation on which algorithm to favour in future 
work. Algorithms will need to continue to be decided on a case-by-case basis [88,89]. 

We note that the above statistical tests of niche model evaluation metrics (ROC and 
TSS) were limited to TSS, as TSS and ROC evaluations proved to be highly correlated 
(Spearman’s 𝜌 > 0.90 and p < 0.001 in all cases). TSS values were further confirmed to be 
nonnormal through a Kolmogorov–Smirnov test against the normal distribution (D = 0.52, 
p < 0.001).
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Figure 4. Boxplot comparison of models built with aerial variables (on pressure levels), terrestrial variables (surface only), and models combining the two. The 
plot is gridded into panels of model type (top), combining the variables used (upper text) and the subsampling factor (lower text). Each box-and-whisker represents 
the validation outcomes of 100 runs. Note the difference in scale between the Receiver Operator Curve (ROC, range 0–1) and True Skill Statistic (TSS, range −1—
1). CTA—Classification Tree Analysis, GLM—Generalised Linear Model, RF—Random Forest. 
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We identified four primary atmospheric correlates of aerial insect activity using av-
erages of biomod2’s variable importance metric across the proportion of arable land cover 
(~0.47, Table A5), the ±500 m altitude band (~0.26, Table A5), surface and air temperatures 
(2 m, ~0.20; at height, ~0.16; Table A5), and the relative humidity (~0.15, Table A5). Notable 
variables in the middle ranks of variable importance (~0.03–0.04, Table A5) included the 
zonal windspeed and coniferous wood proportion (Table A5). 

We found significant variability in biomod2’s variable importance metric, depending 
on the model algorithm used (ANOVA, p < 0.001 for all contributing factors, Table A3). 
While the rank order of the variable importances was clear (Table A5), this indicated a 
degree of uncertainty in the magnitude of relative contributions. Hence, caution was ap-
plied when making inferences about the specific magnitude of the effect of different vari-
ables. The primary source of variability in calculated importance was found to be the se-
lection of environmental variables in aerial and terrestrial models (Table A3). However, in 
models combining aerial and terrestrial variables, the choice of algorithm proved to be a 
more substantial contributor to variable importances than to model evaluation metrics 
and became the primary source of variability (Figure 5, Table A3). The subsampling factor 
was also a significant but comparatively weak contributor to variable importance (Figure 
5, Table A3; p < 0.001). 

The response curves of the ENMs allowed us to explore critical environmental 
thresholds for flight, as estimated probability of presence varied (Figure 6). However, we 
were unable to identify unambiguous critical thresholds for flight, as estimated probabil-
ity of presence varied substantially by the ENM algorithm. This was caused by the under-
lying modelling approaches in each algorithm and were beyond the scope of this study to 
explore. However, we were able to determine some approximate thresholds by noting the 
broad patterns in response curve shape across algorithms (Figure 6, coloured lines per 
panel). The model response curves predicted an increased probability of presence within 
lower altitude bands (0–500 m, 500–1500 m), although activity at higher bands was ex-
pected to remain above 0.25 probability of presence, on average (Figure 6). By comparing 
the elevated probability of presence associated with increased surface and aerial temper-
atures (>20 °C, Figure 6) in ECMWF UK forecasts, we posited that common patterns of 
habitat suitability could be linked to seasonal and diurnal temperature trends across the 
UK, with limited regulation from national-scale bands of rain and moisture (Figure 7. We 
further noted that elevated probability of presence in voxels associated with increased 
arable land proportion (>60% Figure 6) appeared to be responsible for localising (‘clump-
ing’) patches of high probability of presence in the projection map (Figure 7). However, 
as the Chilbolton study site consists of mostly arable land, this model may not hold true 
for all UK insect populations. The models on which the response curves were based can 
also be used to visualise how the spatial distribution of environmental variables may alter 
the suitability of a habitat, as shown through our niche model projections of the whole of 
the UK (Figure 7). However, we emphasise that this analysis is speculative, as the niche 
models can only identify areas similar to those where we have observed flight on the WSR 
and are not a substitute for physiological and behavioural studies. 
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Figure 5. Biomod2 estimated variable importances for all variables used in this study, apart from 
vertical velocity, U-component of wind (zonal wind), potential vorticity, and divergence (which 
have an average contribution of <0.15 for all models). Variables are sorted by averaged rank order 
of importance and taken from the aerial–terrestrial combined model with a subsampling factor of 
0.1%. Variable importance (y-axis) is measured in 1—Pearson’s correlation coefficient (0–1); see Sec-
tion 2.2.4 for further details. Note the variability by model algorithm. CTA—Classification Tree 
Analysis, GLM—Generalised Linear Model, RF—Random Forest. 
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Figure 6. Response curves for the top four contributing variables; curves are taken from ‘combined’ 
models with both aerial and terrestrial variables, for subsampling factor 0.01. The response curves 
are based on the model run with the best predictive skill (in terms of ROC and TSS) out of each set 
of 100. ‘Altitude band’ is given as a categorical variable where the number in km represents the 
median of the band (i.e., 1 km ± 0.5 km). CTA—Classification Tree Analysis, GLM—Generalised 
Linear Model, RF—Random Forest. 

