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Abstract
We study zero-sum stochastic games between a singular controller and a stopper when
the (state-dependent) diffusionmatrix of the underlying controlled diffusion process is
degenerate. In particular, we show the existence of a value for the game and determine
an optimal strategy for the stopper. The degeneracy of the dynamics prevents the
use of analytical methods based on solution in Sobolev spaces of suitable variational
problems. Therefore we adopt a probabilistic approach based on a perturbation of
the underlying diffusion modulated by a parameter γ > 0. For each γ > 0 the
approximating game is non-degenerate and admits a value uγ and an optimal strategy
τ

γ∗ for the stopper. Letting γ → 0 we prove convergence of uγ to a function v, which
identifies the value of the original game. We also construct explicitly optimal stopping
times θ

γ∗ for uγ , related but not equal to τ
γ∗ , which converge almost surely to an

optimal stopping time θ∗ for the game with degenerate dynamics.
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1 Introduction

We consider stochastic zero-sum games between a singular controller and a stopper
in a degenerate diffusive set-up. The underlying controlled dynamics is described
by a stochastic differential equation (SDE) in R

d which is linearly affected by a
singular control (i.e., controls with paths that are singular with respect to the Lebesgue
measure). Differently from existing results, the state-dependent diffusion coefficient
matrix σ(x) of the SDE is not assumed to be uniformly elliptic. That means that for
any x ∈ R

d there may be ζ ∈ R
d , ζ �= 0, such that 〈σσ�(x)ζ, ζ 〉d = 0, where σ� is

the transpose of σ and 〈·, ·〉d is the scalar product in Rd .
In [1], we started a systematic study of zero-sum singular-controller vs. stopper

games in a diffusive set-up. Our approach in [1] is based on a mixture of probabilistic
methods and partial differential equations (PDE),which crucially relies on the assump-
tion of uniform ellipticity of the diffusion coefficient. However, numerous irreversible
(partially reversible) investment models for a single agent require more flexibility. For
example, works by Zervos et al. [2–4], Guo and Tomecek [5], Federico et al. [6, 7],
Ferrari [8], De Angelis et al. [9–11] consider a controlled process X which is fully
degenerate in the direction of the controlled coordinate (i.e., there is no diffusion in
the control direction). It is therefore natural to consider similar set-ups in the context
of stochastic games.

Removing the assumption of uniform ellipticity from the specification of the diffu-
sion matrix makes an application of the PDE methods from [1] no longer viable. The
value function of the game in [1] is obtained as a solution of a suitable (nonlinear)
variational problem. The latter is solved by approximation via a family of penalised
(semilinear) PDEs and employing compactness arguments in Sobolev spaces. Several
bounds in Sobolev norms for the solutions of the penalised problems are required
to guarantee compactness. Without uniform ellipticity such bounds can no longer be
guaranteed (see, e.g., the proofs of [1, Prop. 4.9, Prop. 5.1, Lem. 5.8]).

In this paper, we obtain that the value of the game, v : [0, T ] × R
d → R, exists

and we find an optimal stopping time θ∗ for the stopper. The latter is of a form slightly
different to the one obtained in [1] and commonly encountered in optimal stopping
problems and stopping games (see the discussion following Theorem 3 below): it is
in the form of a hitting time for the pair given by the controlled process and its left
limit.

The methodology of our paper is based on an approximation of the game with
games in which the controlled dynamics is non-degenerate. The perturbation to the
original (degenerate) dynamics is modulated by a parameter γ > 0 which vanishes
in the limit of the approximation procedure. For each γ , we use results from [1] to
guarantee the existence of a value uγ : [0, T ]×R

d → R for the associated game with
non-degenerate dynamics Xγ and of an optimal stopping time τ

γ∗ . Letting γ → 0 we
obtain the convergence uγ → v uniformly in compact subsets of [0, T ] × R

d . We
also obtain convergence of explicitly constructed optimal stopping times θ

γ∗ for uγ ,
related but not equal to τ

γ∗ , to the optimal stopping time θ∗ in the original game. We
do not obtain a characterisation of v in terms of a variational inequality because of the
degeneracy of the diffusion coefficient. However, our approach enables us to allow a
broader class of payoff functions than the ones considered in [1]. The expected payoff
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of the game depends on functions f , g, h, that represent the cost of exerting control,
the terminal payoff and the running payoff, respectively. In [1], these functions must
be continuously differentiable in time and space, with Hölder-continuous derivatives
on [0, T ] × R

d (this is required for the PDE methods to work). Here instead we only
impose that f , g, h be continuous and satisfy mild growth conditions in the spatial
variable. Existence of the value v and of an optimal stopping time θ∗ under suchweaker
regularity conditions on f , g, h can be obtained thanks to another approximation
procedure, nested in the one required to deal with the degenerate dynamics.

The overall philosophy of this paper is close in spirit to the one in Bovo et al. [12]. In
that paper we consider zero-sum stochastic games between a singular controller and a
stopper, under a constraint on the directions of the controls (i.e., the controller can only
control d0 < d of the d coordinates of the process). Differently from our setup, the
approximation in [12] concerns the space of admissible controls while the diffusion
coefficient matrix is uniformly elliptic. It is also worth noticing that in [12, Ass. 2.1(i)]
additional restrictions are required on the structure of the diffusion coefficient matrix.
Similar conditions are considered in our Assumption 1(i.a), but we then show that they
can be dropped when f , g, h are sufficiently smooth (see Corollary 20).

The literature on stochastic games between singular controllers and stoppers is still
in its early stages. For zero-sumgames the fieldwas initiated byHernandez-Hernandez
et al. [13], [14] for problemswith infinite-time horizon and one-dimensional controlled
dynamics. In those papers, it is possible to construct explicit solutions in particular
examples using an educated guess on the structure of the optimal controls of the two
players. The method is enabled by the one-dimensional state-space, which leads to
the study of ordinary differential equations (ODEs), rather than PDEs, and it does
not extend to higher dimensional settings. Similar methods based on guess-and-verify
approach have also been used by Ekström et al. [15] in a nonzero-sum singular-
controller vs. stopper game with asymmetric information. We initiated the study of
singular-controller vs. stopper zero-sum games in general diffusive setup in [1] and
then considered the problem with constrained control directions in [12]. The present
paper continues that strand of the literature with the analysis of a degenerate diffusive
setting. A broader literature review on stochastic games with classical controls and
stopping times is provided in the introductions of [12] and [1].

The paper is organised as follows. At the end of this introduction we provide some
basic notation adopted throughout the paper. In Sect. 2 we introduce the game in the
degenerate diffusive set-up. We then state the main assumptions and the main results
of the paper (Theorem 3). In Sect. 3 we introduce the approximating games with non-
degenerate dynamics and smooth payoff functions. In Sect. 4 we prove convergence
of the approximating games to the original one and, in particular, we show existence
of the value and of an optimal stopping strategy for the original game. In Sect. 5
we present some refinements and extensions of Theorem 3 under different sets of
assumptions.
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1.1 Notation

In what follows, d, d ′ ∈ N and T ∈ (0,∞). The Euclidean norm in R
d is denoted

by | · |d and the scalar product by 〈·, ·〉. Given a matrix M ∈ R
d×d ′

with entries Mi j ,
i = 1, . . . d, j = 1, . . . d ′, its norm is given by

|M |d×d ′ :=
( d∑

i=1

d ′∑
j=1

M2
i j

)1/2
.

For a square matrix M ∈ R
d×d , we write tr(M):=∑d

i=1 Mii for its trace. Notice that

|M |d×d ′ = (
tr(MM�)

)1/2, where M� is the transpose of M .
The state space in our problem will be

R
d+1
0,T := [0, T ] × R

d .

For a smooth function f : Rd+1
0,T → R, we denote its partial derivatives by ∂t f , ∂xi f ,

∂xi x j f , i, j = 1, . . . d. The spatial gradient is defined as ∇ f = (∂x1 f , . . . ∂xd f ), and
D2 f denotes the spatial Hessian matrix with entries ∂xi x j f for i, j = 1, . . . d.

For an open set D ⊂ R
d+1
0,T , let C∞

c,sp(D) be the space of real-valued functions on
D with compact support in the spatial coordinates (not in time) and infinitely many
continuous derivatives. For p ∈ [1,∞), W 1,2,p

�oc (Rd+1
0,T ) denotes the Sobolev space{

f ∈ L p
�oc(R

d+1
0,T ) : f ∈ W 1,2,p(O), ∀O ⊆ R

d+1
0,T ,O open, bounded

}
(see [16, Sec.

2.2]).

