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To design out-of-plane loaded masonry cladding panels, as well as modern non-loadbearing masonry panels, the 
yield-line method has become widely used by engineers, and features in various design codes. However, the 
traditional hand-based yield-line analysis method can be challenging to apply to complex or irregular shapes, 
since the form of the critical yield-line pattern will generally not be known in advance. The discontinuity layout 
optimization (DLO) procedure, previously applied to reinforced concrete slabs, is here extended to treat masonry 
wall panels, with (i) the flexural moment capacity modified to take account of vertical dead loads from above; 
and (ii) shear failure also modelled, if critical (e.g., at damp proof course level). A key benefit of DLO is that the 
critical yield-line pattern can be identified automatically, with a rigorous linear programming-based formulation 
employed to ensure that a globally optimal solution is obtained for any given numerical discretization. Given 
the power of modern desktop PCs, this effectively eliminates the possibility of the critical yield-line failure 
mechanism being missed, allowing the presented method to be applied with confidence to both regular and 
complex-shaped masonry panels. A range of examples are used to demonstrate the efficacy of the approach, with 
solutions compared with those from analytical models and experimental tests.

1. Introduction

Non-loadbearing masonry is commonly used to clad steel and con-
crete framed structures [1], and is also found in the gable end walls of 
low-rise housing developments. In contrast with historical masonry (e.g. 
massive ancient structures, load-bearing walls, vaulted structures, etc) 
where mass, interlocking and geometry have a fundamental role in col-
lapse behaviour under horizontal actions [2–6], these masonry elements 
resist out-of-plane loading principally via the flexural tensile strength of 
the constituent masonry, with observed failure mechanisms often resem-
bling the yield-line patterns encountered when reinforced concrete slabs 
are loaded to collapse [7].

For such wall panels, out-of-plane loading may stem from the pres-
ence of positive or negative (suction) wind loads, or from seismic ac-
tions. In the case of wind loads, UK design codes [8–10] and also the 
current Eurocode [11] have allowed the yield-line method to be applied, 
with the flexural tensile strength used to compute a notional plastic 
moment capacity at yield-lines. When modern masonry materials are 
employed the flexural tensile strength is relatively high, albeit the de-
gree of ductility is low; this is in contrast to reinforced concrete slabs, 
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for which yield-line theory was originally conceived, where the cross-
section is usually sufficiently ductile to enable formation of multiple 
flexural hinges. These yield at constant plastic moment capacity until 
the mechanism is fully developed [12]. Conversely, the post-peak be-
haviour of masonry is quasi-brittle in nature, with the bending moment 
typically decreasing relatively sharply once a crack has been initiated 
[13–15]. In an attempt to address this, the fracture line method was 
proposed by Sinha [16,17]. Nevertheless, the yield-line method has 
been found to predict the out-of-plane collapse behaviour of masonry 
panels reasonably well [18], and experimental and theoretical studies 
have allowed a set of typical mechanisms to be compiled for wall pan-
els of standard geometry; see for instance the review provided in [19]
and [20], with suitable analytical formulae derived in, e.g., [21,22,7]. 
Thus, its use remains permitted by widely used design codes such as 
Eurocode 6 [11]. However, in the case of irregular wall geometries, 
such as walls containing openings or arbitrary polygonal-shaped pan-
els, the standard formulae are often not directly applicable and must 
be adapted on a case-by-case basis. This makes hand-based yield-line 
analysis problematic and is one of the main motivations for developing 
an automated yield-line analysis approach for modern non-loadbearing 
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masonry cladding panels, which is the main focus of the present pa-
per. Specifically, the discontinuity layout optimization (DLO) method 
[23,24], described in more detail in the next section, will here be ex-
tended for this purpose.

Central to the practical application of the yield-line method to mod-
ern masonry walls is reliable evaluation of flexural tensile strength, 
which depends on the composition and condition of the masonry units 
and mortar employed [25]. Thus various analytical models, supported 
by experimental tests, have been proposed (e.g., [26–30]); additionally 
Eurocode 6 [11] provides suitable values for use in design.

The paper is organized as follows: use of the yield-line method to 
analyse out-of-plane failure is considered in Section 2, with the DLO 
procedure that automates this method described in detail. Amendments 
to the standard failure criteria to enable masonry cladding panels to 
be analysed are described in Section 3. Examples are then considered in 
Section 4, including layout sensitivity analyses, comparison with analyt-
ical models (the models developed by Roberts et al. [31] and Johansen 
[7] are used to provide reference values) and experimental results ob-
tained by Chong [32]; also its application to more complex wall ge-
ometries is considered. Finally, conclusions and recommended future 
developments are presented in Section 5.

2. Automating the yield-line method of analysis

2.1. Background

Within the context of the formal theorems of plastic limit analysis, 
the yield-line analysis method is an upper-bound method. This means 
that non-conservative results will be obtained if an incorrect layout of 
flexural hinges, or yield-lines, is chosen. Particularly for irregular ge-
ometries, for which available data is limited, this is problematic and, 
since there is a danger of missing the critical mechanism when undertak-
ing a yield-line analysis by hand, numerical models become attractive. 
The first numerical models conceived for masonry panels were pre-
sented in [33] and [34]. More recently, among the several numerical 
models presented for masonry structures [35–41], limit analysis models 
based on finite element discretizations and enriched with homogeniza-
tion strategies have been proposed, e.g., see [42] and [43]. In particular, 
the use of homogenization is advantageous, since it avoids the need to 
model masonry units individually [44,45]. However, a precise definition 
of the actual yield-line pattern can require a refined discretization that 
can be computationally demanding. With reference to concrete slabs, 
the first automatic analysis procedures were proposed by Chan [46] and 
then by Munro and Da Fonseca [47], albeit the solutions obtained were 
affected by the chosen finite element mesh discretization employed. Far 
fewer developments have been made specifically for masonry wall pan-
els. In recent years, an adaptive limit analysis model where the possible 
cracks were iteratively adjusted by means of a meta-heuristic algorithm 
was proposed by Chiozzi et al. [48].

A new numerical modelling strategy that, unlike previously pro-
posed methods, produces solutions that are not significantly affected 
by the chosen numerical discretization was proposed in [49,24]; this 
approach, termed discontinuity layout optimization (DLO), discretizes 
a given problem using nodes that are interconnected by potential yield-
lines and determines the critical ones by solving a linear programming 
(LP) problem. Unlike most kinematic limit analysis methods, in this case 
the kinematic variables are the relative displacement (or rotation) jumps 
along the potential lines, rather than the displacements of solid element 
centroids. Thus, solid elements are not defined in the initial problem 
discretization, but can be identified in the post-processing phase once 
non-zero displacement jumps corresponding to critical yield-lines have 
been identified. Over the years, DLO has been applied to in-plane plas-
ticity problems [23], in-plane loaded masonry gravity wall problems 
[50], out-of-plane loaded concrete slab problems [24,51], as well as to 
simple three-dimensional problems [52].