In summary, our analysis showed that aerial variables are strong predictors of activ-
ity when used independently of terrestrial predictors, but terrestrial predictors are the 
stronger of the two, and the models with the best predictive skill combined both. Our 
analysis of the three treatment groups (Aerial, Terrestrial, Aerial + Terrestrial) demon-
strated that niche models with atmospheric variables are well suited to modelling insect 
aerial activity, and models combining both terrestrial and aerial conditions performed sig-
nificantly better than any model using terrestrial or aerial only. We have highlighted the 
primary abiotic covariates of insect flight for the Chilbolton community in 2017, using our 
comparison of variable importances: where insect activity was positively associated with 
increasing arable land proportion, temperature at-height and at-surface, and relative hu-
midity. We also noted strong seasonal patterns in the diurnal cycle of insect flight activity, 
and a speculative connection between environmental stimuli of insect flight and national-
level weather patterns. 
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Figure 7. Predictions of aerial habitat suitability (probability of presence) from the median predic-
tive skill (in terms of TSS) GLM of insect activity (0.01 subsampling factor, aerial and terrestrial 
variables). Predictions were made using atmospheric data from 17 July 2017 at 00:00, 06:00, 12:00, 
and 18:00 h UTC (columns). Atmospheric data were taken from three altitude levels, 1000 m, 2000 
m, and 3000 m above sea level (rows). This shows where similar atmospheric environments associ-
ated with insects occurred across the UK on this day, and how the suitable area developed over 
time. 

4. Discussion 
In this study, we describe a new method for extending environmental niche model-

ling to high-altitude biological observations, which has been strongly argued for by the 
aeroecological community [39,62]. Such an approach theoretically allows researchers to 
describe insect active dispersal, the consequences of dispersal for meta-populations, and 
conservation under climate change [90–93]. We demonstrate that niche models incorpo-
rating atmospheric variables outperform those using information from the surface level 
only. We also note that insect occurrence in the aerosphere is most closely associated with 
arable land and temperature at the surface below, as well as temperature and relative hu-
midity at-height. 