2 Setting andMain Results

Our model has a finite horizon T ∈ (0,∞). Let (	,F , P) be a complete probability
space, F = (Fs)s∈[0,T ] a right-continuous filtration completed by the P-null sets and
(Ws)s∈[0,T ] a F-adapted, d ′-dimensional Brownian motion. There are two players
engaged in a game. Player 1 (the stopper) chooses a stopping time with respect to
the filtration F at which the game is terminated. Player 2 (the controller) chooses
a singular control pair (n, ν), where (nt )t∈[0,T ] is F-progressively measurable, Rd -
valued, such that |nt |d = 1 for all t ∈ [0, T ], P-a.s., and (νt )t∈[0,T ] is real-valued,
non-decreasing, càdlàg with ν0− = 0, P-a.s. Such control pair modulates the dynamics
of the underlying d-dimensional diffusion (X [n,ν]

t )t∈[0,T ] given by

X [n,ν]
t = X [n,ν]

0− +
∫ t

0
b
(
X [n,ν]
s

)
ds +

∫ t

0
σ
(
X [n,ν]
s

)
dWs +

∫

[0,t]
nsdνs, (1)

where b : R
d → R

d and σ : R
d → R

d × R
d ′

are Lipschitz continuous func-
tions. Notice that for P-a.e. ω, the map s �→ ns(ω) is Borel-measurable on [0, T ]
and s �→ νs(ω) defines a measure on [0, T ]; thus the Lebesgue-Stieltjes integral
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∫
[0,t] nu(ω)dνu(ω) is well-defined for all t ∈ [0, T ] for P-a.e. ω. The value X [n,ν]

0−
denotes the initial state of the process before a possible shift via controls, i.e.,
X [n,ν]
0 = X [n,ν]

0− + n0�ν0. We do not make any assumptions about the relationship
between the dimension d of the state process and the dimension d ′ of the driving noise.
This points to a distinguishing feature of our framework in which the uncontrolled
dynamics of the state process can be degenerate in the sense clarified below.

We denote by X [e1,0] the uncontrolled process, where e1 is the unit vector in R
d

with 1 in the first entry. Its infinitesimal generator reads

(Lϕ)(x) = 1

2
tr

(
a(x)D2ϕ(x)

)
+ 〈b(x),∇ϕ(x)〉, (2)

with a(x):=(σσ�)(x). The operatorL is degenerate at a point x if there exists ζ ∈ R
d

(ζ �= 0) such that 〈ζ, a(x)ζ 〉 = 0.
We formally introduce the class of admissible controls for Player 2 as

At :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(n, ν)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(ns)s∈[0,T−t] is progressively measurable, Rd − valued,

with |ns |d = 1, ∀s ∈ [0, T − t], P-a.s.;
(νs)s∈[0,T−t] is F-adapted, real valued, non-decreasing
and right-continuous with ν0− = 0, P-a.s., and

E[|νT−t |2] < ∞

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, t ∈ [0, T ].

Here, t has the meaning of the time at which the game starts but, since the uncontrolled
diffusion is time-homogeneous, it is convenient to consider a game that starts at time
0 with time-horizon equal to T − t . Admissible controls for Player 1 are F-stopping
times from the class

Tt := {τ : τ is F-stopping time, τ ∈ [0, T − t]} , t ∈ [0, T ].

Under our assumptions on the coefficients b, σ , for any admissible (n, ν) ∈ At ,
there is a unique F-adapted solution to (1) on [0, T − t], see, e.g., [17, Thm. 2.5.7]. We
indicate the initial point of (X [n,ν]

s )s∈[0,T−t] by a subscript in the probability measure
and in the expectation:

Px
( · ) = P

( · ∣∣X [n,ν]
0− = x

)
and Ex

[ · ] = E
[ · ∣∣X [n,ν]

0− = x
]
.

This is only a notation as the probability space does not change. Notice also that the
process X [n,ν] need not be Markovian for arbitrary (n, ν).

We study a class of 2-player zero-sum games (ZSGs) between a stopper and a
(singular) controller. The stopper is a maximiser and she picks τ ∈ Tt . The controller
is a minimiser and she chooses a pair (n, ν) ∈ At . Given continuous functions g, h :
R
d+1
0,T → [0,∞) and f : [0, T ] → (0,∞), a fixed discount rate r ≥ 0 and (t, x) ∈

R
d+1
0,T , the game’s expected payoff reads
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Jt,x (n, ν, τ ) = Ex
[
e−rτ g(t+τ, X [n,ν]

τ )+
∫ τ

0
e−rsh(t+s, X [n,ν]

s ) ds

+
∫

[0,τ ]
e−rs f (t+s) dνs

]
.

(3)

For (t, x) ∈ R
d+1
0,T , we define the lower and upper value of the game, respectively,

by

v(t, x):= sup
τ∈Tt

inf
(n,ν)∈At

Jt,x (n, ν, τ ) and v(t, x):= inf
(n,ν)∈At

sup
τ∈Tt

Jt,x (n, ν, τ ). (4)

Then v(t, x) ≤ v(t, x) and if the equality holds we say that the game admits a value:

v(t, x):=v(t, x) = v(t, x). (5)

The study of the above game and the variational characterisation of the value v

are hampered by the possible degeneracy of L. The PDE arguments from [1] rest
on the assumption of non-degeneracy of the underlying state process. Indeed, one
cannot expect the value to be a strong solution (i.e., in the Sobolev classW 1,2,p

�oc ) to the
variational problem in [1] associated to the game above. Specific technical difficulties
arise, in particular, in obtaining L p-bounds for the Hessian matrix of v. Nevertheless,
in this paper we recover the existence of a value and the characterisation of an optimal
strategy for the stopper under quite general assumptions allowing for the degeneracy
of the dynamics of the state process.

We divide our assumptions into two groups. The first one concerns the dynamics
of the state process and the second one the payoff functional Jt,x .

Assumption 1 (Controlled SDE) The functions b andσ are continuously differentiable
on Rd and Lipschitz with constant D1, i.e.,

|b(x) − b(y)|d + |σ(x) − σ(y)|d×d ′ ≤ D1|x − y|d , for all x, y ∈ R
d . (6)

At least one of the following two conditions holds:

(i.a) σi j (x) = σi j (xi ) for i = 1, . . . d, j = 1, . . . d ′;
(i.b) There exists D2 > 0 such that

|σ(x)|d×d ′ ≤ D2(1 + |x |d) 1
2 , for all x ∈ R

d . (7)

Notice that (6) implies that there exists D3 such that

|b(x)|d + |σ(x)|d×d ′ ≤ D3(1 + |x |d), for all x ∈ R
d . (8)

Conditions (i.a) or (i.b) enable a delicate argument in Lemma 10, which establishes
an L1-bound on the controlled process X [n,ν], uniformly in a sufficiently rich class of
admissible controls. This class of controls consists of those (n, ν) ∈ At for which the
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first moment of νT−t is bounded linearly in x (cf. Lemma 4). A classical L2-bound of
X [n,ν] would involve the second moment of ν, which we cannot control.

Assumption 2 (Functions f , g, h) The functions f : [0, T ] → (0,∞), g, h :
R
d+1
0,T → [0,∞) are continuous on their respective domains. Moreover, the following

hold:

(i) The function f is non-increasing;
(ii) There exist constants K1 ∈ (0,∞) and β ∈ [0, 1) such that

0 ≤ g(t, x) + h(t, x) ≤ K1(1 + |x |βd ), x ∈ R
d+1
0,T ; (9)

(iii) The function g is Lipschitz in the spatial coordinates with a constant bounded by
f . That is, |∇g(t, x)|d ≤ f (t) for a.e. (t, x) ∈ R

d+1
0,T .

The next theorem is the main result of the paper. It establishes the existence of the
value of the game and its properties, alongside the optimality of a stopping time for
Player 1.

Theorem 3 Under Assumptions 1 and 2, the game described above admits a value v

(i.e., (5) holds) with the following properties:

(i) v is continuous on Rd+1
0,T ,

(ii) |v(t, x)| ≤ c(1 + |x |βd ) for β ∈ (0, 1) from Assumption 2(ii) and some c > 0,

(iii) v is Lipschitz continuous in space with constant bounded by f , i.e., |∇v(t, x)|d ≤
f (t) for a.e. (t, x) ∈ R

d+1
0,T .

For any given (t, x) ∈ R
d+1
0,T and any admissible control (n, ν) ∈ At , let θ∗ =

θ∗(t, x; n, ν) ∈ Tt be defined as θ∗:=τ∗ ∧ σ∗, where Px -a.s.1

τ∗:= inf
{
s ≥ 0 : v(t + s, X [n,ν]

s ) = g(t + s, X [n,ν]
s )

}
,

σ∗:= inf
{
s ≥ 0 : v(t + s, X [n,ν]

s− ) = g(t + s, X [n,ν]
s− )

}
.

