
This is a repository copy of A Tour Through the Programming Choices:Semantics and
Applications.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/219956/

Version: Accepted Version

Book Section:

Ribeiro, Pedro orcid.org/0000-0003-4319-4872, Ye, Kangfeng, Zeyda, Frank et al. (1 more
author) (2024) A Tour Through the Programming Choices:Semantics and Applications. In:
Foster, Simon and Sampaio, Auguto, (eds.) Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) . Springer Science and Business Media
Deutschland GmbH , pp. 261-305.

https://doi.org/10.1007/978-3-031-67114-2_11

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A tour through the programming choices:

semantics and applications

Pedro Ribeiro1[0000−0003−4319−4872], Kangfeng Ye1[0000−0003−2460−7926],
Frank Zeyda2[0009−0009−4251−4740], and Alvaro Miyazawa1[0000−0003−2233−9091]

1 Department of Computer Science, University of York, York, YO10 5GH, UK
{pedro.ribeiro,kangfeng.ye,alvaro.miyazawa}@york.ac.uk

2 Independent Researcher, Zapopan, Mexico
https://www.linkedin.com/in/frank-zeyda/

frank.zeyda@gmail.com

Abstract. The discipline of programming, as Edsger Dijkstra would
call it, has provided a formal basis for the study of programs where
choices are not necessarily deterministic. That is, despite reservations
from pioneers, like Tony Hoare, about the inclusion of nondeterministic
behaviour in a program. For over 65 years, nondeterminism has played
an important role in modelling and reasoning about programs. More-
over, there are at least two major flavours: angelic and demonic. Further
programming choices, such as preferential and probabilistic, have been
proposed to capture other important phenomena, for example, in the
context of cyber-physical systems, distributed systems, and cryptogra-
phy. In this chapter, we provide a critical account of these programming
choices and their semantics, and discuss their applications. Our account
focuses mainly on denotational semantics, and in particular relational
models, as is fitting in honour of Jim Woodcock. We discuss approaches
based on, or inspired by, weakest preconditions semantics and alphabe-
tised relations, as found in the Unifying Theories of Programming (UTP).
They are at the core of the semantics of notations such as Z and Circus,
and extensions to deal with time and probabilities. Some of the ideas
discussed here have been developed in close collaboration with Jim.

Keywords: programming · semantics · choice · relations · refinement ·

UTP

1 Dedication

The authors met Jim Woodcock at York in the early 2000s. Pedro first heard
about the UTP as an MEng student when he had the privilege to attend Jim’s
lectures on the topic in the Summer of 2010. Kangfeng’s academic career began
from when he came to study for his PhD at York in 2012 under Jim’s supervision.
While his industry background was in embedded systems, Jim taught him a
lot about formal methods. He then worked closely with Jim on probabilistic
semantics and verification in various RoboStar projects. Alvaro first heard of
Jim’s work during his undergraduate degree when he read Jim’s excellent book

2 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

“Using Z: Specification, Refinement, and Proof”, which boosted his interest in
formal methods. Since then, he had the pleasure of attending several talks by
Jim. Frank first met Jim at ZB 2002 and also later at the first symposium
on Unifying Theories of Programming that he helped to organise in 2006. He
was so taken by Jim’s enthusiasm and didactic talent to explain difficult topics
in intuitive and accessible ways that he did not think twice when offered the
opportunity to work in Jim’s research group at York after completing his PhD.

The authors have greatly benefited from Jim’s inspiration and mentorship.
Thank you, Jim!

2 Introduction

The mathematical rigour advocated by programming pioneers, like Dijkstra and
Hoare, has greatly influenced how modern software engineering is approached.
In [175] Woodcock et al. provide one of the most comprehensive reviews on the
application of formal methods in industry. In recent years, household names such
as Amazon, Facebook, and Microsoft, have quietly propelled formal methods to
the forefront of their software engineering processes. In the domain of robotics
and autonomous systems, however, their wider adoption is more challenging [57].
The mix of concerns, including discrete, continuous, timed and probabilistic
phenomena, requires a reconciliation of formalisms for holistic system reasoning.