TSS and ROC values from terrestrial niche models were significantly increased when 
the model included aerial variables (on average, +0.018 ROC and +0.043 TSS). Therefore, 
the model accuracy and variable importance metrics show that insect presence at high 
altitude may be better explained by including atmospheric conditions above the surface 
level, but ENMs achieve their highest predictive power when combining predictor varia-
bles from both the surface and the aerial environment (Figure 4). The outcome was that 
our primary hypothesis is inconclusive. We expect this finding was due to conflating 
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factors such as the inability to distinguish between atmospheric influence on take-off and 
flight adjustment behaviours, which theoretically were more affected by conditions at sur-
face and in the air column, respectively. To show definitively that high-altitude (aerial) 
variables are more accurate predictors of insect aerial activity compared with surface (ter-
restrial) variables, analysis of a wider range of radar sites will be required. Model varia-
bility resulting from model algorithm will also require further consultation with the eco-
logical modelling community, to understand the uncertainties in each approach [88,89]. 

Our niche model analysis has indicated that atmospheric humidity perhaps plays a 
more dominant role in enabling insect flight than has been suggested by the current liter-
ature [21,70,72]. By contrast, windspeed and ground temperature are well documented as 
limiting factors in insect flight activity [45,70,72,94,95]. However, there is inconsistency in 
and disagreement on the importance of relative humidity, as well as the mechanism by 
which it affects insect flight: several papers claim that flight behaviour is affected by 
changes in relative humidity [96,97], that humidity is a secondary regulator and modu-
lates behavioural responses to temperature [21,72], and that humidity plays no significant 
role in flight behaviour at all [70,98]. The entomological literature further suffers from a 
lack of comparable results due to the wide range of study species, locations, and experi-
mental designs (e.g., controlled conditions, ground-level field experiment, tracking of in-
dividual flight) [72,94,96,98]. As a species’ dispersal strategy determines flight behaviour, 
geographical differences in the structure of insect communities could also influence the 
importance of predictor variables. Further investigation of the physiological and behav-
ioural mechanisms of flight will be needed to validate future niche models, as well as pro-
spective insect forecast tools. 

Our niche model analysis further indicated a highly positive relationship between 
arable land cover and the probability of presence. By contrast, the previous literature has 
described a negative association between arthropod diversity and intensively farmed 
land, with a similar relationship reported for abundance [99–101]. However, studies have 
shown that the consequences for arable land on insects can depend on the land manage-
ment practises, e.g., the use of chemicals and fertiliser, or grazing by sheep and cattle 
[99,102]. Our findings can be explained by the dominant habitats in the vicinity of the 
radar, which comprise arable land with patches of broadleaf wood, with coniferous wood-
land, grassland, and urban–suburban land found in relatively small proportions (<20% 
cover). The prevalence of insect activity over arable land is possibly caused by the inter-
mingling of natural communities and pest species associated with crops. However, the 
CEH arable land classification, according to Jackson (2000) [103], comprises a range of 
cropland types, including intensively farmed land alongside annual leys and fallow land. 
Therefore, we are not able to distinguish the effect of different land management practises 
in this study. Further, as the Chilbolton site offers limited spatial heterogeneity, and the 
CEH land cover is far more granular than our radar observations, our niche models are 
unable to meaningfully analyse the effect of habitat gradients on high-flying insect abun-
dance (see Henrys and Jarvis (2019) [104] for further discussion of the importance of spa-
tial resolution when integrating ground survey and remote sensing data). However, by 
adopting the methodology we demonstrate here with a national-scale weather surveil-
lance radar network, it would be possible to sample a broader range of habitat types and 
gradients. 