Here a DLO-based limit analysis model is presented that extends 
previous work to enable the resistance of out-of-plane loaded masonry 
cladding panels to be computed. In previous research focused on con-
crete slab analysis, described in [51] and made available to practi-
tioners in the LimitState:SLAB software [53], classical yield-line theory 
hypotheses were adopted; in contrast here, an enriched formulation, de-
signed to take into account the main characteristics of masonry cladding 
panels, is required. Firstly, the main kinematic variables employed in 
the problem must now include not only normal yield-line rotations but 
also twisting (torsional) rotations and out-of-plane displacements. The 
latter allows shear failures to be represented. Even if such failures are 
unusual for modern masonry, unlike historical masonry in which shear 
and torsion require a proper representation [54,55], they can in some 
cases greatly affect load-bearing capacity; e.g., damp proof courses at 
the base of masonry walls in buildings may have reduced shear resis-
tance; see [56]. The addition of torsional and shear degrees of freedom, 
in addition to normal bending rotations, leads to a generalized yield-
line analysis formulation. Secondly, the ultimate (plastic) moments and 
shears need to be defined as functions of both material mechanical prop-
erties and self-weight-derived stress acting along any given potential 
yield-line, so as to allow the effects of compression on the lateral resis-
tance of masonry walls to be accounted for.

2.2. Generalized yield-line analysis via discontinuity layout optimization 
(DLO)

A discontinuity layout optimization (DLO) formulation for the anal-
ysis of out-of-plane loaded wall cladding panels is now presented. The 
main steps in the DLO procedure are depicted in Fig. 1.

Considering a three-dimensional (3D) Euclidean space 𝑥𝑦𝑧, consider 
a planar domain in the 𝑥𝑦 plane representing a masonry panel, where 𝑦
defines the vertical direction. The first step in the DLO formulation is to 
discretize the domain into 𝑁 nodes, here assumed to be uniformly dis-
tributed. A layout of 𝑀 potential discontinuities is defined that connects 
each node to every other node. A set of kinematic variables is defined 
by assigning three degrees of freedom to each potential discontinuity: 
normal rotation 𝜃𝑛 along the longitudinal axis of the discontinuity 𝐧; 
twisting rotation 𝜃𝑡 along the normal axis of the discontinuity 𝐭; out-of-
plane displacement 𝛿𝑧. These represent displacement and rotation jumps 
along discontinuities in an out-of-plane mechanism (see Fig. 2). Here the 
main kinematic variables are defined on the assumption that small dis-
placement theory holds, such that each degree of freedom corresponds 
to an infinitesimal displacement (also note that, for the sake of sim-
plicity, the kinematic variables are herein referred to as ‘displacements’ 
rather than ‘displacement rates’, or ‘velocities’).

With this set of kinematic variables, the kinematic limit analysis 
problem can be defined as follows:

minimize 𝜆𝐟T
L
𝐝 = −𝐟T

D
𝐝+ 𝐠T𝐩 (1a)

subject to 𝐁𝐝 = 𝟎 (1b)

𝐍𝐩− 𝐝 = 𝟎 (1c)

𝐟T
L
𝐝 = 1 (1d)

𝐩 ≥ 𝟎 (1e)

where 𝜆 is a load multiplier, 𝐟L and 𝐟D are respectively vectors of live 
and dead applied loads (where the former are loads affected by the load 
multiplier and the latter are permanent loads of constant magnitude), 
𝐠 is a vector representing internal energy dissipation, 𝐝 contains the 
kinematic displacement variables, 𝐩 is the unknown plastic multipliers 
vector, and finally 𝐁 and 𝐍 are respectively the compatibility and plastic 
flow rule matrices.

Now Eq. (1) defines a linear programming (LP) problem, in which 
the objective function (Eq. (1a)) equates external and internal work. The 
work dissipated by external loads is computed by considering the sub-
domains defined by each potential yield-line, in which the subdomain 
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Fig. 1. Steps in the DLO analysis procedure: (a) wall area, boundary conditions and nodal discretization; (b) discontinuities (potential yield-lines) interconnecting the 
nodes; (c) optimized layout, defining the critical yield-line pattern; (d) associated deformed failure mechanism. (Red and blue lines represent hogging and sagging 
rotations respectively).

Fig. 2. Degrees of freedom for each DLO discontinuity: (a) normal rotation jump 𝜃𝑛 ; (b) twisting rotation jump 𝜃𝑡; (c) out-of-plane displacement jump 𝛿𝑧.

is the area 𝐴∗
𝑖
of domain located above the 𝑖-th line (see Fig. 3). By con-

sidering a unit surface load 𝑊z acting in the out-of-plane direction as 
a live load, the live load work for the 𝑖-th yield-line can be defined as 
follows:

𝐟T
L𝑖
𝐝𝑖 = 𝑙𝑖

[
𝑚n𝑖 𝑚t𝑖 𝑡𝑖

] ⎡⎢⎢⎣

𝜃n𝑖
𝜃t𝑖
𝛿z

⎤⎥⎥⎦

=𝐴∗
𝑖

[
𝑊z𝑟n 𝑊z𝑟t 𝑊z

] ⎡⎢⎢⎣

𝜃n𝑖
𝜃t𝑖
𝛿z

⎤⎥⎥⎦
, for 𝑖 = 1..𝑀 (2)

where 𝑙𝑖 is the length of the yield-line, 𝑚n𝑖, 𝑚t𝑖 and 𝑡𝑖 denote the gen-
eralized (i.e., per unit-length) normal moment, twisting moment and 
out-of-plane shear contributions, 𝑟n and 𝑟t are the normal and longitudi-
nal distances between the midpoint of the yield-line and the subdomain 
centroid (see again Fig. 3). Dead loads typically comprise wall self-
weight and any compression load applied at the top edge. However, 
since forces and moments deriving from these actions act within the 𝑥𝑦
plane, no work is associated with the adopted kinematic variables and 
the associated 𝐟T

D
𝐝 quantity is zero.

Before considering the internal work, equality and inequality con-
straints are described. Thus the kinematic admissibility for the displace-
ments field is imposed through Eq. (1b), in which the 𝐁 matrix is built 
by assembling the compatibility constraints defined for each yield-line:

𝐁𝑖𝐝𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼𝑖 −𝛽𝑖 0

𝛽𝑖 𝛼𝑖 0

0
𝑙𝑖

2
1

−𝛼𝑖 𝛽𝑖 0

−𝛽𝑖 −𝛼𝑖 0

0
𝑙𝑖

2
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

𝜃n𝑖

𝜃t𝑖

𝛿z𝑖

⎤⎥⎥⎥⎦
= 𝟎, for 𝑖 = 1...𝑀 (3)

where 𝛼𝑖 and 𝛽𝑖 represent respectively the cosine and sine of the incli-
nation angle of the 𝑖-th yield-line. Note that, in general, the right-hand 
term in Eq. (1b) represents nodal displacement jumps of the external 
reference system, which are zero in the absence of a priori imposed dis-
placements. This indicates that the overall size of 𝐁 is 3𝑁 ×3𝑀 . Eq. (1c)
represents flow rule constraints, written as follows for each potential 
yield-line:

𝐍𝑖𝐩𝑖 − 𝐝𝑖 =

⎡
⎢⎢⎢⎣

1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝1
𝑖

𝑝2
𝑖

𝑝3
𝑖

𝑝4
𝑖

𝑝5
𝑖

𝑝6
𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

𝜃n𝑖

𝜃t𝑖

𝛿z𝑖

⎤
⎥⎥⎥⎦
= 𝟎,
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Fig. 3. Geometrical quantities characterizing the subdomain of the 𝑖-th yield-line.