(10)

Then, θ∗ is optimal for the stopper in the sense that

v(t, x) = inf
(n,ν)∈At

Jt,x
(
n, ν, θ∗(t, x; n, ν)

)
, (t, x) ∈ R

d+1
0,T .

The above theorem asserts that the value v is continuous as a function of all its argu-
ments and it is Lipschitz continuous in the spatial variable. The bound by f of the norm
of the spatial gradient of v reflects the cost of action for the controller and is natural
in singular control problems: a larger norm of ∇v is prevented by the possibility of
the controller to exert an immediate shift at a cost f .

We identify an optimal strategy of the stopper, θ∗, in terms of hitting times of
the process (t + s, X [n,ν]

s )s∈[0,T−t] and of its left limits. The form of the strategy is
unusual. One would expect the stopper to act according to τ∗ akin to the classical

1 Notice that θ∗ ∈ [0, T − t], P-a.s. since v(T , x) = v(T , x) = g(T , x) due to Assumption 2(iii).
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optimal stopping literature and in agreement with [1, Thm. 3.3]. It turns out that τ∗ is
insufficient to guarantee optimality and the stopper needs to monitor the left limits of
the state process too. We first note that as long as the controller acts continuously, the
stopping times τ∗ and σ∗ coincide. This suggests that under the current assumptions
we cannot assert that it is suboptimal for the controller to shift the process exactly at
σ∗ and, as a result, delay τ∗.

The underlying idea of the proof of Theorem3 is to approximate the upper and lower
value of our game by values of games with non-degenerate dynamics and smooth,
compactly supported payoff functions. Those games are studied with PDE meth-
ods developed in [1]. A sequence of delicate limiting arguments are then employed
to remove the random perturbation which brings in the non-degeneracy and, subse-
quently, to relax assumptions on the payoff functions. Details are presented in Sects. 3,
4. In Sect. 5 we further show how to relax assumptions on the payoff functions beyond
Assumption 2 and assumptions on the diffusion coefficient beyond Assumption 1(i.a)
and (i.b). In particular, we can allow for more general growth conditions on the payoff
functions at the cost of imposing higher smoothness thereof.

Before turning our attention to technical arguments, we remark that with no loss
of generality we can restrict Player 2’s admissible controls to those with bounded
expectation (linearly in x). The proof is similar to [12, Lem. 3.1] and therefore omitted.

Lemma 4 There is a constant K2 > 0 such that for any (t, x) ∈ R
d+1
0,T we have

v(t, x) = inf
(n,ν)∈Aopt

t,x

sup
τ∈Tt

Jt,x (n, ν, τ ),

v(t, x) = sup
τ∈Tt

inf
(n,ν)∈Aopt

t,x

Jt,x (n, ν, τ ),

whereAopt
t,x :={(n, ν) ∈ At : Ex [νT−t ] ≤ K2(1+ |x |d)}. The constant K2 depends on

D3 in (8), K1 in (9), T , d and f (T ).

Notice that the original class of admissible controls At does not depend on x ,
whereas Aopt

t,x does.

3 Approximating GamesWith a Perturbed Controlled Dynamics

In this section, we introduce a family of ZSGs with non-degenerate dynamics which
will be shown in Sect. 4 to approximate the game in our paper. We will first prove
Theorem 3 under stronger assumptions on the payoff functions. These conditions
will be relaxed in Sect. 4.3. Unless stated otherwise, we will now proceed under the
following conditions.

Assumption 5 The functions f : [0, T ] → (0,∞), g, h : Rd+1
0,T → [0,∞) are such

that

(i) g, h ∈ C∞
c,sp(R

d+1
0,T );

(ii) f ∈ C∞([0, T ]) and non-increasing;
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(iii) |∇g(t, x)|d ≤ f (t) for all (t, x) ∈ R
d+1
0,T .

Since g, h are smooth and compactly supported, there is a constant K ∈ (0,∞) such
that

(iv) f , g and h are bounded and, for all 0 ≤ s < t ≤ T and x, y ∈ R
d ,

|g(t, x) − g(s, y)| + |h(t, x) − h(s, y)| ≤ K
(|x − y|d + (t − s)

); (11)

(v) for all (t, x) ∈ R
d+1
0,T

(h + ∂t g + Lg − rg)(t, x) ≥ −K .

Therefore, Assumption 1 together with Assumption 5 imply [1, Assumptions 3.1 and
3.2] except for the non-degeneracy of the diffusion coefficient σ . To address the latter
issue, we fix γ ∈ (0, 1) and, given (n, ν) ∈ At , we consider a perturbed dynamics of
the state process:

dX [n,ν],γ
s = b(X [n,ν],γ

s ) ds + σ(X [n,ν],γ
s )dWs + γ dW̃s + ns dνs, (12)

where (W̃s)s≥0 is a d-dimensional Brownian motion independent from the Brownian
motion (Ws)s≥0. We denote byJ γ

t,x the payoffJt,x defined in (3) with X [n,ν] replaced
by X [n,ν],γ , i.e.,

J γ
t,x (n, ν, τ ) = Ex

[
e−rτ g(t + τ, X [n,ν],γ

τ ) +
∫ τ

0
e−rsh(t + s, X [n,ν],γ

s ) ds

+
∫

[0,τ ]
e−rs f (t + s) dνs

]
.

We say that the game with expected payoff J γ
t,x admits a value if

uγ (t, x) = sup
τ∈Tt

inf
(n,ν)∈At

J γ
t,x (n, ν, τ ) = inf

(n,ν)∈At

sup
τ∈Tt

J γ
t,x (n, ν, τ ). (13)

With the addition of the perturbation term γ dW̃s in the state dynamics, the
associated differential operator Lγ becomes (Lγ ϕ)(x) = 1

2 tr
(
aγ (x)D2ϕ(x)

) +
〈b(x),∇ϕ(x)〉, where aγ (x) = a(x) + γ 2Id , with Id denoting the d-dimensional
identity matrix (cf. (2) for the original dynamics). The operator Lγ is uniformly
non-degenerate:

〈ζ, aγ (x)ζ 〉 = 〈ζ, a(x)ζ 〉 + γ 2|ζ |2d ≥ γ 2|ζ |2d ,

for all x, ζ ∈ R
d . Thus, under Assumptions 1 and 5, the gamewith payoffJ γ

t,x satisfies
all assumptions of [1, Thm. 3.3]. We reproduce below its main assertions.
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Theorem 6 The game with payoff J γ
t,x admits a value (i.e., (13) holds). The value

function uγ is the maximal solution in the class W 1,2,p
�oc (Rd+1

0,T ), for arbitrary p ∈
[1,∞), of the variational inequality

min
{
max

{
∂t u + Lγ u − ru + h, g − u

}
, f − |∇u|d

} = 0,

max
{
min

{
∂t u + Lγ u − ru + h, f − |∇u|d

}
, g − u

} = 0,
(14)

with u(T , x) = g(T , x) and growth condition |u(t, x)| ≤ c(1 + |x |d), for a suitable
c > 0.

For any given (t, x) ∈ R
d+1
0,T and any admissible control (n, ν) ∈ At , the stopping

time defined under Px as

τ
γ∗ = τ

γ∗ (t, x; n, ν):= inf
{
s ≥ 0 : uγ (t + s, X [n,ν],γ

s ) = g(t + s, X [n,ν],γ
s )

}
(15)

is optimal for the stopper.

Thanks to the boundedness and positivity of f , g, h, the value function of the game
uγ is bounded. Indeed, it is non-negative and the upper bound follows by taking a
sub-optimal control (n, ν) = (e1, 0) with e1 = (1, 0, . . . 0) ∈ R

d .
As in Lemma 4, using the same arguments of proof as in [12, Lem. 3.1], we can

restrict our attention to a subset of admissible controls which is the same for any
γ ∈ (0, 1). The latter property is important when we study the behaviour of the game
as γ → 0.

Lemma 7 For any (t, x) ∈ R
d+1
0,T , we have

uγ (t, x) = inf
(n,ν)∈Aopt

t,x

sup
τ∈Tt

J γ
t,x (n, ν, τ ) = sup

τ∈Tt
inf

(n,ν)∈Aopt
t,x

J γ
t,x (n, ν, τ ),

whereAopt
t,x :={

(n, ν) ∈ At : Ex [νT−t ] ≤ K2(1+|x |d)
}
and the constant K2 > 0 can

be chosen the same here and in Lemma 4, i.e., K2 = K2(d, D3, K1, T , f (T )) with
D3 from (8) and K1 from (9), and independent from γ .