Whether working at the local or national scale, an ongoing challenge of studying in-
sects with radars is the filtering procedure. A shortcoming of our observations of insect 
activity is that several of the filtering stages are based on fixed thresholds, such as the non-
meteorological and meteorological filter from Kilambi et al. (2018) [80]. Fixed thresholds 
ignore potential overlap between radar signatures attributed to different scatterers, espe-
cially for birds and insects [105–107], leading to false presences and potentially to false 
correlations in later niche modelling. Certain meteorological phenomena can also be re-
sponsible for false presences (e.g., melting layers; see Baldini and Gorgucci, 2006; Ryzhkov 
and Krause, 2022 [108,109]), which we noted on certain days of NXPol-1 observations, 
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where large rainclouds were present over the radar site. Single events such as sun spikes, 
interference from other radio sources, and chaff from military exercises can contribute to 
erroneous presences identified in filtering, which continues to necessitate manual data 
cleaning before further analysis. Radar instrumentation is also inherently range-biased by 
the sensitivity of the system, as the power density of the beam decreases over distance, 
and the return signal suffers attenuation in the atmosphere (see Rocchini et al., 2023 [110] 
for a discussion of the impact of spatial bias in ecological modelling). This and the need 
to carry out manual data cleaning (where confirmation bias can be introduced) with no 
supporting at-height validation data introduces uncertainty into any spatial analysis per-
formed downstream. This points to an urgent need for further, closer collaboration be-
tween the radar science and ecology communities to ensure radar observations are 
properly validated and understood in the ecological context that future aeroecology work 
can meet the best practises of both fields. WSR observations of presence could benefit in 
future from improvements to classification accuracy and error quantification, either 
through machine learning algorithms of existing radar data, to better distinguish target 
classes [82,105,111], or ideally through cooperative field campaigns led jointly between 
atmospheric scientists and ecologists. As noted previously, there is also a lack of species 
specificity in WSR biological observations, including those produced by our filtering of 
NXPol-1. Recent work with VLRs has shown promise of remedying this problem, as they 
are capable of identifying individual insect morphotypes from their ventral reflectivity 
signatures, as well as accurately determining their headings as they pass through the ra-
dar beam [16,56,112,113]. Thus, a potential solution to the limitations of both WSR and 
VLR systems could be to carry out joint radar experiments with WSR and VLR, backed up 
with field ground truthing. 

Our results illustrated an association between insect presence–absence over time and 
conditions tied to local weather and ground habitat (arable land cover, temperature, and 
humidity). Previous work has further indicated that national-level weather patterns play 
an indirect role in insect flight and reproductive behaviour by regulating local tempera-
ture, humidity, and groundwater [114–117]. These variables are particularly shaped by 
the distribution of frontal zones between cold and warm air masses, which implies that 
insect reproduction and mass emergences could be responsive to these weather patterns. 
If true, this relationship would render local insect activity more predictable and would 
require little alteration to existing weather forecasting infrastructure. Further tools that 
adapt existing niche-model approaches from the terrestrial and marine environments will 
allow future aeroecological studies to quickly build and describe probabilistic relation-
ships between many collinear variables and the probability of presence of aerial organ-
isms, without the need for regular, wide-ranging, and costly field campaigns. However, it 
remains prudent to continue to carry out localised field investigations of insect flight and 
behaviour in the aerosphere to continue to ground-truth observations from radars. Con-
trolled experiments will also be essential to understand the mechanistic causes of in-flight 
habitat selection in insects, which cannot be definitively described with remote sensing 
alone (see [72,98]). 
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Appendix A 

Table A1. Auto-correlation matrix of Spearman’s 𝜌 for all variables used in this study, based on the presence–absence table for 2017 with subsampling factor 0.01. 
Values with high correlation are highlighted in yellow/green (𝜌 > 0.6, 0.6 > 𝜌 > 0.3) and values with little correlation are highlighted in blue (𝜌 < 0.3). Auto-correlation 
is chiefly present in similar variables measured from different heights (wind and temperature), but also includes a correlation between the relative humidity (‘r’) 
and large-scale rain rate (‘lsrr’). 