Fig. 4. Using DLO to handle problems involving: (a) a wall with an opening; (b) a more complex wall geometry.

for 𝑖 = 1...𝑀 (4)

that results in an overall 𝐍 matrix of size 3𝑀 × 6𝑀 . The six plastic 
multipliers 𝐩𝑖 derive from the assumed yield function 𝑓 :

𝑓 (𝑚n,𝑚t , 𝑡) =

⎧⎪⎨⎪⎩

||𝑚n𝑖
|| ≤ 𝑚pn𝑖

||𝑚t𝑖
|| ≤ 𝑚pt𝑖

||𝑡𝑖|| ≤ 𝑡p𝑖

, for 𝑖 = 1...𝑀 (5)

where 𝑚pn𝑖, 𝑚tn𝑖 and 𝑡p𝑖 are the generalized plastic normal moment, 
twisting moment and out-of-plane shear for the 𝑖-th yield-line. In con-
trast to the DLO formulation proposed for concrete slabs [24], here the 
quantities defining the yield function are expressed as a function of the 
mechanical properties of the masonry and the vertical loads acting on 
the yield-line, described in more detail in Section 3. The definition of the 
internal plastic dissipation vector 𝐠𝑖 for the 𝑖-th yield-line stems directly 
from Eq. (5):

𝐠𝑇
𝑖
=
[
𝑚pn𝑖 𝑚pn𝑖 𝑚pt𝑖 𝑚pt𝑖 𝑡p𝑖 𝑡p𝑖

]
𝑙𝑖, for 𝑖 = 1...𝑀 (6)

Finally, Eqs. (1d) and (1e) respectively normalize the live load work 
and ensure that the plastic multiplier variables are non-negative. Ac-
cording to classical yield-line theory [57], torsional and out-of-plane 
shear displacements are assumed to be zero. Thus the formulation pre-
sented here could be simplified to represent the classical yield-line 
analysis formulation by limiting the degrees of freedom to the normal ro-
tations 𝜃n and removing the other kinematic variables together with the 
associated plastic multipliers for each internal line (as shown in [51]). 
Note that for boundary lines twisting rotations 𝜃t and out-of-plane dis-
placements 𝛿z are not zero for some boundary conditions, e.g., cases 
involving free boundaries or lines of symmetry (where for the latter only 
𝛿z is non-zero); thus these variables must be maintained for such lines 
even within the classic formulation. However, in the presented approach 
twisting rotations and out-of-plane displacements are also maintained 

for internal yield-lines to allow for possible torsional and shear failures; 
this gives rise to a generalized limit analysis formulation for out-of-plane 
loaded masonry panels.

Solving Eq. (1) furnishes a load multiplier and set of displacement 
and rotation jumps that identify active yield-lines in the mechanism. By 
definition, the obtained load multiplier is a kinematic multiplier, thus 
defining an upper bound on the collapse load, which becomes closer and 
closer to the true collapse multiplier as the numerical discretization is 
refined (i.e., the number of nodes is increased). This is reflected in the 
geometrical representation of the collapse mechanism, which depends 
on the density of the nodal grid employed and the associated layout of 
potential yield-lines.

Finally, it is worth noting that the presented DLO procedure can be 
readily applied to complex geometries, involving openings and/or non-
convex polygonal shapes [24]. In these cases, an initial layout defined on 
the domain convex-hull is adjusted by removing any nodes and potential 
yield-lines lying outside the real domain, or inside any openings; see 
Fig. 4.

3. Applicable masonry properties

Fundamental properties associated with out-of-plane failure of a wall 
panel formed from modern masonry are now presented. As noted previ-
ously, the adopted formulation generalizes classical yield-line theory, in 
which mechanisms are assumed to involve flexural hinges only. Thus, 
although failures involving out-of-plane bending are most common, the 
potential for out-of-plane shear/torsion failure should not be discounted 
and therefore both are considered herein.

3.1. Out-of-plane bending failure

Differently from the previous application to reinforced concrete slabs 
[24], for masonry cladding panels the generalized plastic bending mo-
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ments must take into account the contribution of self-weight (and any 
other vertical load if present). Moreover, for a heterogeneous material 
like masonry, the orthotropic behaviour corresponding to the actual 
texture should be considered. Therefore, separate plastic moment ca-
pacities are defined for bending in the 𝑥 and 𝑦 directions. Considering 
a stretcher (or ‘running bond’) masonry texture, and by maintaining 
the external reference configuration introduced in Section 2.2, 𝑥 and 
𝑦 respectively correspond to directions parallel and orthogonal to bed 
joints. The generalized plastic bending moments can be defined as fol-
lows:

𝑚p𝑥 =
(𝑓𝑥 + 𝜎𝑦)𝑡

2

6
(7a)

𝑚p𝑦 =
𝑓𝑦𝑡

2

6
(7b)

where 𝑓𝑥 and 𝑓𝑦 are the flexural tensile strengths on the 𝑥𝑧 and 𝑦𝑧
planes respectively, 𝜎𝑦 is the compression stress deriving from the ver-
tical load (i.e., due to wall self-weight and compression loads at the top 
of the wall), and 𝑡 is the wall thickness. It can be observed that the gen-
eralized bending moment capacity 𝑚p𝑥 will take on different values for 
each yield-line. Specifically, this depends on the vertical stress value, 
which can be evaluated as follows:

𝜎𝑦 = 𝛾(ℎ− 𝑦) +
𝑞𝑦

𝑡
(8)

where 𝛾 is the weight per unit volume of masonry, 𝑞𝑦 is the magni-
tude of any vertical load applied at the top of the wall panel (assumed 
positive if it is compressive), ℎ is the height of the wall and 𝑦 de-
notes the point at which the vertical stress is evaluated (generally the 
midpoint of the line). Note that the quantity 𝑞𝑦 is typically null for 
cladding panels, thus the self-weight is the only vertical load affecting 
the generalized plastic bending moment 𝑚p𝑥. According to the adopted 
reference system, 𝑓𝑥 represents the flexural strength of a horizontal 
mortar bed joint, whereas 𝑓𝑦 represents the flexural strength of the ma-
sonry about a vertical axis. Estimated values for 𝑓𝑦 can be obtained 
from Eurocode 6 [11] (in turn derived from [31]) for different mor-
tar and brick unit properties. In some cases, these data are provided 
in terms of orthogonal ratios 𝜇 = 𝑓k𝑥∕𝑓k𝑦, where 𝑓k𝑥 and 𝑓k𝑦 are the 
characteristic flexural tensile strength values for the two main direc-
tions.