The unification of formalisms and their semantics has been at the forefront
of much of Woodcock’s research agenda [170], leveraging the pioneering work
of Hoare and He [79] on the alphabetised relational calculus. In the UTP, pro-
grams, or relations, are specified via predicates where refinement gives rise to a
lattice. It is convenient to model recursion, via fixed points, and demonic non-
determinism via the greatest lower bound. However, the latter is but one kind of
nondeterministic choice, with other interpretations possible to model backtrack-
ing algorithms [45], namely as found in monotonic predicate transformers [8].

Similarly, probabilistic programs, widely used to model randomisation al-
gorithms using probabilistic choice to simplify algorithms and improve perfor-
mance, can be captured in both relational models [64,66,92] and predicate trans-
formers [103,115]. Whether or not nondeterministic choice is supported and how
it interacts with probabilistic choice is the most significant difference between
different probabilistic models. A systematic account of predicate transformers
is given by McIver and Morgan [102] for sequential and probabilistic programs.
Here, in contrast, we are also interested in the study of choices for process calculi.

A somewhat lesser known and semantically more elusive notion of choice
is that of preference. We think of the preferential choice S ≫ T as a kin of
nondeterminism S ⊓ T that prefers its first program S , provided that such
turns out to be feasible3. While there exist several semantic investigations into
preferential and prioritised choice, it can be shown that our notion of preference
with its desired algebraic properties cannot be formally described using standard

3 Feasible has a mathematical meaning here that we will elaborate on in Section 3.3.

A tour through the programming choices: semantics and applications 3

predicate transformers. In [187] we show how a theory of expression transforms
can capture the meaning of preference in terms of the prospective value of a given
computation. This approach opens the doors for a whole new program model
outside wp: that of preferential computations.

Weakest precondition (wp)

UTP alphabetised
relations

Probabilistic predicate-transformer

UTP designs

Probabilistic designs

Probabilistic Predicative
Programming (Hehner)

Probabilistic Unifying
Relations

Predicate-transformer

Relational

Weakest Pre-expectation

Reactive designs

CSP Circus Z

Prospective Value Semantics

Conjugate weakest precondition (cwp)

RoboChart

Angelic designs

Reactive angelic
designs

Binary multirelations

Angelic processes

Predicative binary
multirelations

F

B

A

N

B F

B B

B

A

A

A

N

N

A

N

N N

Legend

N

A

F

B

Nondeterministic choice
related, introduced in §3.1
Angelic choice related,
introduced in §3.2
Preferential choice related,
introduced in §3.3
Probabilistic choice related,
introduced in §3.4

N

Fig. 1. Hierarchical structure of theories and formal notations, where arrows loosely in-
dicate theory dependencies and influences. RoboChart, a notation for design of robotics
software discussed in this chapter, has process-algebraic and probabilistic semantics.

In Figure 1 we provide an overview of all the semantic models we consider
in our discussion, and how they loosely relate to, or have influenced, each other.
The top-half concerns predicate transformers, whereas the bottom-half concerns
(multi)relational models. At the bottom, we highlight in purple RoboChart [110],

4 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

a domain-specific notation for formal modelling of robotic controllers, considered
as an application in Section 4.2, and in light-yellow the formal notations that
underpin RoboChart. Solid arrows denote dependencies between theories, while
dotted lines indicate the theories on which RoboChart directly depends.

This chapter’s aim is to study and contrast different key notions of program-
ming choices: demonic, angelic, external, preferential and probabilistic, and their
fundamental properties. This includes discussions of how these choices may be
characterised in different semantic models. We also sketch how they can be used
to model different phenomena relevant to cyber-physical systems. In particular,
we propose a novel process algebraic model for a co-simulation master algorithm,
discuss the role angelic choice could play in the design of robotic controllers, and
consider the modelling of random walkers using probabilistic choice.

In the spirit of some variants of modern literature, readers are not required
to read the paper from start to finish but skip and jump to sections that mostly
spark their interest, guided by Figure 1. The key notions of choice, namely
nondeterministic, angelic, preferential, and probabilistic have each a dedicated
subsection in Section 3, and we strove to make these sections self-contained.

The chapter is structured as follows. In Section 3, we provide an account
of the examined programming choices, namely by discussing semantic models
suitable for characterising choices in sequential programs and process calculi.
Then, in Section 4, we sketch their novel applications. Finally, we conclude in
Section 5.