Having established the properties of the approximating game with the payoff J γ
t,x ,

we turn our attention to the convergence of the functions uγ to the value of the original
game (cf. (5))whenwe let γ → 0, and to the limiting behaviour of the optimal stopping
times. It turns out that the limit of the family (τ

γ∗ )γ>0 as γ → 0 may not be optimal
for the stopper in the original game, see the discussion following Theorem 3. Instead,
we construct a family of stopping times, (θγ∗ )γ>0, as follows. For γ > 0, we define

θ
γ∗ :=τ

γ∗ ∧ σ
γ∗ ,

where, Px -a.s.,

σ
γ∗ = σ

γ∗ (t, x; n, ν):= inf
{
s ≥ 0 : uγ (t + s, X [n,ν],γ

s− ) = g(t + s, X [n,ν],γ
s− )

}
.
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The following lemma demonstrates that the stopping time θ
γ∗ = θ

γ∗ (t, x; n, ν) is also
optimal for the stopper in the game with value uγ .

Lemma 8 For any (t, x) ∈ R
d+1
0,T , we have

uγ (t, x) = inf
(n,ν)∈At

J γ
t,x

(
n, ν, θ

γ∗ (t, x; n, ν)
)
, (16)

hence θ
γ∗ is optimal for the stopper in the game with value uγ .

Notice that the stopping time θ
γ∗ is of feedback form, i.e., it depends on the dynamics

of the state process and, via this dynamics, on the initial point (t, x) and on the control
(n, ν) applied by the controller.

The proof of Lemma 8 is similar to the proof of [12, Lem. 3.5] and there-
fore it is omitted. We only provide an intuitive justification. Note that σ

γ∗ < τ
γ∗

only if the controller shifts the state process in a discontinuous way at σ
γ∗ and

uγ (t + σ
γ∗ , X [n,ν],γ

σ
γ∗

) > g(t + σ
γ∗ , X [n,ν],γ

σ
γ∗

). By the continuity of uγ and g, we have

uγ (t + σ
γ∗ , X [n,ν],γ

σ
γ∗ − ) = g(t + σ

γ∗ , X [n,ν],γ
σ

γ∗ − ), which implies

uγ (t + σ
γ∗ , X [n,ν],γ

σ
γ∗

) − uγ (t + σ
γ∗ , X [n,ν],γ

σ
γ∗ − )

> g(t + σ
γ∗ , X [n,ν],γ

σ
γ∗

) − g(t + σ
γ∗ , X [n,ν],γ

σ
γ∗ − )

≥ − f (t + σ
γ∗ )

∣∣X [n,ν],γ
σ

γ∗
− X [n,ν],γ

σ
γ∗ −

∣∣
d ,

where the last inequality follows from Assumption 5(iii). We rewrite it as

uγ (t + σ
γ∗ , X [n,ν],γ

σ
γ∗ − ) < f (t + σ

γ∗ )
∣∣X [n,ν],γ

σ
γ∗

− X [n,ν],γ
σ

γ∗ −
∣∣
d + uγ (t + σ

γ∗ , X [n,ν],γ
σ

γ∗
).

Comparing with the functional J γ
t,x and recalling that uγ is the value function, this

means that the controller who is aminimiser made amistake of exerting a jump control
at σ

γ∗ : the jump increases the value of the game, hence it is against the controller’s
own interest. It would have been strictly better to control continuously at this time in
which case we would have σ

γ∗ = τ
γ∗ and the payoff would be equal to J γ

t,x (n, ν, σ
γ∗ ).

This shows that stopping at θγ∗ gives at least the value uγ (t, x). However, for a specific
choice of (n, ν) such that σγ∗ < τ

γ∗ with a positive probability, we have

uγ (t, x) ≤ J γ
t,x (n, ν, θ

γ∗ ) < J γ
t,x (n, ν, τ

γ∗ ).

We can also conclude that in equilibrium (if it exists), the controller never shifts the
state process discontinuously at σγ∗ , in which case τ

γ∗ = σ
γ∗ = θ

γ∗ .

4 Convergence of the Approximating Games

In this section we first study the limit as γ → 0 and then we relax the additional
regularity conditions of Assumption 5.
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4.1 Properties of the Perturbed Process

We start from examination of properties of the perturbed process X [n,ν],γ and its
convergence to the unperturbedprocess X [n,ν] asγ → 0, for anyfixedpair (n, ν) ∈ At .

Proposition 9 Fix (t, x) ∈ R
d+1
0,T and p ∈ [1,∞). For any (n, ν) ∈ At , we have

Ex
[

sup
s∈[0,T−t]

∣∣X [n,ν],γ
s − X [n,ν]

s

∣∣p
d

]
≤ K3γ

p, (17)

where K3 = K3(D1, d, T , p) > 0 with D1 from Assumption 1.

Proof We start by proving the result for p ≥ 2. Take (n, ν) ∈ At and let X [n,ν] and
X [n,ν],γ be the processes from (1) and (12), respectively. Let Y γ

s = X [n,ν],γ
s − X [n,ν]

s .
We have that for all s ∈ [0, T − t]

Y γ
s =

∫ s

0

(
b(X [n,ν],γ

r ) − b(X [n,ν]
r )

)
dr + γ W̃s +

∫ s

0

(
σ(X [n,ν],γ

r ) − σ(X [n,ν]
r )

)
dWr .

Using the inequality
( ∑k

i=1 yi
)p ≤ k p−1

( ∑k
i=1 |yi |p

)
, taking the supremum first

and then the expectation, we get

Ex
[

sup
λ∈[0,s]

|Y γ
λ |pd

]
≤ 3p−1Ex

[
sup

λ∈[0,s]

(∣∣∣
∫ λ

0

(
b(X [n,ν],γ

r ) − b(X [n,ν]
r )

)
dr

∣∣∣
p

d
+ |γ W̃λ|pd

+
∣∣∣
∫ λ

0

(
σ(X [n,ν],γ

r ) − σ(X [n,ν]
r )

)
dWr

∣∣∣
p

d

)]
. (18)

The first term on the right-hand side of (18) is bounded from above using Hölder’s
inequality and the Lipschitz property of b (see (6))

Ex
[

sup
λ∈[0,s]

∣∣∣
∫ λ

0

(
b(X [n,ν],γ

r ) − b(X [n,ν]
r )

)
dr

∣∣∣
p

d

]

≤ Ex
[( ∫ s

0

∣∣b(X [n,ν],γ
r ) − b(X [n,ν]

r )
∣∣
d dr

)p]

≤ Ex
[
T p−1

∫ s

0

∣∣b(X [n,ν],γ
r ) − b(X [n,ν]

r )
∣∣p
d dr

]

≤ T p−1Dp
1 Ex

[ ∫ s

0
sup

λ∈[0,r ]
∣∣Y γ

λ

∣∣p
d dr

]
.

The second term of the right-hand side of (18) is bounded from above using the Doob’s
maximal inequality applied to the submartingale (|W̃t |d)t≥0

Ex
[

sup
λ∈[0,s]

∣∣γ W̃λ

∣∣p
d

]
≤ γ p( p

p−1

)pEx
[∣∣W̃T

∣∣p
d

]
=: κ1γ

p,

123



Applied Mathematics & Optimization             (2025) 91:3 Page 13 of 27     3 

with κ1 = κ1(d, p, T ). The last term on the right-hand side of (18) is bounded from
above using [17, Cor. 2.5.11] and Lipschitz continuity of σ

Ex
[

sup
λ∈[0,s]

∣∣∣
∫ λ

0

(
σ(X [n,ν],γ

r ) − σ(X [n,ν]
r )

)
dWr

∣∣∣
p

d

]

≤ κ2Ex
[ ∫ s

0

∣∣σ(X [n,ν],γ
r ) − σ(X [n,ν]

r )
∣∣p
d×d ′ dr

]

≤ κ2D
p
1 Ex

[ ∫ s

0
sup

λ∈[0,r ]
∣∣Y γ

λ

∣∣p
d dr

]
,

where κ2 = κ2(T , p) = 2
4+p
2 (p − 1)

p
2 T

p
2 −1 and D1 comes from (6).

We insert the above three bounds into (18) and change the order of integration:

Ex
[

sup
λ∈[0,s]

∣∣Y γ
λ

∣∣p
d

]
≤ 3p−1

(
Dp
1 (T p−1 + κ2)

∫ s

0
Ex

[
sup

λ∈[0,r ]
∣∣Y γ

λ

∣∣p
d

]
dr + κ1γ

p
)
.