Alternatively, a suitable analytical model for stretcher / running 
bond masonry textures was proposed in [27], in which the following 
equation for 𝑚p𝑦 is suggested:

𝑚p𝑦 =min

{
𝑙u + 𝑡j

2(ℎu + 𝑡j)
𝜏𝑥𝑘b𝑡

2;
𝑓ut − 𝜈𝜎𝑦

2

𝑡2

6

}
(9)

where 𝑙u and ℎu are respectively the length and height of the masonry 
unit, 𝑡j is the thickness of the mortar joint, 𝜏𝑥 is the tangential stress 
acting on the bed joint, 𝑘b is a numerical factor that depends on the 
geometry of the bed joint (after [58]), 𝑓ut is the flexural tensile strength 
of the masonry unit, and finally 𝜈 is the Poisson’s ratio of the masonry. 
According to Eq. (9), the horizontal bending strength for a vertical yield-
line arises due to torsional failure of bed joints or bending failure of 
brick units. In fact, Eq. (9) is likely to provide a conservative strength 
estimate since it prescribes that the bending strength is the minimum 
of the resistances associated with these two failure modes, with any 
contribution provided, e.g., by vertical mortar joints being neglected. 
By using Eq. (9) and by assuming 𝜏𝑥 = 1.6𝑓𝑥 +0.9𝜎𝑦, again as suggested 
by [27], an equivalent value for 𝑓𝑦 can be derived:

𝑓𝑦 =min

{
3(𝑙u + 𝑡j)

ℎu + 𝑡j
(1.6𝑓𝑥 + 0.9𝜎𝑦)𝑘b;

𝑓ut − 𝜈𝜎𝑦

2

}
(10)

By following this model, 𝑚p𝑦 also becomes dependent on the vertical 
stress 𝜎𝑦. Whatever values are assumed for the main generalized plastic 
bending moment capacities, the moment capacity 𝑚pn𝑖 for any inclined 

Fig. 5. Plastic bending moments for an inclined yield-line in a masonry wall 
panel.

yield-line (with corresponding cosine 𝛼𝑖 and sine 𝛽𝑖 - see Fig. 5) can be 
obtained by following the formula suggested in [7]:

𝑚pn𝑖 =𝑚p𝑥𝛼
2
𝑖
+𝑚p𝑦𝛽

2
𝑖

(11)

It can be observed that the bending moment capacity of an inclined 
yield-line does not directly take into account the actual masonry tex-
ture. This can be addressed by following a homogenization procedure, 
in which any inclined bending moment also depends on the size and ar-
rangement of units. Homogenization would allow to fully extend DLO 
to historical structures, as well as load-bearing masonry structures, in 
which the structural behaviour is highly affected by interlocking and 
overall geometry (see [59]); this is the subject of future work.

Note that the presented bending moment equations can be used for 
single-leaf panels. For double-leaf walls with free sliding between the 
two leaves, or masonry composed of hollow blocks, the generalized plas-
tic bending moments must be adapted; e.g., the following formulae can 
be used for 𝑚p𝑥 in the case of double-leaf walls and hollow block ma-
sonry:

𝑚p𝑥 =
𝑓𝑥 + 𝜎𝑦

6
⋅

𝑡3
I
+ 𝑡3

II

max{𝑡I, 𝑡II}
(12a)

𝑚p𝑥 =
(𝑓𝑥 + 𝜎𝑦)(1 − 𝑒

2)𝑡2

4
(12b)

where 𝑡I and 𝑡II are the thickness values of the two leaves, and 𝑒 (0 ≤
𝑒 < 1) is a parameter defining the dimension of the cavity within hollow 
blocks (see Fig. 6).

3.2. Out-of-plane shear failure

When considering out-of-plane shear failure, both plastic shear 
forces and twisting moments need to be accounted for, expressed with 
reference to the shear strength 𝑓v as follows:

𝑡p = 𝑓v𝑡 (13)

and

𝑚pt𝑖 =
𝑓v𝑡𝑙𝑖

6
(14)

Note that the generalized twisting moment depends on the length 𝑙𝑖
of the yield-line on which it is computed. Eq. (14) was derived by as-
suming a linearly varying transverse shear stress having maximum value 
𝑓v at the extremities of the line. This assumption follows the standard 
shear design of concrete slabs, in agreement with [60] and [61]. By con-
sidering a linear shear stress distribution reaching the shear strength 𝑓v
at extremities only, Eq. (14) represents a crack initiation twisting mo-
ment and, according to [61], can be used as a safe design limit for the 
twisting moment. In absence of specific details from Eurocode for out-
of-plane twisting failures in modern masonry panels, the assumptions 
recommended for concrete slabs have been followed here, incorporat-
ing a shear strength expression suitable for modern masonry. Note also 
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Fig. 6. Representation of plastic bending moments and expected flexural hinges: (a) double-leaf (free sliding between the two leaves); (b) hollow block masonry.

Fig. 7. Boundary conditions: graphical representation and corresponding internal dissipation.

that, differently from [54], the generalized bending and twisting mo-
ment remain uncoupled. This is accepted for modern non-loadbearing 
masonry panels where shear effects are rarely observed. For historical 
and load-bearing masonry structures, the coupling between bending, 
torsion and shear effects could be achieved, for example, through ho-
mogenization techniques [59] (as previously mentioned, such topic will 
be investigated in a future work more focused on historical masonry).

The shear strength along bed joints is prescribed in Eurocode 6 [11]
(again derived from [31]):

𝑓v =min{𝑓v0 + 0.4𝜎𝑦; 0.065𝑓c} (15)

where 𝑓v0 is the shear strength under zero compression stress, 0.4 is 
the assumed coefficient of friction, and 𝑓c is the compression strength. 
The obtained value can be reduced in certain situations, for instance in 
the presence of unfilled vertical joints (refer to [11] for more details). In 
particular, in the presence of a damp proof course (DPC) the actual shear 
strength can be much lower than the results indicated by Eq. (15); see 
[56]. The exact value depends on the type of damp-proof course adopted 
but, according to Roberts et al. [31], damp-proof course mortar joints 
should provide a minimum shear strength of 0.09 MPa. As regards to 
computation of the shear strength orthogonal to bed joints, the Eurocode 

does not provide specific information, though in [31] a value of 2𝑓v is 
recommended.

4. Numerical examples

The presented DLO analysis formulation is now applied to various 
out-of-plane loaded masonry panel examples. Firstly, the sensitivity of 
the collapse load to the initial layout is investigated by using two sim-
ple examples. Secondly, results are compared with those from analyt-
ical models developed by Roberts et al. [31] and Johansen [7]. Using 
problems with both simple and slightly more complex geometrical con-
figurations, the results are also compared with those from Eurocode 6 
[11], in this case with partial safety factors included in the calculations. 
Thirdly, DLO results are compared with experimental data presented by 
Chong [32]. Finally, various more challenging examples are considered, 
involving gable wall geometries involving complex polygonal shapes 
and openings, typical of those found in UK buildings; these are included 
to more fully demonstrate the potential of the presented method. For 
sake of clarity, the values of all key geometrical parameters (height ℎ, 
length 𝐿 and thickness 𝑡 of the panel; also breadth 𝑎 and height 𝑏 of an 
opening, if present) and mechanical parameters (resistance values and 
partial safety factors) adopted in the examples presented are reported 
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Table 1
Geometrical and material parameters used in the numerical examples.