3 Programming choices

In this section, we address nondeterministic, angelic, preferential and probabilis-
tic choices and discuss their semantics in the context of a variety of semantic
frameworks, including UTP and the wp-calculus. While Figure 1 gave us the big
picture of the relationships between programming choices and semantic models,
here we shall delve deeper into the intuitive understanding of these choices, and
if and how they can be expressed in various semantic models and frameworks.

3.1 Nondeterministic choice

The ability to write programs that can lead to different executions when started
from the same state did not feature in the early theories of computation. Pi-
oneers [36, 87], including Turing [160], focused their attention on deterministic
machines [3,4], perhaps with good reservations as Dijkstra later quoted Hoare’s
observation that:

“A system which permits user programs to become non-deterministic
presents dreadful problems to the maintenance engineer: it is not a ‘fa-
cility’ to be lightly granted.” [39, p.12]

Nondeterminism, however, is at the core of computer science, crucial in account-
ing for uncontrollable phenomena, and particularly elegant for capturing many

A tour through the programming choices: semantics and applications 5

computational paradigms. It is perhaps not so surprising then, that Rabin and
Scott [134] considered nondeterministic automata. In that setting, nondetermin-
ism does not confer extra expressiveness as the power set construction shows,
but it can be advantageous in the number of states required. Similarly, context-
free grammars allow for nondeterminism in rule application [30]. Importantly, in
those models, language acceptance merely requires reaching an accepting state.

Imperative The earliest use of nondeterminism in a program is due to Mc-
Carthy [101], who proposed an ambiguity operator amb(x , y) that nondetermin-
istically returns the values of defined expressions x or y . This would be used to
define “computably ambiguous functions” and influence dialects [1,185] of Lisp.

In a different vain, Floyd [45] proposed a nondeterministic assignment that
allows for an elegant characterisation of computations that would otherwise re-
quire explicit backtracking, such as the eight-queens problem. Novel contribu-
tions included the annotation of failure and success points in a program.

Dijkstra would eventually embrace nondeterminism in his language of guarded
commands [40] (GCL) after overcoming a “considerable mental resistance” [39,
p.12]. The semantics of commands is given using the wp calculus, where wp(S ,R)
defines for a post-condition R and command S , the weakest pre-condition that
must be satisfied in order for execution of S to terminate and establish R.

Importantly, Dijkstra would observe the “Law of the Excluded Miracle”, by
requiring that wp(S ,F) = F , and consider conjunctive, rather than arbitrary,
predicate transformers. Thus, in that context it is impossible to entertain a
program that achieves either outcome as long as one is individually achievable.
Consider the program P = x := 1⊓x := 2 that has a choice (⊓) between assigning
(:=) the value 1 or 2 to a variable x , then we have that wp(P , {x = 1 ∨ x = 2})
is achievable from any state, yet both wp(P , {x = 1}) and wp(P , {x = 2}) have
infeasible preconditions. In that setting, choice is demonic following Dijkstra’s
allegory of a “daemon [that] decides quite arbitrarily” [38, p.7].

The notion of demonic nondeterminism is in stark contrast with Floyd’s
choice points, that, by analogy, take the angelic view. While the treatment of
both notions within a single framework is explored further in the next section,
they played important roles in the refinement calculus of Back [8], Morgan [112]
and Morris [117]. In particular, the adoption of the ‘Miracle’ would allow the
definition of complete lattices. Woodcock would not only write a tutorial on this
topic [167], but also discuss how to apply refinement in Z [166]. Such ideas would
later be applied in the formalisation of the Mondex smart card, which achieved
ITSEC Level E6 [31, 176], but not before Woodcock found that Z proof rules
were incomplete as elegantly detailed in [152]. This led to the development of
backward refinement rules. The Mondex would be one of the first projects to
be tackled in the Grand Challenge in Verified Software [84] initiated by Hoare.
Freitas and Woodcock would later mechanise their proofs using Z/EVES [52].

Process calculi When Hoare proposed Communicating Sequential Processes
(CSP), he adopted Dijkstra’s GCL as the “sole means of introducing and control-
ling nondeterminism” [77]. This seminal work spurred an interest in the study

6 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

of the semantics of CSP, some of which we cover in further detail. Importantly,
in contrast with CCS [108] and ACP [13], CSP has a theory for refinement.