This allows us to apply Gronwall’s lemma and obtain the estimate

Ex
[

sup
λ∈[0,s]

∣∣X [n,ν],γ
λ − X [n,ν]

λ

∣∣p
d

]
= Ex

[
sup

λ∈[0,s]
∣∣Y γ

λ

∣∣p
d

]
≤ K3γ

p, s ∈ [0, T − t],

with K3 = K3(D1, d, p, T ) independent of (n, ν) ∈ At .
Now, take p ∈ [1, 2). By Jensen’s inequality we get

Ex
[

sup
λ∈[0,s]

∣∣X [n,ν],γ
λ − X [n,ν]

λ

∣∣p
d

]
≤

(
Ex

[
sup

λ∈[0,s]
∣∣X [n,ν],γ

λ − X [n,ν]
λ

∣∣2
d

])p/2

≤ (
γ 2K3(D1, d, 2, T )

)p/2
= γ pK3(D1, d, 2, T )p/2,

with K3(D1, d, p, T ) = K3(D1, d, 2, T )p/2. ��
Under our assumptions we can guarantee an L1-bound on the controlled dynamics,

uniformly over the class of admissible controls. That will be useful later on when
relaxing Assumption 5.

Lemma 10 Under Assumption 1, there exists a constant K4 > 0 such that for arbitrary
(t, x) ∈ R

d+1
0,T , (n, ν) ∈ Aopt

t,x and a stopping time τ ∈ Tt

Ex
[∣∣X [n,ν],γ

τ

∣∣
d

] ≤ K4(1 + |x |d), γ ∈ [0, 1). (19)

The constant K4 depends on d, D1, D3, K2, T , f (T ) and, in the case of Assump-
tion 1(i.b), also on D2.
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Proof The proof is slightly different, depending onwhether condition (i.a) or condition
(i.b) in Assumption 1 hold. Under condition (i.a), we can use an argument analogous
to the one in [12, Cor. 3.9]. We first notice that

Ex

[∣∣X [n,ν],γ
τ

∣∣
d

]
≤ Ex

[∣∣X [n,ν],γ
τ − X [e1,0],γ

τ

∣∣
d

]
+ Ex

[∣∣X [e1,0],γ
τ

∣∣
d

]
.

We bound the first term using [12, Lem. 3.8] (with d0 = d; here we need condition
(i.a)) as follows

Ex
[∣∣X [n,ν],γ

τ − X [e1,0],γ
τ

∣∣
d

] ≤ κ Ex [νT−t ] ≤ c(1 + |x |d),

for some constant c > 0, where κ = κ(d, D1, T ) is independent from γ ∈ (0, 1) and
the last inequality follows from the definition ofAopt

t,x in Lemma7. For the uncontrolled
dynamics X [e1,0],γ , standard SDE estimates (e.g., [17, Cor. 2.5.12]) yield

Ex
[∣∣X [e1,0],γ

τ

∣∣
d

] ≤ c(1 + |x |d),

for some constant c = c(d, D1, D3, T ) > 0 independent from γ ∈ (0, 1). This
completes the proof of (19).

Assume now that condition (i.b) in Assumption 1 holds. To shorten the notation,
we will write Xγ for X [n,ν],γ . From the dynamics of Xγ we have

Ex
[

sup
λ∈[0,s]

|Xγ
λ |d

]

≤ Ex
[

sup
λ∈[0,s]

(∣∣∣
∫ λ

0
b(Xγ

r ) dr
∣∣∣
d
+

∣∣∣
∫ λ

0
σ(Xγ

r ) dWr

∣∣∣
d
+ ∣∣γ W̃λ

∣∣
d+

∣∣∣
∫ λ

0
nrdνr

∣∣∣
d

)]
.

(20)

We estimate each term individually. Thanks to linear growth of the drift, the first term
on the right-hand side of (20) can be bounded as follows

Ex
[

sup
λ∈[0,s]

∣∣∣
∫ λ

0
b(Xγ

r ) dr
∣∣∣
d

]
≤ Ex

[
D3

∫ s

0

(
1 + sup

r∈[0,λ]
|Xγ

r |d
)
dλ

]

≤ D3

(
T + Ex

[ ∫ s

0
sup

r∈[0,λ]
|Xγ

r |d dλ
])

.

For the second term on the right-hand side of (20) we use Jensen’s inequality and
Doob’smaximal inequality, taking advantage of the square-root growth of the diffusion
coefficient, to obtain
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Ex
[

sup
λ∈[0,s]

∣∣∣
∫ λ

0
σ(Xγ

r ) dWr

∣∣∣
d

]

≤ Ex
[

sup
λ∈[0,s]

∣∣∣
∫ λ

0
σ(Xγ

r ) dWr

∣∣∣
2

d

] 1
2 ≤ 2Ex

[∣∣∣
∫ s

0
σ(Xγ

r ) dWr

∣∣∣
2

d

] 1
2

= 2Ex
[ ∫ s

0

∣∣σ(Xγ
r )

∣∣2
d×d dr

] 1
2 ≤ 2

(
1 + Ex

[ ∫ s

0

∣∣σ(Xγ
r )

∣∣2
d×d dr

])

≤ 2
(
1 + D2

(
T + Ex

[ ∫ s

0
sup

r∈[0,λ]
∣∣Xγ

r
∣∣
d dλ

]))
,

where the third inequality uses
√
x ≤ 1 + x and the final one is due to (i.b) in

Assumption 1. For the third term on the right-hand side of (20), denoting by W̃ j the
j-th coordinate of the Brownian motion W̃ we have

Ex
[

sup
0≤λ≤s

∣∣γ W̃λ

∣∣
d

]
≤ dγ E

[
sup

0≤λ≤s
|W̃ 1

λ |
]

≤ dγ E
[
1 + sup

0≤λ≤s
(W̃ 1

λ )2
]

≤ dγ
(
1 + 4E

[
(W̃ 1

s )2
]) = dγ (1 + 4s),

(21)

where we use |x | ≤ 1 + x2 for the second inequality and Doob’s maximal inequality
for martingales for the third inequality. Finally, by the definition of Aopt

t,x in Lemma 7
we have a bound for the last term on the right-hand side of (20):

Ex
[

sup
λ∈[0,s]

∣∣∣
∫ s

0
nrdνr

∣∣∣
d

]
≤ Ex [νs] ≤ K2(1 + |x |d).

We combine the above five bounds to obtain

Ex
[

sup
λ∈[0,s]

|Xγ
λ |d

]
≤ c1

(
1 + |x |d

) + c2

∫ s

0
Ex

[
sup

r∈[0,λ]
|Xγ

r |d
]
dλ,

for some constants c1, c2 > 0 depending on T , D1, D2, d and K2. By Gronwall’s
lemma and setting s = T − t , we get

Ex
[

sup
λ∈[0,T−t]

|Xγ
λ |d

]
≤ K4(1 + |x |d),

for a suitable K4 > 0, which concludes the proof. ��

4.2 Convergence as � → 0

Assumptions 1 and 5 hold throughout this section.

Theorem 11 The pointwise limit u:= limγ→0 uγ exists on R
d+1
0,T . Moreover, u coin-

cides with the value of the game with payoff (3), i.e., u = v = v = v. Furthermore,
there exists C > 0 such that
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|uγ (t, x) − v(t, x)| ≤ Cγ for all (t, x) ∈ R
d+1
0,T . (22)

Proof Let uγ be the value of the game from Theorem 6 and set

u:= lim inf
γ→0

uγ and u:= lim sup
γ→0

uγ .

We are going to show that

u(t, x) ≤ v(t, x) and u(t, x) ≥ v(t, x)

for all (t, x) ∈ R
d+1
0,T , so that u = u = v = v = v as claimed.

Let us first prove that u ≥ v. Fix (t, x) ∈ R
d+1
0,T and η > 0. Let (n, ν) ∈ At be an

η-optimal control for uγ (t, x), in the sense that uγ (t, x) ≥ supσ∈Tt J
γ
t,x (n, ν, σ )− η;

bear in mind that (n, ν) depends on γ . Then, v(t, x) ≤ supσ∈Tt Jt,x (n, ν, σ ) and we
can pick a stopping time τ ∈ Tt such that supσ∈Tt Jt,x (n, ν, σ ) ≤ Jt,x (n, ν, τ ) + η;
bear in mind that τ depends on (n, ν) and η. Recall that the processes X [n,ν],γ and
X [n,ν] are solutions of (12) and (1), respectively. Then

uγ (t, x) − v(t, x) ≥ J γ
t,x (n, ν, τ ) − Jt,x (n, ν, τ ) − 2η

= Ex
[
e−rτ (

g(t + τ, X [n,ν],γ
τ ) − g(t + τ, X [n,ν]

τ )
)

+
∫ τ

0
e−rs(h(t + s, X [n,ν],γ

s ) − h(t + s, X [n,ν]
s )

)
ds

]
− 2η

≥ −KEx
[∣∣X [n,ν],γ

τ − X [n,ν]
τ

∣∣
d +

∫ T−t

0

∣∣X [n,ν],γ
s − X [n,ν]

s
∣∣
d ds

]
− 2η

≥ −K (1 + T )Ex
[

sup
s∈[0,T−t]

∣∣X [n,ν],γ
s − X [n,ν]

s
∣∣
d

]
− 2η, (23)

where K > 0 is the Lipschitz constant from (11). By Proposition 9 we have the
following bound:

uγ (t, x) − v(t, x) ≥ −K (1 + T )K3γ − 2η. (24)

Taking lim inf as γ → 0 on both sides, we get u(t, x) − v(t, x) ≥ −2η. Recalling
that η > 0 is arbitrary, we conclude that u(t, x) ≥ v(t, x) as claimed.