Wall example: Simply 
supported 
panel

Fixed panel Panel with 
weak base 
shear joint

Fixed panel 
with opening

Chong’s walls Gable walls

Section: 4.1 & 4.2.1 4.1 4.2.2 4.2.3 4.3 4.4

Geometry [m] ℎ =𝐿 = 3 & 
0.4 ≤ ℎ

𝐿
≤ 1.6, 

ℎ = 3

ℎ =𝐿 = 3 0.4 ≤ ℎ

𝐿
≤ 1.6, 

ℎ = 3

ℎ =𝐿 = 4, 
0 ≤ 𝑎

𝐿
≤

1

2
, 

0 ≤ 𝑏

ℎ
≤

1

2

Fig. 21 Fig. 23

Thickness 𝑡 [mm] 102.5 & 215 102.5 215 102.5 102.5 102.5 & 215 
[Fig. 23a-d & e]

Unit weight [kN/m3] 19 19 19 19 18 19

Characteristic horizontal flexural strength 𝑓k𝑥 [MPa] 0.25 0.25 0.25 0.25 - 0.25

Orthogonal ratio 𝜇 = 𝑓k𝑥∕𝑓k𝑦 0.56 0.56 0.56 0.42 - 0.56

Shear strength under zero compression stress 𝑓v0 [MPa] 0.35 0.35 0.35 0.35 0.35 0.35

Material partial safety factor 𝜆m 3.1 3.1 3.1 3.5 - 3.1

Material partial safety factor in shear 𝜆mv 2.5 2.5 2.5 2.5 2.5 2.5

Partial safety factor on the loading 𝜆f 1.2 1.2 1.2 1.2 - 1.2

Horizontal flexural strength 𝑓𝑥 [MPa]
𝑓k𝑥

𝜆m

𝑓k𝑥

𝜆m

𝑓k𝑥

𝜆m

𝑓k𝑥

𝜆m
0.74

𝑓k𝑥

𝜆m

Vertical flexural strength 𝑓𝑦 [MPa]
𝑓𝑥

𝜇

𝑓𝑥

𝜇

𝑓𝑥

𝜇

𝑓𝑥

𝜇
2.09

𝑓𝑥

𝜇

Shear strength 𝑓v [MPa] Eq. (15) Eq. (15) Eq. (15), 0.01 
at the base

Eq. (15) Eq. (15) Eq. (15)

Compression strength 𝑓c [MPa] 3.5 3.5 3.5 7 3.5 3.5

Fig. 8. Examples adopted to investigate the sensitivity of the collapse load to node distribution: (a) simply supported panel; (b) fixed panel. Geometries and boundary 
conditions.

in Table 1. Note that for the examples considered herein, the internal 
dissipation vector 𝐠 (Eq. (6)) varies according to the nature of the ex-
ternal boundaries involved; see Fig. 7. Finally, a modified version of 
the LimitState:SLAB [53] analysis software is used to perform the DLO 
calculations.

4.1. Sensitivity to node distribution

Two square panels are used to study the sensitivity of the collapse 
load to the node distribution. The first case is simply supported along 
three edges, and the second case is fixed supported, see Fig. 8. The nodal 
grids are equally spaced using a nodal spacing value, here indicated 
as 𝑠𝑡𝑒𝑝. In addition to evenly distributed nodal grids, a special case is 
considered, where the boundary lines are discretized with more nodes 
using a smaller nodal step: 𝑠𝑡𝑒𝑝edge ≤ 𝑠𝑡𝑒𝑝internal, where 𝑠𝑡𝑒𝑝edge is the 
nodal spacing along boundary lines, and 𝑠𝑡𝑒𝑝internal is that for internal 
nodes within the domain.

Results are presented in Figs. 9 and 10. It can be seen that they con-
verge very rapidly to asymptotic value. Relatively accurate (0.03% and 
0.43% difference for supported and fixed panel respectively) collapse 
loads are obtained with 44 nodes per m2 (corresponding to 𝑠𝑡𝑒𝑝internal
= 0.15 m). In Fig. 9, refining the boundary line (i.e., using a lower 
nodal spacing along edges) has negligible influence on the obtained re-
sult, since the mechanism is mainly governed by the internal yield-lines. 
A different situation is observed in Fig. 10, where the additional yield-
lines close to the corners result in more accurate solutions. Nevertheless, 

the differences become negligible when a fine nodal grid is employed. 
In all the following examples, approximately 220 nodes per m2 (corre-
sponding to an internal nodal spacing equal to 0.067 m) are used.

4.2. Comparison with traditional analytical models

4.2.1. Simply supported panel
The first example is a simple rectangular wall panel. As shown in 

Fig. 11a, the wall is modelled as a single-leaf panel simply supported on 
three edges, with a free top edge. Differently from the example in the 
previous subsection, here different ℎ∕𝐿 aspect ratios are considered. 
Two possible fracture-line patterns are expected, depending on the ℎ∕𝐿
aspect ratio (Fig. 11b).

According to Roberts et al. [31], the generalized design bending mo-
ment 𝑚d for full panels can be expressed as follows:

𝑚d = 𝛼𝑊 𝜆f𝐿
2 (16)

where 𝛼 is the bending moment coefficient [31], Tables 8.4.1-21), which 
depends on: (i) the orthogonal ratio 𝜇; (ii) the aspect ratio ℎ∕𝐿; (iii) the 
boundary conditions. It should be noted that, to take into account the 
self-weight contribution when defining 𝛼, in [31] it is recommended 
that the orthogonal ratio is corrected as follows:

𝜇 =
𝑓k𝑥 +

𝛾ℎ

2
𝜆m

𝑓k𝑦
(17)



Computers and Structures 305 (2024) 107563

8

N. Grillanda, L. He, M. Gilbert et al.

Fig. 9. Simply supported panel: (a) sensitivity of collapse load (𝑊 ) to nodal spacing (𝑠𝑡𝑒𝑝) and comparison for different refinement along edges; critical DLO yield-
line pattern for (b) 𝑠𝑡𝑒𝑝edge = 𝑠𝑡𝑒𝑝internal and (c) 𝑠𝑡𝑒𝑝edge = 0.5𝑠𝑡𝑒𝑝internal .

where 𝑓k𝑥 and 𝑓k𝑦 are respectively the characteristic flexural tensile 

strength values in the 𝑥 and 𝑦 directions, 𝛾ℎ
2
represents the vertical stress 

at the mid-height of the panel, and where 𝜆m is the material partial 
safety factor. Also, the generalized design moment of resistance 𝑚r can 
be stated as follows:

𝑚r =
𝑓k𝑦

𝜆m

𝑡2

6
(18)

By combining Eqs. (16) and (18), it is possible to determine the mini-
mum thickness 𝑡 required to sustain a given load, or to determine the 
maximum out-of-plane load capacity if the thickness is given. It is conve-
nient here to express the load capacity as a function of a given thickness, 
since the latter depends on the size of the adopted masonry units as fol-
lows:

𝑊 =
𝑓k𝑦𝑡

2

6𝛼𝜆m𝜆f𝐿
2

(19)

where 𝑊 is the out-of-plane uniform pressure load at failure and 𝜆f
represents the partial safety factor on the loading, with a value of at 
least 1.0 indicating that the structure is safe.