 Altitude Tempera-
ture 

Relative Hu-
midity 

Zonal Wind-
speed 

Meridional 
Windspeed 

Atmospheric Di-
vergence 

Potential Vorti-
city Relative Vorticity Vertical Veloc-

ity 
10 m Wind 
Gust 

10 m Zonal 
Windspeed 

Altitude 1.000 −0.640 −0.440 0.210 −0.072 −0.023 0.073 0.010 0.009 0.017 0.018 
Temperature −0.640 1.000 0.280 0.150 0.330 −0.019 −0.096 −0.064 −0.099 0.007 0.130 
Relative Humidity −0.440 0.280 1.000 0.013 0.080 0.046 −0.240 −0.061 −0.033 0.059 0.099 
Zonal Windspeed 0.210 0.150 0.013 1.000 0.078 −0.043 0.049 0.031 −0.056 0.120 0.680 
Meridional Wind-
speed 

−0.072 0.330 0.080 0.078 1.000 −0.011 −0.120 −0.065 −0.130 −0.019 −0.220 

Atmospheric Di-
vergence 

−0.023 −0.019 0.046 −0.043 −0.011 1.000 −0.048 −0.047 −0.018 −0.025 −0.040 

Potential Vorticity 0.073 −0.096 −0.240 0.049 −0.120 −0.048 1.000 0.660 0.020 0.071 0.058 
Relative Vorticity 0.010 −0.064 −0.061 0.031 −0.065 −0.047 0.660 1.000 −0.028 0.077 0.048 
Vertical Velocity 0.009 −0.099 −0.033 −0.056 −0.130 −0.018 0.020 −0.028 1.000 −0.006 0.002 
10 m Wind Gust 0.017 0.007 0.059 0.120 −0.019 −0.025 0.071 0.077 −0.006 1.000 0.140 
10 m Zonal Wind-
speed 

0.018 0.130 0.099 0.680 −0.220 −0.040 0.058 0.048 0.002 0.140 1.000 

10m Meridional 
Windspeed 

0.001 0.250 0.047 0.390 0.490 −0.024 −0.068 −0.110 −0.055 −0.130 0.200 

2 Temperature 0.009 0.520 0.220 0.350 0.250 −0.018 −0.036 0.053 −0.092 0.160 0.280 
Convective Rain 
Rate 

0.004 −0.001 0.120 0.089 −0.015 −0.002 0.019 0.049 −0.058 0.130 0.120 

Large Scale Rain 
Rate 

0.028 0.011 0.200 0.170 −0.024 −0.010 0.032 0.037 −0.046 0.210 0.170 

Skin Temperature 0.013 0.440 0.190 0.290 0.190 −0.013 −0.020 0.059 −0.080 0.210 0.250 
Broadleaf Wood 
Proportion 

−0.100 0.043 0.064 0.002 0.004 −0.012 −0.016 −0.009 0.021 −0.100 −0.016 

Urban Suburban 
Proportion 

−0.051 0.005 0.039 0.029 0.004 0.001 −0.001 0.011 −0.010 −0.120 −0.009 
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Coniferous Wood 
Proportion 

−0.095 0.061 0.049 −0.024 0.002 −0.010 −0.010 0.007 0.009 −0.038 −0.013 

Arable Land Pro-
portion 

−0.081 0.008 0.053 0.010 −0.002 −0.011 0.001 −0.008 0.027 −0.110 0.000 

Grassland Propor-
tion 

−0.024 0.016 0.010 −0.004 0.007 −0.009 −0.004 0.004 0.005 −0.019 −0.007 

 10 m Meridional 
Windspeed 

2 m Tem-
perature 

Convective 
Rain Rate 

Large Scale 
Rain Rate 

Skin Tempera-
ture 

Broadleaf Wood 
Proportion 

Urban Suburban 
Proportion 

Coniferous Wood 
Proportion 

Arable Land 
Proportion 

Grassland 
Proportion 

 