The proof of the inequality u ≤ v follows similar lines. Fix (t, x) ∈ R
d+1
0,T

and η > 0. Let τ ∈ Tt be an η-optimal stopping time for uγ , in the sense
that uγ (t, x) ≤ inf(n,ν)∈At J

γ
t,x (n, ν, τ ) + η and (n, ν) ∈ Aopt

t,x be such that
inf(n′,ν′)∈At Jt,x (n′, ν′, τ ) ≥ Jt,x (n, ν, τ ) − η. Since uγ (t, x) ≤ J γ

t,x (n, ν, τ ) + η

and v(t, x) ≥ Jt,x (n, ν, τ ) − η, we can repeat the estimates above and obtain

uγ (t, x) − v(t, x) ≤ K (1 + T )K3γ + 2η. (25)

Taking lim sup as γ ↓ 0 and thanks to the arbitrariness of η we get u(t, x) ≤ v(t, x).
Similarly, inequalities (24) and (25) imply (22). ��
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Remark 1 The rate of convergence of uγ to v is linear in γ and uniform over Rd+1
0,T . In

particular, v is continuous.

As for uγ , the boundedness and positivity of f , g, h imply that the value function
of the game v is bounded. Notice that the variational inequality (14) implies a bound
on the gradient of uγ : |∇uγ |d ≤ f for γ > 0. This, together with the above remark,
yields the next corollary.

Corollary 12 The value function v is is bounded on R
d+1
0,T and it is Lipschitz in the

spatial coordinates with constant bounded by f , i.e., |∇v(t, x)|d ≤ f (t) for a.e.
(t, x) ∈ R

d+1
0,T . In particular, since f is non-increasing in time, we have that v is

Lipschitz in space with constant f (0).

We turn our attention to the optimality of the stopping time θ∗ = τ∗ ∧ σ∗, where
τ∗ and σ∗ are defined in (10). Recall that these stopping times are hitting times of the
underlying process so they depend on the control (n, ν). We emphasise that we work
under Assumption 5.

Lemma 13 Recall θ
γ∗ as in Lemma 8 and fix (t, x) ∈ R

d+1
0,T . For any (n, ν) ∈ At ,

there is a sequence (γk)k∈N, converging to zero as k → ∞ and possibly depending
on (n, ν), for which

lim inf
k→∞ θ

γk∗ (t, x; n, ν) ≥ θ∗(t, x; n, ν), Px − a.s.

Proof Fix (t, x) ∈ R
d+1
0,T and take (n, ν) ∈ At . Thanks to Proposition 9 there exists a

sequence (γk) ⊂ (0, 1) such that

lim
k→∞ sup

s∈[0,T−t]
∣∣X [n,ν],γk

s − X [n,ν]
s

∣∣
d = 0, Px − a.s. (26)

Let us denote

Zs = (v − g)(t + s, X [n,ν]
s ),

Zk
s = (uγk − g)(t + s, X [n,ν]

s ) and

Ẑ k
s = (uγk − g)(t + s, X [n,ν],γk

s ).

Notice that the stopping time θ
γk∗ admits an equivalent representation as the first time

that either Ẑ k
s− or Ẑ k

s is equal to 0, i.e., θγk∗ = inf{s ≥ 0 : min{Ẑ k
s−, Ẑ k

s } = 0}.
For ω ∈ 	 such that θ∗(ω) = 0 the claim in the lemma is trivial. Let ω ∈ 	 be

such that θ∗(ω) > 0. Take arbitrary δ < θ∗(ω). Then, by the definition of τ∗ and σ∗
we have

min{Zs(ω), Zs−(ω)} > 0 for alls ∈ [0, δ].

As a result of Remark 1, v − g is continuous, so the process s �→ Zs is right-
continuous with left-limits. Hence, the mapping s �→ min{Zs(ω), Zs−(ω)} is lower
semi-continuous and there exists λδ,ω > 0 such that
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inf
0≤s≤δ

min{Zs(ω), Zs−(ω)} ≥ λδ,ω.

Uniform convergence of uγ to v (Theorem 11) yields

lim
k→∞ sup

0≤s≤δ

(|Zk
s (ω) − Zs(ω)| + |Zk

s−(ω) − Zs−(ω)|) = 0.

Moreover, Lipschitz continuity of uγ and g (recall that |∇uγ |d ≤ f (0) and |∇g|d ≤
f (0)) and the convergence (26) give

lim
k→∞ sup

0≤s≤δ

(|Ẑ k
s (ω) − Zk

s (ω)| + |Ẑ k
s−(ω) − Zk

s−(ω)|)

≤ 2 f (0) lim
k→∞ sup

0≤s≤δ

(|X [n,ν],γk
s (ω) − X [n,ν]

s (ω)|d + |X [n,ν],γk
s− (ω) − X [n,ν]

s− (ω)|d
)

= 0.

Hence, for all sufficiently large k (so all small enough γk) we have

inf
0≤s≤δ

min{Ẑ k
s (ω), Ẑ k

s−(ω)} ≥ λδ,ω

2
,

which implies

lim inf
k→∞ θ

γk∗ (ω) ≥ δ.

By the arbitrariness of δ, we conclude that lim infk→∞ θ
γk∗ (ω) ≥ θ∗(ω). ��

An adaptation to our setting of arguments from [12, Thm. 4.4] allows us to prove
the optimality of the stopping time θ∗.

Theorem 14 For any (t, x) ∈ R
d+1
0,T , we have

v(t, x) = inf
(n,ν)∈At

Jt,x
(
n, ν, θ∗(t, x; n, ν)

)
,

hence θ∗ is optimal for the stopper in the game with value v.

Proof We fix (n, ν) ∈ At arbitrarily but independent of γ . By standard verification
arguments for uγ (see the first part of the proof of [12, Thm. 4.4] replacing f and X [n,ν]
therein with f γ and X [n,ν],γ , respectively) and the optimality of θ

γ∗ = θ
γ∗ (t, x; n, ν)

for the stopper we have

uγ (t, x) ≤ Ex
[
e−r(θγ∗ ∧θ∗)uγ

(
t + θ

γ∗ ∧ θ∗, X [n,ν],γ
θ

γ∗ ∧θ∗−
)

+
∫ θ

γ∗ ∧θ∗

0
e−rsh(t + s, X [n,ν],γ

s )ds

+
∫

[0,θγ∗ ∧θ∗)
e−rs f (t + s) dνs

]
.
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Recall that |uγ −v|(t, x) ≤ Cγ by Theorem 11 and v is Lipschitz in the space variable
with constant f (0), by Corollary 12. By assumption, h is Lipschitz with the constant
K , see (11). Using those properties in the above estimate for uγ , we obtain

uγ (t, x) ≤ Cγ +(
f (0)+T K

)
Ex

[
sup

s∈[0,T−t]
∣∣X [n,ν],γ

s −X [n,ν]
s

∣∣
d

]

+ Ex
[
e−r(θγ∗ ∧θ∗)v

(
t + θ

γ∗ ∧ θ∗, X [n,ν]
θ

γ∗ ∧θ∗−
)

+
∫ θ

γ∗ ∧θ∗

0
e−rsh(t + s, X [n,ν]

s )ds

+
∫

[0,θγ∗ ∧θ∗)
e−rs f (t+s) dνs

]
. (27)

We now let (γk) be the sequence converging to zero from Lemma 13 so that
lim infk→∞ θ

γk∗ ∧ θ∗ = θ∗. In combination with an obvious bound lim supk→∞ θ
γk∗ ∧

θ∗ ≤ θ∗, this yields the limit limk→∞ θ
γk∗ ∧ θ∗ = θ∗. Since the mappings

s �→ X [n,ν]
s− and s �→

∫

[0,s)
e−ru f (t + u)dνu

are left-continuous Px -a.s. and θ
γk∗ ∧ θ∗ converges to θ∗ from below (although not

strictly from below), we can conclude that for a.e. ω ∈ 	

lim
k→∞ X [n,ν]

θ
γk∗ ∧θ∗− = X [n,ν]

θ∗−

and

lim
k→∞

∫

[0,θγk∗ ∧θ∗)
e−rs f (t + s)dνs =

∫

[0,θ∗)
e−rs f (t + s)dνs .