Results obtained for different wall aspect ratios are reported in 
Fig. 12; the reader is referred to Table 1 for values of the governing 
parameters.

It is clear that the results obtained using the analytical and DLO 
methods are in reasonably good agreement, with the maximum per-
centage difference being 2.12%, for the ℎ∕𝐿 = 1.4 case. (Note that 

this discrepancy is principally a consequence of the approximate way 
in which self-weight effects are handled in the analytical model; e.g., 
whereas the vertical stress in reality varies with height, something that 
is captured in the DLO model, only the mid-height stress value is used in 
the analytical calculations.) The overall forms of the expected yield-line 
patterns are also approximately replicated via the DLO approach, e.g., 
when ℎ∕𝐿= 0.6 (albeit the DLO solutions often also include secondary 
yield-lines, improving the solutions slightly).

4.2.2. Panel with weak base shear joint
The example shown in Fig. 13 is used to investigate the potential for 

shear failure occurring at the base of the wall, e.g., if there is a weak 
layer at the base of the wall due to the presence of a DPC.

To analyse this case, for the sake of simplicity consider a horizontal 
fracture line of unit length at height 𝑦. The strip above the fracture line, 
denoted 𝐴∗, also has unit length and height ℎ∗ = ℎ −𝑦. If the unit weight 
is 𝛾 , the vertical stress is 𝜎𝑦 = 𝛾(ℎ − 𝑦) (assuming no additional vertical 
load is applied at the top of the wall). Given an out-of-plane load 𝑊 , the 
shear and bending moment at the fracture line are respectively equal to 
𝑊 (ℎ − 𝑦) and 𝑊 (ℎ − 𝑦)2∕2. By using Eqs. (7a) and (13), it is possible to 
derive the load required to induce failure due to shear (𝑊t ) or vertical 
flexure (𝑊m𝑥):

𝑊t =
𝑡

ℎ− 𝑦
𝑓v;

𝑊m𝑥 =
𝑡2

3(ℎ− 𝑦)2
(𝑓𝑥 + 𝜎𝑦)

(20)
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Fig. 10. Fixed panel: (a) sensitivity of collapse load (𝑊 ) to nodal spacing (𝑠𝑡𝑒𝑝) and comparison for different refinement along edges; critical DLO yield-line pattern 
for (b) 𝑠𝑡𝑒𝑝edge = 𝑠𝑡𝑒𝑝internal , (c) 𝑠𝑡𝑒𝑝edge = 0.5𝑠𝑡𝑒𝑝internal , and (d) 𝑠𝑡𝑒𝑝edge = 0.25𝑠𝑡𝑒𝑝internal .

Fig. 11. Simply supported panel: (a) geometry and boundary conditions; (b) expected crack patterns.
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Fig. 12. Simply supported panel: (a) comparison of collapse load values obtained via analytic procedure [31] and DLO for different aspect ratios; (b) representative 
identified critical yield-line patterns.

Fig. 13. Panel with weak base shear joint: geometry and boundary conditions.

where 𝑓v is defined as described in Eq. (15). The components 𝑓v and 
(𝑓𝑥 + 𝜎𝑦) are observed to be of the same order of magnitude. The ratio 
𝑡

ℎ−𝑦
depends on the geometry and is typically below 1.0 in the case 

of a slender panel. Since 𝑊m𝑥 is a function of the square of this ratio, 
this clearly indicates that slender panels are more vulnerable to bending 
failure.

In Fig. 14 values of 𝑊t and 𝑊m𝑥, evaluated according to Eq. (20), 
are compared. Specifically, the ratio 𝑊m𝑥∕𝑊t is given for a range of 
𝑡∕ℎ ratios, taking 𝛾 = 19 kN/m3 and 𝑓𝑥 = 𝑓v0 = 0.1 MPa. It is evident 
that the ratio is generally lower than 1.0 except near the top of the wall 
panel. Also, it is clear that the ratio is higher when the slenderness of the 
panel is low (albeit a ratio of 𝑡∕ℎ= 0.5 would be unusual in practice).

Fig. 14. Panel with weak base shear joint: 𝑊m𝑥∕𝑊t for different values of 𝑡∕ℎ
and 𝑦∕ℎ (assuming 𝛾 = 19 kN/m3; 𝑓𝑥 = 𝑓v0 = 0.1 MPa throughout - i.e., no 
weak joint in this case).

However, as previously indicated, shear resistance will often be 
much lower in the region of a DPC positioned near the bottom of a wall. 
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Fig. 15. Panel with weak base shear joint: (a) comparison of collapse load values obtained via analytical procedure [31] and DLO for different aspect ratios; (b) 
representative identified critical DLO yield-line patterns.

Fig. 16. Fixed wall panel with opening: geometry and boundary conditions.

In work presented by Mojsilovic in [56], it was found that DPC mem-
branes can result in joints with very low shear-bond strength (e.g., 0.04 
MPa) and/or coefficient of friction (e.g., 0.06). Also, a partial safety fac-
tor of 2.5 may typically be applied when determining the design shear 
resistance. Thus it seems justified to here assume a very weak shear joint 
at the bottom edge of the wall; a limit on the shear of 0.01 MPa has there-
fore been assumed. Fig. 15 shows DLO analysis results for various wall 
aspect ratios, considering a constant wall height (as in Section 4.2.1). 
In Fig. 15(a) results are compared to those corresponding to walls with-
out a weak joint, obtained both via DLO and via the analytical model 
proposed in [31]. From the results obtained it is evident that no shear 
failures are observed for low aspect ratios, with the failure mechanisms 

in this case governed by flexural yield-lines. However, when ℎ∕𝐿 ≥ 0.8, 
out-of-plane displacements occur at the bottom edge. The maximum re-
duction of out-of-plane resistance has in this case found to be 10.5%, 
though larger differences would be observed in the case of thicker wall 
panels.

4.2.3. Fixed panel with opening
Now consider a single-leaf wall panel containing a central opening, 

with fixed supports along its four external edges. As with the previous 
case, the size of the opening is parameterized with horizontal and ver-
tical dimensions equal to 𝑎 and 𝑏 respectively; see Fig. 16. Here two 
scenarios are considered: (i) the surface load is applied only to the wall 
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Fig. 17. Fixed panel with opening: conceptual scheme of the analytical method proposed in [31] in the case of a small opening.

Fig. 18. Fixed panel with opening - predetermined critical yield-line pattern: (a) overall geometry and boundary conditions; (b) associated deformed failure mecha-
nism; and (c) detail of the geometrical quantities involved in the analysis.

area (i.e., ℎ𝐿 − 𝑎𝑏), corresponding to the case when a horizontal body 
force derived from an earthquake is applied; (ii) the surface load is ap-
plied to the full enclosed area (i.e., ℎ𝐿), corresponding to the case when 
wind load is applied to a ‘window and frame system’, which can trans-
mit shear to the boundaries of the opening. In the analysis, the second 
scenario can be modelled by assigning additional out-of-plane line loads 
to the boundaries of the opening.