Altitude 0.001 0.009 0.004 0.028 0.013 −0.100 −0.051 −0.095 −0.081 −0.024  

Temperature 0.250 0.520 −0.001 0.011 0.440 0.043 0.005 0.061 0.008 0.016  

Relative Humidity 0.047 0.220 0.120 0.200 0.190 0.064 0.039 0.049 0.053 0.010  

Zonal Windspeed 0.390 0.350 0.089 0.170 0.290 0.002 0.029 −0.024 0.010 −0.004  

Meridional Wind-
speed 

0.490 0.250 −0.015 −0.024 0.190 0.004 0.004 0.002 −0.002 0.007  

Atmospheric Di-
vergence 

−0.024 −0.018 −0.002 −0.010 −0.013 −0.012 0.001 −0.010 −0.011 −0.009  

Potential Vorticity −0.068 −0.036 0.019 0.032 −0.020 −0.016 −0.001 −0.010 0.001 −0.004  

Relative Vorticity −0.110 0.053 0.049 0.037 0.059 −0.009 0.011 0.007 −0.008 0.004  

Vertical Velocity −0.055 −0.092 −0.058 −0.046 −0.080 0.021 −0.010 0.009 0.027 0.005  

10m Wind Gust −0.130 0.160 0.130 0.210 0.210 −0.100 −0.120 −0.038 −0.110 −0.019  

10m Zonal Wind-
speed 

0.200 0.280 0.120 0.170 0.250 −0.016 −0.009 −0.013 0.000 −0.007  

10m Meridional 
Windspeed 

1.000 0.220 −0.012 0.059 0.140 0.058 0.077 −0.002 0.072 0.013  

2m Temperature 0.220 1.000 0.170 0.110 0.960 −0.130 −0.100 −0.060 −0.140 −0.044  

Convective Rain 
Rate 

−0.012 0.170 1.000 0.290 0.190 −0.023 −0.018 −0.015 −0.025 −0.013  

Large Scale Rain 
Rate 

0.059 0.110 0.290 1.000 0.110 −0.068 −0.053 −0.038 −0.069 −0.010  

Skin Temperature 0.140 0.960 0.190 0.110 1.000 −0.170 −0.140 −0.081 −0.180 −0.054  

Broadleaf Wood 
Proportion 

0.058 −0.130 −0.023 −0.068 −0.170 1.000 0.440 0.480 0.340 0.073  

Urban Suburban 
Proportion 

0.077 −0.100 −0.018 −0.053 −0.140 0.440 1.000 0.120 0.230 0.039  

Coniferous Wood 
Proportion 

−0.002 −0.060 −0.015 −0.038 −0.081 0.480 0.120 1.000 0.090 0.090  



Remote Sens. 2024, 16, 4388 24 of 32 
 

 

Arable Land Pro-
portion 

0.072 −0.140 −0.025 −0.069 −0.180 0.340 0.230 0.090 1.000 0.095  

Grassland Propor-
tion 

0.013 −0.044 −0.013 −0.010 −0.054 0.073 0.039 0.090 0.095 1.000  

Table A2. Auto-correlation matrix of Spearman’s 𝜌 p-values for all variables used in this study, based on the presence–absence table for 2017 with subsampling 
factor 0.01. Significant values are highlighted in yellow (p < 0.05), partially significant values in green (p < 0.1), and non-significant values in blue (p > 0.1). Cells 
shaded in black contain values where p was too small to properly represent in R (p~0.00). The majority of the correlation tests proved to be significant, however, 
these should be interpreted alongside the associated 𝜌 value to check whether the correlation is likely to be impactful. 

 Altitude Tempera-
ture 

Relative Hu-
midity 

Zonal Wind-
speed 

Meridional 
Windspeed 

Atmospheric Di-
vergence 

Potential Vorti-
city Relative Vorticity Vertical Ve-

locity 
10m Wind 
Gust 

10m Zonal 
Windspeed 

Altitude 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.060 0.090 0.000 0.000 
Temperature 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.180 0.000 
Relative Humidity 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Zonal Windspeed 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Meridional Wind-
speed 

0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.000 0.000 

Atmospheric Di-
vergence 

0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.000 

Potential Vorticity 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Relative Vorticity 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Vertical Velocity 0.090 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.300 0.720 
10m Wind Gust 0.000 0.180 0.000 0.000 0.000 0.000 0.000 0.000 0.300 0.000 0.000 
10m Zonal Wind-
speed 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.720 0.000 0.000 