One of the earliest denotational models for CSP was proposed by Francez
et al. [51] based on history trees, where two types of determinism are explicitly
distinguished: local, where a process can decide which value to communicate,
and global, that depends on the interaction with other processes. This distinc-
tion would later lead to the consideration of two distinct choice operators over
processes: internal choice (⊓), that decides irrespective of interaction with the en-
vironment; and external choice (@) that allows a process’ environment to choose.
An example from [51] is recast using these operators and a typed channel e:

Example 3.1. P = (a → e?x → Skip @ a → e!0→ Skip) J {e} K e!1→ Skip

Q = (e?x → Skip @ e!0→ Skip) J {e} K e!1→ Skip

Here, process P is defined by a parallel composition (J . . . K) of two processes
synchronising on channel e, but where event a can happen independently. The
left hand-side process has a choice (@) between a prefixing (→) on event a,
followed by an input (e?x) on e and terminating (Skip), or, similarly, after a
communicating the value 0 via e, and then also terminating. The right hand-side
process, however, can only agree on the value 1 being communicated (e!1) via e.
We observe that in this case the external choice is actually nondeterministic, as
the algebraic laws can show [143], and so P can enter in deadlock. In contrast,
process Q does not deadlock, given that the choice can always be resolved.

In [78] Hoare considered a denotational model based on traces, that is, the
sequences of events a process can perform, restricted to deterministic processes.
Traces, however, are inadequate for distinguishing internal and external choice
and for preserving liveness, for example, by having deadlock as the maximally
refined process. Addressing this, a failures semantics would later be considered
by Brookes et al. [16], where in addition to traces, the events refused at the end
of every trace are also recorded. Related, De Nicola and Hennesy [123] would
identify that failures refinement coincides with must-testing in CCS.

Refinement in the failures semantics, defined simply by (reverse) subset in-
clusion, similarly to traces, gives rise to a partial order where deadlock is no
longer the maximally refined process. Instead, however, a process that can only
perform a sequence of internal events is maximally refined. Such behaviour can
easily be introduced in CSP via hiding (\) the event of a guarded recursion. For
example, if we let R = a → R and then consider S = R \ {a}, then S would
have no stable failures, and hence would be maximal in the refinement order.
To overcome this, Roscoe et al. [143] would propose the failures-divergences se-
mantic model, where S is considered to be divergent, that is, the bottom in the
refinement order, given that it cannot provide any guarantees on its behaviour.

UTP Total correctness, as found in wp, would be recast as a theory of de-
signs [171] in the Unifying Theories of Programming (UTP) of Hoare and He [79],
a framework of alphabetised relations, in the style of Hehner’s predicative pro-
gramming approach [65], proposed as a sound basis for studying several program-

A tour through the programming choices: semantics and applications 7

ming paradigms. Although only published in book form in 1998, the UTP would
play a central role in Woodcock’s contributions [174] in the following decades.

In the UTP, theories are characterised by three components: an alphabet,
that defines the variables considered in a relation; a signature; and a set of
healthiness conditions, usually defined by monotonic and idempotent functions
over predicates whose fixed points define the valid predicates of a theory. The
refinement order is defined by the universally quantified reverse implication of
predicates, and gives rise to a complete lattice with false as the top element,
allowing no observations, and true as the bottom, allowing any observation.
Importantly, demonic nondeterminism is captured via the greatest lower bound.

Designs As observed by Hoare and He, relations are unsuitable, on their own,
to define a model of total correctness, and so the theory of designs employs
an auxiliary variable ok ′ that records whether a program has terminated, and
similarly an undashed version, ok , records whether the current program has
started. The simplest design is therefore ok ⇒ ok ′, equivalently stated using
Hoare and He’s turnstile notation as true ⊢ true, that when started terminates
successfully: its pre- and postcondition are both true. The above form rules out
explicit non-termination (¬ ok ′) or the ability to state anything about program
variables before a program starts (¬ ok). This is captured by two healthiness
conditions H1 and H2 [79,172]. Another two optional conditions are considered:
H3, that rules out designs that can make final observations without terminating;
and H4, that rules out miraculous designs. H3-healthy designs correspond to
(conjunctive) predicate transformers [25], while miracles allow the specification
of assumptions and play an important role [169] in theories that we discuss next.