Whichever scenario is considered, according to Roberts et al. [31]
and Johansen [7], an approximated solution for the panel with open-
ing can be obtained from Eq. (19), on the assumption that: (i) the size 
of the opening is small; and (ii) the fixity of each edge is reduced pro-
portionally to the corresponding dimension of the opening (as shown in 
Fig. 17). Note however that for the ‘small opening’ case some details are 
missing, such as whether or not the load is assumed to be applied to the 
full enclosed area. Thus an additional reference solution is employed 
here to permit direct comparison with the DLO results. As suggested by 

Johansen [7], this reference solution is based on an a priori definition 
of the yield-line pattern, with an evaluation of the associated ultimate 
load established by balancing the external and internal work; the asso-
ciated equations are reported in Appendix A. However, this strategy can 
be a useful alternative to Eq. (19) when the opening cannot be consid-
ered small (i.e., for an opening between 5-25% of the panel area). The 
hypothesized yield-lines pattern design is depicted in Fig. 18, where ge-
ometrical parameters 𝑥∗ and 𝑦∗ must be determined via optimization. 
The evaluation of such a mechanism through minimization of the load 
factor, as a function of 𝑥∗ and 𝑦∗ (see Appendix A for details), has been 
computed here using a simple MATLAB [62] script.

Unlike the examples considered in Section 4.2.1, here the overall 
size of the panel has been kept constant, whereas the opening dimen-
sions have been varied (see Table 1). The opening has initially been 
assumed to have a 1:1 aspect ratio, with the opening area varied be-
tween 0.4% and 25% of the full area. Moreover, to facilitate direct 
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Fig. 19. Fixed panel with opening - results for ℎ∕𝐿 = 1, 𝑎∕𝑏 = 1, 0 < 𝑎𝑏 ≤ 0.5ℎ𝐿, with self-weight effects neglected: (a) comparison of collapse load values; (b) 
comparison of critical yield-line patterns for various opening sizes (expressed as a % of the enclosed wall area).

comparison with the equations reported in Appendix A, self-weight has 
initially been neglected in both the analytical and numerical models. 
Results are presented in Fig. 19.

It is evident from Fig. 19a that the DLO solutions follow a similar 
trend to Johansen’s, but since they correspond to more refined yield-
line layouts, they are more conservative. On the other hand, the [31]
solutions obtained via Eq. (19) follow a markedly different trend for 
the first load condition considered (involving applying body forces), 
though a more similar one for the second (involving wind pressures). 
This is likely because the approximations underpinning the method are 
inappropriate in the former case, when the opening size is not negligi-
ble.

Next, results obtained when self-weight effects are now included, for 
a range of opening aspect ratios, are presented in Fig. 20. It is evident 
that the DLO solutions are still generally similar to Johansen’s, though 
are more conservative since the corresponding failure mechanisms are 
more accurate. Larger differences are observed for smaller opening as-
pect ratios, e.g., the 𝑎∕𝑏 = 0.25 case. Again, this is reflective of the 
more accurate yield-line patterns obtained via DLO, compared with the 
pre-assigned pattern.

4.3. Chong’s walls

The example walls studied in this section have been selected from 
the experimental programme of tests presented by [32] and [63]. Here 
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Fig. 20. Fixed panel with opening: (a) capacity 𝑊 when only wall area loaded; (b) capacity 𝑊 when full enclosed area loaded. Results shown for ℎ∕𝐿 = 1, 0.25 
≤ 𝑎∕𝑏 ≤ 4, 0 < 𝑎𝑏 ≤ 0.5ℎ𝐿.

a selection of the single leaf, stretcher bonded (‘SB’) walls described by 
Chong are used as benchmarks for the DLO limit analysis procedure; 
these walls have also been used to validate other numerical models in 
recent years (e.g., [42,64,43,65,66,48,67,68]. The geometry and bound-
ary conditions of the walls are shown in Fig. 21. According to [32], these 
test wall panels were built using Class B bricks; flexural strengths were 
determined from experiments and are presented in Table 1.

When compared with experimental results, approaches based on 
yield-line theory can be expected to overestimate the collapse load 
somewhat, even if the collapse mechanism is well represented. This 
is not only because the kinematic multiplier is by definition an upper 

bound on the actual collapse multiplier, but also due to the quasi-brittle 
behaviour of masonry [13]. This contrasts with the perfect plasticity as-
sumed at flexural hinges according to yield-line theory, and which is a 
hypothesis that is fundamental to the formal limit analysis theorems 
of plasticity. No attempt to model post-cracking behaviour has been 
made here, e.g., as was recently undertaken using a non-linear kine-
matic analysis in [15]. Also, whereas a fixed boundary was indicated 
to be present at the bases of the experimental walls (in [32] it is sug-
gested that rotation at the bottom edge of each wall was constrained 
by filling the gaps between the sides of steel channel sections and the 
masonry with mortar), the likelihood of the bottom edge being capable 
of transmitting the full plastic moment in practice appears low. Thus a 
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Fig. 21. Chong’s walls: geometry and boundary conditions of selected wall panels. All dimensions in metres (after [32]).

Fig. 22. Chong’s walls: example failure mechanisms from [32], shown with the corresponding DLO results. Corresponding out-of-plane loads at failure 𝑊 are shown, 
with differences between DLO and experimental loads indicated.
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Fig. 23. Gable walls - geometry and boundary conditions: (a-c) walls with various boundary conditions; (d) wall with pitch; (e) wall with pitch and multiple openings. 
All dimensions are in metres.

partial base fixity case was also considered in the numerical analyses un-
dertaken, in addition to the fully fixed case. Results obtained using the 
DLO analysis model are presented in Fig. 22 along with corresponding 
experimental results, considering both collapse loads and fracture-line 
patterns.

It can be observed from Fig. 22 that reasonably close estimates of the 
experimental load can be obtained when the bottom edge is assumed to 
be partially fixed, with a maximum difference between experimental 
and numerical load values of 8.64%, occurring in the case of wall SB04. 
The yield-line patterns were also found to be in better agreement with 
the experimentally observed fracture-lines when the bottom edge was 
assumed to be partially fixed. Note that all walls were observed to fail via 
formation of flexural fracture-lines, with no shear or torsional failures 
observed, either experimentally or in the numerical models. However, as 
expected, there are clearly some differences between the experimental 
and numerical results. One issue is that in the DLO model the bend-
ing resistance of an inclined yield-line (Eq. (11)) is analytically defined 
without taking the actual masonry texture into account; the develop-
ment of a homogenized DLO model for the out-of-plane behaviour of 
masonry is currently a work in progress.

4.4. Gable walls

In this section, various wall panels with more complex geometries 
are considered. Specifically, taking inspiration from the geometries of 
walls frequently encountered in the UK, various gable wall examples 
are considered in order to further explore the range of applicability of 
the proposed DLO modelling approach.