10m Meridional 
Windspeed 

0.810 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 Temperature 0.090 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Convective Rain 
Rate 

0.450 0.830 0.000 0.000 0.010 0.710 0.000 0.000 0.000 0.000 0.000 

Large-Scale Rain 
Rate 

0.000 0.040 0.000 0.000 0.000 0.070 0.000 0.000 0.000 0.000 0.000 

Skin Temperature 0.020 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000 
Broadleaf Wood 
Proportion 

0.000 0.000 0.000 0.660 0.470 0.030 0.000 0.090 0.000 0.000 0.000 
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Urban Suburban 
Proportion 

0.000 0.400 0.000 0.000 0.460 0.910 0.860 0.050 0.060 0.000 0.110 

Coniferous Wood 
Proportion 

0.000 0.000 0.000 0.000 0.750 0.080 0.060 0.180 0.120 0.000 0.010 

Arable Land Pro-
portion 

0.000 0.130 0.000 0.070 0.770 0.040 0.870 0.170 0.000 0.000 0.990 

Grassland Propor-
tion 

0.000 0.000 0.070 0.450 0.240 0.110 0.500 0.450 0.340 0.000 0.220 

 10m Meridional 
Windspeed 

2m Tem-
perature 

Convective 
Rain Rate 

Large-Scale 
Rain Rate 

Skin Tempera-
ture 

Broadleaf Wood 
Proportion 

Urban Suburban 
Proportion 

Coniferous Wood 
Proportion 

Arable Land 
Proportion 

Grassland 
Proportion 

 

Altitude 0.810 0.090 0.450 0.000 0.020 0.000 0.000 0.000 0.000 0.000  

Temperature 0.000 0.000 0.830 0.040 0.000 0.000 0.400 0.000 0.130 0.000  

Relative Humidity 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.070  

Zonal Windspeed 0.000 0.000 0.000 0.000 0.000 0.660 0.000 0.000 0.070 0.450  

Meridional Wind-
speed 

0.000 0.000 0.010 0.000 0.000 0.470 0.460 0.750 0.770 0.240  

Atmospheric Di-
vergence 

0.000 0.000 0.710 0.070 0.020 0.030 0.910 0.080 0.040 0.110  

Potential Vorticity 0.000 0.000 0.000 0.000 0.000 0.000 0.860 0.060 0.870 0.500  

Relative Vorticity 0.000 0.000 0.000 0.000 0.000 0.090 0.050 0.180 0.170 0.450  

Vertical Velocity 0.000 0.000 0.000 0.000 0.000 0.000 0.060 0.120 0.000 0.340  

10m Wind Gust 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

10m Zonal Wind-
speed 

0.000 0.000 0.000 0.000 0.000 0.000 0.110 0.010 0.990 0.220  

10m Meridional 
Windspeed 

0.000 0.000 0.030 0.000 0.000 0.000 0.000 0.710 0.000 0.020  

2m Temperature 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
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Convective Rain 
Rate 

0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.010  

Large-Scale Rain 
Rate 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.070  

Skin Temperature 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

Broadleaf Wood 
Proportion 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

Urban Suburban 
Proportion 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

Coniferous Wood 
Proportion 

0.710 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

Arable Land Pro-
portion 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

Grassland Propor-
tion 

0.020 0.000 0.010 0.070 0.000 0.000 0.000 0.000 0.000 0.000  
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Table A3. Summary table of F and p values from analysis of variance tests carried out on biomod2’s 
estimates of variable importances, per model type (combined/aerial/terrestrial). In all estimates of 
variable importance for all models, the environment variable used provided the greatest source of 
variation. 