The boundedness of g, h, f and v (cf. Corollary 12), and Ex [νT−t ] < ∞ allow us to
use the dominated convergence theorem in (27) to obtain

v(t, x) ≤ Ex
[
e−rθ∗v

(
t + θ∗, X [n,ν]

θ∗−
)+

∫ θ∗

0
e−rsh(t + s, X [n,ν]

s )ds

+
∫

[0,θ∗)
e−rs f (t + s) dνs

]
,

(28)

where we also used Proposition 9 to see that the second term of (27) converges to 0.
On the event {σ∗ < τ∗} it holds

v
(
t + θ∗, X [n,ν]

θ∗−
) = g

(
t + σ∗, X [n,ν]

σ∗−
) ≤ g

(
t + σ∗, X [n,ν]

σ∗
) + f (t + σ∗)�νσ∗ ,

since |∇g(t + s, ·)|d ≤ f (t + s). On the event {σ∗ ≥ τ∗}, the bound |∇v(t + s, ·)|d ≤
f (t + s) yields

v
(
t + θ∗, X [n,ν]

θ∗−
) ≤ v

(
t + τ∗, X [n,ν]

τ∗
) + f (t + τ∗)�ντ∗
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= g
(
t + τ∗, X [n,ν]

τ∗
) + f (t + τ∗)�ντ∗ .

Substituting the above bounds in the right-hand side of (28) yields

v(t, x) ≤ Jt,x (n, ν, θ∗).

By the arbitrariness of (n, ν) ∈ At we deduce optimality of θ∗. ��

4.3 Relaxing Assumption 5 into Assumption 2

Despite a different setting of the game, the arguments from Section 4.2 in [12] can be
repeated verbatim. We will only provide main ideas and refer the reader to detailed
proofs in the aforementioned paper. The d-dimensional open ball centred in 0 with
radius k is denoted by Bk .We approximate functions f , g, h (satisfyingAssumption 2)
with smooth bounded functions f j,k

m , g j,k
m and h j,k

m for j, k,m ∈ N. The index m
corresponds to the truncationof the functionvalues bym (i.e., fm = f ∧m, gm = g∧m,
hm = h ∧ m; recall that f , g, h are non-negative), the index j corresponds to the
mollification by convolution with a suitable mollifier ζ j , and the index k refers to the
support (the functions are forced to be zero outside Bk by multiplication with a cut-off
function). The approximating functions are such that ( f j,k

m , g j,k
m , h j,k

m ) → ( f , g, h)

uniformly over compact subsets of Rd+1
0,T , as j → ∞, k → ∞ and m → ∞ in this

order. For each treble ( f j,k
m , g j,k

m , h j,k
m ) we define an approximating game which has

a value v
j,k
m by Theorem 11.

When passing to the limit in v
j,k
m as j → ∞, k → ∞ and m → ∞ in this order,

we use two main ingredients: the strict sub-linear growth of g and h and the estimates
from Lemma 4 and Lemma 10. In particular, we use that for any (n, ν) ∈ Aopt

t,x and
any stopping time θ ∈ Tt

Px (X
[n,ν]
θ /∈ Bk) ≤ 1

k
Ex

[|X [n,ν]
θ |d

] ≤ K4(1 + |x |d)
k

. (29)

Set

v∞ := lim sup
m→∞

lim sup
k→∞

lim sup
j→∞

v
j,k
m , and

v∞ := lim inf
m→∞ lim inf

k→∞ lim inf
j→∞ v

j,k
m .

Proposition 15 Let Assumptions 1 and 2 hold. For any (t, x) ∈ R
d+1
0,T we have

v∞(t, x) = v∞(t, x) = v(t, x) = v(t, x),

hence the value v of the game (5) exists. Moreover, v
j,k
m converge to v uniformly on

compact subsets of Rd+1
0,T and |∇v(t, x)|d ≤ f (t) for a.e. (t, x) ∈ R

d+1
0,T .
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The proof is analogous to the one of [12, Lem. 4.7], with d = d0 therein. We
emphasise that the strict sublinear growth of g, h (cf. (9)) is needed in this proof.
Finally, the gradient bound can be deduced by the fact that |∇v

j,k
m |d ≤ f for all

j, k,m.
It remains to prove the optimality of θ∗ under Assumptions 1 and 2. The nature

of arguments is similar as in the proof of Lemma 13 and Theorem 14 with details to
be found in [12, Lem. 4.10]. The reasoning goes along the following lines. For any
treble j, k,m the stopping time θ

j,k,m∗ = τ
j,k,m∗ ∧ σ

j,k,m∗ is optimal for the stopper
in the game v

j,k
m (c.f. (10) with v and g replaced by v

j,k
m and g j,k

m , respectively).
Similarly as in Lemma 13, using uniform convergence of v

j,k
m to v, we show that for

any (t, x) ∈ R
d+1
0,T and (n, ν) ∈ At

lim inf
m→∞ lim inf

k→∞ lim inf
j→∞ θ

j,k,m∗ (t, x; n, ν) ≥ θ∗(t, x; n, ν), Px − a.s.

Arguments as in Theorem 14 lead to the conclusion stated formally in the next
proposition.

Proposition 16 Let Assumptions 1 and 2 hold. For any (t, x) ∈ R
d+1
0,T , we have

v(t, x) = inf
(n,ν)∈At

Jt,x
(
n, ν, θ∗(t, x; n, ν)

)
,

hence θ∗ = θ∗(t, x; n, ν) is optimal for the stopper in the game with value v.

We emphasise that the dependence of θ∗ on t , x , n, ν is only through the dynamics of
the process X [n,ν], i.e., the stopper does not need to know the controls applied by the
controller in order to execute their strategy.

We now have all the ingredients needed to prove Theorem 3.

Proof of Theorem 3 The existence of the value function v and the gradient bound fol-
low from Proposition 15. The continuity of v is guaranteed by the continuity of the
approximating functions v

j,k
m and their uniform convergence on compact sets. Opti-

mality of the stopping time θ∗ is shown in Proposition 16. The sub-linear growth of v

is easily deduced upon observing that v ≥ 0 and

v(t, x) ≤ sup
τ∈Tt

Ex
[
e−rτ g(t+τ, X [e1,0]

τ )+
∫ τ

0
e−rsh(t+s, X [e1,0]

s ) ds
]

≤ K1(1 + T )Ex
[(
1 + sup

0≤s≤T−t

∣∣X [e1,0]
s

∣∣β
d

)] ≤ c
(
1 + |x |βd

)
,

for a suitable c > 0, where the second inequality is due to (9) and the final one is due
to standard estimates for uncontrolled SDEs (e.g., [17, Cor. 2.5.12]). ��
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5 Relaxation of Growth Conditions on g and h

So far, we studied the properties of the game under Assumption 2 on the payoff
functions g, h and the cost f . The main requirement was the continuity and the strict
sub-linear growth of g and h (see (9)), the latter being instrumental in our arguments
to pass to the limit in the approximation procedure used in Proposition 15.

In this section we obtain an analogue of Theorem 3 under different assumptions on
g and h. Imposingmore smoothness, we can allow for g to have a linear growth and h to
have a quadratic growth. In order to state new assumptions, we recall the Hölder space
C0,1,α

�oc (Rd+1
0,T ) of functions which along with their first-order spatial derivatives are

α-Hölder continuous on any compact subset ofRd+1
0,T . Analogously, we also introduce

the space C1,2,α
�oc (Rd+1

0,T ) ⊂ C0,1,α
�oc (Rd+1

0,T ) of functions whose time derivative and the
second order spatial derivatives are also α-Hölder continuous (for details see [1, Sec.
2] and [18, Ch. 3, Sec. 2]).

Throughout this section we make the following assumption.

Assumption 17 The functions f : [0, T ] → (0,∞), g, h : Rd+1
0,T → [0,∞) are such

that

(i) g ∈ C1,2,α
�oc (Rd+1

0,T ) and h ∈ C0,1,α
�oc (Rd+1

0,T ) for some α ∈ (0, 1);

(ii) f is non-increasing, positive and f 2 is continuously differentiable on [0, T ];
(iii) for all (t, x) ∈ R

d+1
0,T

|∇g(t, x)|d ≤ f (t). (30)

Moreover, there is K5 > 0 such that the following hold

(iv) for all (t, x) ∈ R
d+1
0,T

h(t, x) ≤ K5(1 + |x |2d); (31)

(v) there exists β ∈ (0, 1) such that

|h(t, x) − h(t, y)| ≤ K5(1 + |x |d + |y|d)β |x − y|d ,
for all t ∈ [0, T ] and x, y ∈ R

d ; (32)

(vi) for all 0 ≤ s < t ≤ T and x ∈ R
d+1
0,T

g(t, x) − g(s, x) ≤ K5(t − s) and h(t, x) − h(s, x) ≤ K5(t − s); (33)

(vii) for all (t, x) ∈ R
d+1
0,T

(h + ∂t g + Lg − rg)(t, x) ≥ −K5.
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Notice that the continuity of g and (30) imply

0 ≤ g(t, x) ≤ K5(1 + |x |d),

where there is no loss of generality in assuming the same constant K5 as in the rest
of Assumption 17. We also notice that (iv) is redundant because it is implied by (v).
Nevertheless, we leave it as stated for clarity of exposition below (in particular, it
allows us to draw clear parallels to results in [1]). Condition (vii) ensures that there is
no region in the state space to which the controller (minimiser) could push the process
in order to obtain arbitrarily large (negative) running gains.