The adopted gable wall geometries are presented in Fig. 23; the flex-
ural strength values and partial safety factors adopted in Section 4.2.1
are again assumed here (see Table 1). The walls shown in Fig. 23(a)-
(d) are assumed to be 102.5 mm thick, whereas the wall in Fig. 23e is 
assumed to be 215 mm thick.

Firstly, results obtained from the analysis of the walls presented in 
Fig. 23(a)-(d) are compared with those obtained using the analytical 

model proposed in [31]. However, in the latter case, due to the nature of 
the geometry, Eq. (19) is applied by assuming an equivalent rectangular 
domain characterized by an average value of ℎ, following the suggestion 
made in [31]. Results are presented in Fig. 24. It is evident that whereas 
in the case of the walls presented in Fig. 23(a) and (d), the differences 
between the experimental and analytical collapse loads are quite small 
(with a 3.9% lower collapse load value provided by DLO in the case 
of the wall presented in Fig. 23(d)), in the case of the walls presented 
in Fig. 23(b) and (c) the differences are larger (with a 19.4% lower 
collapse load value provided by DLO in the case of the wall presented 
in Fig. 23(c)).

Secondly, the wall presented in Fig. 23(e) is considered. In this case, 
given the presence of multiple openings, it is not possible to apply a 
simple analytical model with confidence. In contrast, the automated 
DLO procedure can be applied to problems of arbitrary geometry with-
out difficulty. For this problem a nodal spacing of 0.067 m is again 
employed, leading to a discretization comprising 5967 nodes in total. 
Results are presented in Fig. 25, with the load either applied only to the 
exposed wall area or to the full enclosed area; the corresponding col-
lapse loads are 0.311 and 0.259 kN/m2 respectively. The corresponding 
yield-line patterns are almost identical. No shear or torsional failures 
are evident.

It is worth noting that although the failure mechanism obtained for 
the wall presented in Fig. 23(e) turned out to be relatively simple, and 
therefore possible to analyse by hand, identifying this by hand via a trial-
and-error procedure would nevertheless be challenging for a geometry 
of this complexity, with a non-conservative estimate of load capacity 
obtained if the critical mechanism was missed. The proposed DLO ap-
proach avoids this by automatically identifying the critical yield-line 
pattern and the associated load multiplier, with the process taking a 
matter of a few seconds on a modern desktop PC.
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Fig. 24. Gable walls, cases (a)-(d): predicted DLO failure mechanisms (left) and corresponding analytically assumed mechanisms (right), applied using an equivalent 
geometry (after [31]; the extents of the actual geometries are indicated by dashed lines). Corresponding out-of-plane loads at failure 𝑊 are also indicated.

5. Conclusions

A new limit analysis procedure for computing the maximum out-
of-plane load that can be sustained by masonry cladding panels has 
been presented. This uses the powerful discontinuity layout optimiza-
tion (DLO) procedure, previously successfully applied to various other 
engineering problems. With DLO, a given problem is discretized using 
nodes interconnected by potential yield-lines. Three kinematic variables 
are assigned to each: normal rotation, twisting rotation and shear dis-
placement. This results in a linear programming (LP) problem where 
the objective is to identify the multiplier on the applied out-of-plane 
loading, balancing external and internal work and evaluating internal 
energy dissipation using the hypothesis of perfect plasticity. Solving the 
LP problem furnishes a set of values for the kinematic variables, with 
non-zero values corresponding to active fracture lines in the critical fail-
ure mechanism, together with the collapse load multiplier.

The proposed method involves enriching classical yield-line theory, 
which describes the failure mode in terms of mutual normal rotations 
only, by also including possible shear and torsional failures. The main 
mechanical properties of masonry are taken into account by defining 
plastic moment and shear capacities as functions of the vertical load. 
Plastic moment capacity calculations can be modified to account for 
the presence of double-leaf or hollow block masonry panels. Moreover, 
the procedure is fully automatic and suitable for application to highly 
irregular geometries.

Several example problems have been used to demonstrate the effi-
cacy and potential of the DLO analysis procedure, including wall prob-
lems also solved via analytical means, walls tested in the laboratory, and 
more geometrically complex gable walls containing multiple openings. 
The DLO solutions obtained have been found to be in good agreement 
with analytical solutions, except in cases where approximations inherent 
in the latter furnished over-conservative results. Generally reasonable 
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Fig. 25. Gable wall with multiple openings: (a) critical yield-line patterns and associated deformed failure mechanisms when only the wall-area is loaded; (b) situation 
when the full gable area is loaded. Corresponding out-of-plane loads at failure 𝑊 are also indicated.

agreement with experimental results was also observed. Finally, when 
applied to the analysis of irregular gable wall geometries, it was ob-
served that the DLO procedure makes it possible to model problems that 
are difficult, if not impossible, to analyse via traditional hand analysis 
methods.

Future research will focus on applying the DLO procedure to the 
out-of-plane analysis of historic masonry structures, where the bond 
strength of the mortar adhering the masonry units may be very low or 
non-existent. For such cases, homogenization techniques capable of tak-
ing account of the actual masonry texture will be employed, with both 
planar and curved masonry elements considered.
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Appendix A. Johansen’s equations for a domain with an opening

Consider a square domain with a rectangular opening, where, for the 
sake of simplicity, the presented equations refer to the case where self-
weight is neglected. Thus, the panel can be considered to be symmetrical 
about two orthogonal axes, with the analysis reduced to a quarter of the 
actual domain (see Fig. 18c):
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𝐵1 =𝐿− 𝑎, 𝐵2 =𝐿+ 2𝑎− 2𝑥∗,

𝐵3 =𝐿+ 𝑎− 2𝑥∗, 𝐵4 =𝐿− 𝑎− 2𝑥∗

𝐶1 = ℎ− 𝑏, 𝐶2 = ℎ+ 2𝑏− 2𝑦∗,

𝐶3 = ℎ+ 𝑏− 2𝑦∗, 𝐶4 = ℎ− 𝑏− 2𝑦∗

𝐷 =
√
𝑥∗2 + 𝑦∗2

(A.1a)
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𝑙24 =𝐷, 𝑙3 =
ℎ

2
− 𝑦∗ (A.1i)

{𝑥∗, 𝑦∗} = argmin𝑊

=
𝑚p𝑥𝜃1𝑙1+𝑚12𝜃12𝑙12+𝑚23𝜃23𝑙23+𝑚24𝜃24𝑙24+𝑚p𝑦𝜃3𝑙3

𝐴1𝛿1+𝐴2𝛿2+𝐴3𝛿3+𝑎𝑏𝛿∕4
(A.1j)

where the constants in (A.1a) have been introduced to simplify the sub-
sequent expressions, and 𝛿 is the maximum out-of-plane displacement 
assigned along the opening perimeter. The quantity 𝑎𝑏𝛿∕4 in the de-
nominator of the objective function represents the work done by the 
unit surface load applied to the opening perimeter, which is omitted 
for some load cases. By varying the geometrical parameters 𝑥∗ and 𝑦∗

the minimum load factor can be determined, achieved here by using 
a specially written MATLAB [62] script. The results obtained provide 
analytical benchmarks against which DLO solutions can be compared.
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