Reactive designs Amongst the process calculi studied in the UTP, Hoare and
He would propose a recast of CSP [23, 79] via a theory of reactive processes
that considers auxiliary variables tr , that records the trace of events, and wait ,
that records whether a process is waiting for an interaction with its environ-
ment. The key result is that the semantics of CSP processes can be defined
as the image of designs through the application of the healthiness condition
R for reactive processes, that is, using pre- and postconditions. For example,
R(true ⊢wait ′ ∧ tr ′ = tr) deadlocks by stating that the process waits and keeps
the trace unchanged. Importantly, reactive designs don’t satisfy H3, as there can
be intermediate interactions irrespective of termination in the reactive paradigm.
Canham and Woodcock [20] would refer to a postcondition where wait ′ is true as
the pericondition, emphasising the intermediate nature. Foster et al. [47] would
provide a systematic account of all three pre-/peri-/post-conditions of reactive
contracts in their Isabelle/UTP [46,50] mechanisation.

Circus The combination of state-based formalisms and process calculi has re-
ceived much attention [18,44,144,151]. Circus is a combination of Z and CSP, in-
corporating Dijkstra’s guarded commands and Morgan’s specification statement,
with a UTP semantics [127] given via reactive designs. It targets refinement [22]
and has been exploited in the context of industrial and safety-critical applica-

8 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

tions [126, 168]. Woodcock and others would consider extensions of Circus to
cater for other phenomena, such as time, by exploiting its UTP semantics.

One of the earliest works on Circus Time is that of Adnan and He [149,150].
The semantics is given via reactive designs using a model of failures within
a sequence of discrete time units. A similar structure would be exploited for
slotted-Circus by Butterfield et al. [19], that can be captured via a generali-
sation [139] of Foster et al.’s trace algebra [48]. Importantly, reactive miracles
would allow Wei et al. [164] to capture deadlines, by pruning periconditions once
a deadline has been reached, thus making interactions urgent. Refinements that
meet their deadlines more tightly than specified are non-urgent, in the same way
that a design is non-miraculous in an environment that meets its assumptions.

3.2 Angelic choice

Amongst the pioneers [30, 146], Floyd [45] is perhaps first in employing nonde-
terminism as a specification mechanism abstracting away from implementation
details of backtracking algorithms. This view would be used by Cook [32] to
characterise the class of NP problems. The use of both angelic and demonic
nondeterminism (alternation) would be considered for Turing machines in [27].

Imperative The earliest use of the term angelic seems to be due to Broy and
Wirsing [17], who studied four types of nondeterminism via algebraic data types.
However, they refer to unbounded nondeterminism as angelic, and demonic as
backtracking [90], in contrast to recent works. Angelic choice has found use in:
parsing [70], modelling of game-like scenarios [8], proof tactics [99, 125], con-
straint [82] and logic programming [91], and in conformance relations [21].

Hesselink [71] would propose a subsumption of the GCL to cope with the
semantics of recursion. As Dijkstra points out [41], Hesselink would further study
its operational semantics [74] and consider an extension with angelic choice [72].
Dijkstra’s work [41] on reasoning about UNITY [28] via arbitrary monotonic
predicate transformers also considers both demonic and angelic choices.

Refinement calculus Back and von Wright [8] extensively studied sublattices,
where choice can be angelic or demonic. The lattice of monotonic predicate
transformers is the most important, where angelic choice and demonic choice
are duals in the lattice. Related, angelic choice has also been used by Gardiner
and Morgan [54] to formalise logical variables, which is central to their calcula-
tional data-refinement approach, for example, by allowing the postcondition of
a specification statement to refer to the initial value of program variables. Ward
and Hayes [163] would emphasise in their work, that the angelic choice of the
refinement calculus can “look ahead” and avoid aborting, if at all possible.

Multirelations In theories of total correctness, such as in Z and VDM [85], it is
natural to model computations via relations. However, as observed by Rewitzky
and Brink [138], and later Back and von Wright [8], relations can only capture
one type of nondeterminism, either angelic or demonic, but not both. Instead,

A tour through the programming choices: semantics and applications 9

binary multirelations [100, 137], that is, relations between a state and a set of
states, can be used to model both: the set can be understood to model angelic or
demonic choices, while the relation models the dual, respectively. As observed
by Hesselink [73] multirelations are equivalent to one of the constructions of
the Free Distributive Completion (FDC) of the state space, originally studied
by Morris [118]. More recently, Furusawa et al. [53] have extensively studied
multirelations to provide an algebraic account of concurrent dynamic logic [129].