ANOVA Statistic F-Value p-Value 
Model Type Combined Aerial Terrestrial Combined Aerial Terrestrial 

Variable Name 10604.9 2295.61 5993.0 <2e−16 <2e−16 <2e−16 
Subsampling Factor 311.9 78.86 268.2 <2e−16 <2e−16 <2e−16 

Algorithm 15168.6 382.29 3604.5 <2e−16 <2e−16 <2e−16 

Table A4. Mean niche model accuracy scores from validation. Scores included are the area under 
the curve (AUC) value from Receiver Operator Curves (ROCs) and the True Skill Statistic (TSS). This 
study compares the impact of the model algorithm (rows), variables used, and subsampling factor 
(columns). Scores are coloured from red (0.5/0) to yellow (0.65/0.3) to green (0.9/1) according to the 
skill of the model (worst to poor to best). See also Figure 6. CTA—Classification Tree Analysis, 
GLM—Generalised Linear Model, RF—Random Forest. 

 Environment  
Variable Types Aerial Aerial + Terrestrial Terrestrial 

Model Al-
gorithm 

Subsampling 
Fraction

Evaluation  
Metric 

0.001 0.005 0.01 0.001 0.005 0.01 0.001 0.005 0.01 

CTA 
ROC 0.628 0.798 0.767 0.720 0.871 0.804 0.744 0.819 0.811 
TSS 0.277 0.602 0.531 0.467 0.760 0.612 0.518 0.612 0.627 

GLM 
ROC 0.701 0.900 0.845 0.642 0.871 0.863 0.699 0.836 0.820 
TSS 0.526 0.719 0.598 0.293 0.696 0.667 0.430 0.599 0.550 

RF 
ROC 0.739 0.861 0.825 0.884 0.950 0.927 0.839 0.897 0.907 
TSS 0.544 0.664 0.553 0.783 0.833 0.745 0.700 0.722 0.709 

Table A5. List of mean variable importances by algorithm and variable. See Figure 5 for a visual 
representation of these values. The variable importances are presented here in rank order of the 
mean of all runs across algorithms (column 1). See Section 2.2.4 for a description of the biomod2 
variable importance metric and supporting citations. CTA—Classification Tree Analysis, GLM—
Generalised Linear Model, RF—Random Forest. 

Explanatory Variable 
Mean Variable  
Importance 

Mean CTA Variable 
Importance 

Mean GLM Variable 
Importance 

Mean RF Variable 
Importance 

Arable Land Proportion 0.468 0.697 0.445 0.262 
Altitude Band (+500 m) 0.257 0.317 0.327 0.129 
2m Temperature 0.195 0.131 0.379 0.073 
Temperature 0.155 0.204 0.150 0.112 
Relative Humidity 0.152 0.188 0.182 0.086 
Skin Temperature 0.117 0.079 0.186 0.087 
Zonal Wind 0.060 0.046 0.103 0.031 
Coniferous Wood Proportion 0.046 0.042 0.034 0.062 
10m Zonal Wind 0.046 0.008 0.116 0.014 
Urban Suburban Land Proportion 0.045 0.027 0.089 0.019 
Broadleaf Wood Proportion 0.042 0.020 0.086 0.020 
Instantaneous 10 m Wind Gust 0.040 0.009 0.096 0.016 
Large-Scale Rain Rate 0.038 0.022 0.079 0.015 
Time (h) 0.037 0.027 0.060 0.024 
Meridional Wind 0.033 0.018 0.049 0.032 
10m Meridional Wind 0.032 0.008 0.065 0.021 
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Vertical Velocity 0.031 0.014 0.058 0.020 
Grassland Proportion 0.029 0.007 0.071 0.010 
Atmospheric Divergence 0.025 0.008 0.055 0.013 
Potential Vorticity 0.021 0.009 0.018 0.035 
Relative Vorticity 0.020 0.010 0.030 0.021 
Convective Rain Rate 0.013 0.000 0.025 0.013 
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