Notice that Assumptions 1 and 17 imply [1, Ass. 3.1 and 3.2] and so Theorem 6
holds with the growth bound for the value function replaced by (see also [1, Thm.
3.3])

0 ≤ u(t, x) ≤ c(1 + |x |2d), (t, x) ∈ R
d+1
0,T

for some c > 0. Due to relaxed growth conditions on g, h, the linear growth estimates
from previous sections are replaced by quadratic growth. Indeed, Lemma 7 holds with
Aopt

t,x therein replaced with

Aopt
t,x :={

(n, ν) ∈ At : Ex [νT−t ] ≤ K2(1 + |x |2d)
}

(34)

due to (31) (cf. the proof of [12, Lem. 3.1]). This amended definition of Aopt
t,x means

that Lemma 10 is valid with condition (19) replaced by

Ex
[|X [n,ν],γ

τ |] ≤ K4(1 + |x |2d), τ ∈ T0. (35)

Lemma 8 and Proposition 9 hold without changes.

Theorem 18 The pointwise limit u:= limγ→0 uγ exists on R
d+1
0,T . Moreover, u coin-

cides with the value of the game with payoff (3), i.e., u = v = v = v, and there exists
C > 0 such that

|uγ (t, x) − v(t, x)| ≤ C(1 + |x |2d)βγ for all (t, x) ∈ R
d+1
0,T .

Proof The proof is similar to the one of Theorem 11; wemainly emphasise differences
arising from the relaxed growth and Lipschitz assumptions. Let uγ be the value of the
game from Theorem 6. Put u:= lim infγ→0 uγ and u:= lim supγ→0 u

γ .

Fix (t, x) ∈ R
d+1
0,T . We first show that u ≥ v. Let (n, ν) ∈ Aopt

t,x be an η-

optimal control for uγ (t, x), where Aopt
t,x is defined in (34). Notice that v(t, x) ≤

supσ∈Tt Jt,x (n, ν, σ ). Take τ ∈ Tt such that supσ∈Tt Jt,x (n, ν, σ ) ≤ Jt,x (n, ν, τ )+η

(notice that τ depends on (n, ν) and η). Using (32), instead of the second inequality
in (23) we get
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uγ (t, x) − v(t, x)

≥ − f (0)Ex
[∣∣X [n,ν],γ

τ −X [n,ν]
τ

∣∣
d

]
− 2η

− K5Ex

[ ∫ T−t

0

(
1+∣∣X [n,ν],γ

s
∣∣
d + ∣∣X [n,ν]

s

∣∣
d

)β ∣∣X [n,ν],γ
s −X [n,ν]

s

∣∣
d ds

]
.

(36)

We bound the first term using Proposition 9 and the second term with Hölder’s
inequality:

uγ (t, x) − v(t, x)

≥ − f (0)K3γ − 2η

−K5

∫ T−t

0

(
Ex

[
1+∣∣X [n,ν],γ

s
∣∣
d + ∣∣X [n,ν]

s

∣∣
d

])β(
Ex

[∣∣X [n,ν],γ
s − X [n,ν]

s

∣∣ 1
1−β

d

])1−β

ds

≥ − f (0)K3γ − 2η − K5T
(
1 + 2K4(1 + |x |2d)

)β
K 1−β
3 γ,

where for the second inequality, we applied (35) for the first factor and Proposition 9
for the second factor under the integral. In conclusion, there is c > 0 such that

uγ (t, x) − v(t, x) ≥ −c(1 + |x |2d)βγ − 2η, (t, x) ∈ R
d+1
0,T .

Taking the lim inf as γ ↓ 0 we get

u(t, x) − v(t, x) ≥ −2η, (37)

and, by the arbitrariness of η, we conclude that uγ (t, x) ≥ v(t, x).
By following analogous arguments as above, we show that there is c > 0 such that

uγ (t, x) − v(t, x) ≤ c(1 + |x |2d)βγ + 2η, (t, x) ∈ R
d+1
0,T . (38)

Taking lim sup as γ ↓ 0 and, thanks to the arbitrariness of η, we get u(t, x) ≤ v(t, x).
Since u ≤ u and v ≤ v, the inequalities u ≤ v and u ≥ v imply u = u = v = v =

v, i.e., v is the value of the game. The arbitrariness of η in (37) and (38) demonstrates
the validity of the estimate on the difference uγ − v in the statement of the theorem. ��

The remaining results of Sect. 4.2, i.e., Corollary 12, Lemma 13 and Theorem 14,
still hold. We only point out that (27) in the proof of Theorem 14 takes the following
form
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uγ (t, x) ≤ Ex
[
e−r(θγ∗ ∧θ∗)v

(
t + θ

γ∗ ∧ θ∗, X [n,ν]
θ

γ∗ ∧θ∗−
)+

∫ θ
γ∗ ∧θ∗

0
e−rsh(t + s, X [n,ν]

s )ds

+
∫

[0,θγ∗ ∧θ∗)
e−rs f (t + s) dνs

]

+ CEx
[
(1 + |X [n,ν]

θ
γ∗ ∧θ∗−|2d)β

]
γ

+ f (0)Ex
[

sup
s∈[0,T−t]

∣∣X [n,ν],γ
s − X [n,ν]

s

∣∣
d

]

+ Ex
[ ∫ θ

γ∗ ∧θ∗

0
e−rs

∣∣h(t + s, X [n,ν],γ
s ) − h(t + s, X [n,ν]

s )
∣∣ds

]
,

(39)

with the last term bounded as in the proof of Theorem 18 by

K5T
(
1 + 2K4(1 + |x |2d)

)β
K 1−β
3 γ.

Denoting τ = θ
γ∗ ∧ θ∗, we also note that

Ex
[(
1 + ∣∣X [n,ν]

τ−
∣∣2
d

)β] ≤ Ex
[
1 + |X [n,ν]

τ− |2d
] ≤ 1 + Ex

[∣∣X [n,ν]
τ− − X [e1,0]

τ−
∣∣2
d

]

+ Ex
[∣∣X [e1,0]

τ−
∣∣2
d

]

≤ 1 + E[ν2T−t ] + c(1 + |x |2d),

for some constant c > 0, where the last inequality follows from standard growth
estimates for uncontrolled SDEs with Lipschitz coefficients (compare to the proof of
Lemma 10). In order to conclude as in Theorem 14, it remains to recall that E[ν2T−t ] <

∞ by the definition ofAt and that (n, ν) ∈ Aopt
t,x is fixed arbitrarily but independently

of γ .
The above changes do not affect arguments in the proof of Theorem 14, so its

conclusions still hold. The following theorem summarises the findings of this section.

Theorem 19 The assertions of Theorem 3 hold under Assumptions 1 and 17 with the
growth bound on v replaced by 0 ≤ v(t, x) ≤ c(1 + |x |2d), for some c > 0.

Notice that conditions (i.a) and (i.b) from Assumption 1 are needed to establish the
bound (35). We recall that it is not possible to bound the second moment of X [n,ν],γ

τ

without controlling Ex [ν2τ ] and the form of the functional Jt,x (n, ν, τ ) allows us only
to bound Ex [νT−t ] as in (34) (cf. proof of [12, Lem. 3.1]). We use (35) in the proof of
Theorem 18 due to the form of the non-uniform Lipschitz property (32) of h. If h is
Lipschitz continuous (say with constant K5), the second term on the right-hand side
of the inequality in (36) simplifies to −K5γ . Then the arguments of the proof follow
without the need for (35) and result in the bound

|uγ (t, x) − v(t, x)| ≤ Cγ

for some constant C > 0.
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The bound (35) is also used to bound the last term on the right-hand side of (39),
but, similarly as above, Lipschitz property of h changes the bound to cγ for some
constant c > 0. We also note that the proof of Proposition 9 uses only the Lipschitz
property of σ .

Corollary 20 Under Assumption 17, if h is Lipschitz continuous then Assumption 1
without conditions (i.a) and (i.b) is sufficient in order to prove the assertions of Theorem
19.
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