Process calculi As mentioned, in the UTP, demonic nondeterminism is cap-
tured by the greatest lower bound of the lattice. Because it is a theory of rela-
tions, it cannot capture both forms of nondeterminism, as established by Cav-
alcanti et al. [25] who show that, in general, UTP relations are isomorphic to
conjunctive predicate transformers. They also consider a predicative encoding
of upward-closed binary multirelations, as non-homogeneous alphabetised rela-
tions, that is shown isomorphic to arbitrary monotonic predicate transformers.
Importantly, it is a theory of designs that satisfies H3, and so it is inadequate
to give a treatment of angelic choice for reactive designs and process calculi.

Ribeiro and Cavalcanti [142] would study this problem further. First, they
generalised the predicative encoding of binary multirelations to consider non-
H3 angelic designs, and showed that theory to be isomorphic to an extended
notion of upward-closed binary multirelations where the target type includes the
option of non-termination [141]. Secondly, they used that encoding to study the
operators of CSP, recast in a theory of reactive angelic designs [140], and their
interplay with angelic choice. In that theory, angelic choice can avoid immediate
divergence, by satisfying the following law: (Stop ⊔ Skip) ; Chaos = Stop where
⊔ is angelic choice, defined as the least upper bound of the lattice, and ; is
sequential composition. That is, the angel can choose to deadlock (Stop), rather
than diverge (Chaos). However, interactions cannot be eliminated in the same
way, even if they could to lead to a divergence, as can be seen from the example:

Example 3.2. (a → Skip) ⊔ (b → Chaos) = (a → Skip) ⊔ (b → Choice)

where a and b are different events. Here, the divergence is avoided by behaving
as the most nondeterministic process that does not diverge (Choice).

As it turns out, the standard healthiness conditions of reactive processes insist
on extension of traces (i.e. no backtracking), and thus disallow any pruning of
interactions that could lead to divergence. Instead, [142] considers a theory of
angelic processes that does not insist on trace extension. In that context, the
following law holds: a → Chaos ⊔ b → Skip = b → Skip. That is, the prefixing
on a can be eliminated, given that it would lead to a divergence. In that theory,
imposition of the standard healthiness conditions, can be used to scope the level
of ‘backtracking’ similarly to a cut operator.

Related, Tyrrell et al. [161] have proposed an axiomatization of CSP, where
external choice is referred to as angelic, but where deadlock is indistinguishable
from divergence. Roscoe [143] has considered an alternative to external choice
via operational combinator semantics of CSP, where, however, the possibility of
divergence has no effect on ‘backtracking’.

10 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

3.3 Preferential choice

In comparison to other forms of choice discussed in this chapter, preferential
choice is a slightly odd companion: it is asymmetric, non-monotonic, and cannot
be expressed in the theory of predicate transformers. Intuitively, a preferential
choice S ≫ T behaves like S as long as S and its continuation is feasible,
meaning non-miraculous. It only behaves like T if selection of S results in a
miracle further down the line. To illustrate this, we consider the computation:

(x := 1 ≫ x := 2) ;U

Assuming we have fis(U) ≡ true4, meaning that U is feasible from all initial
states5, S behaves similar to x := 1 and thus in a deterministic fashion.

However, let us assume U becomes infeasible in a state where x = 1. The
guarded computation x ̸= 1 −→ skip precisely exhibits such behaviour. Then,
we have that

(x := 1 ≫ x := 2) ; x ̸= 1 −→ skip

becomes equivalent to x := 2. This behaviour of choosing the second alternative
when the first one leads to infeasibility is reminiscent of (standard) nondeter-
ministic choice S ⊓ T and holds there too. We are likewise entitled to refine
the second operand T of a preferential choice to obtain a refinement of the en-
tire construct, hence preference shares some semantic properties and traits with
nondeterminism. However, things get hairy when we are trying to refine the first
operand, which is where monotonicity unfortunately breaks down.

To illustrate this, let us consider the computation:

(x := 1 ≫ x := 2) ; (x = 1 skip)

where x = 1 skip is a preconditioned program (Floyd assertion) that behaves
like skip when x = 1, and otherwise aborts (does not terminate). We first ob-
serve that since the continuation x = 1 skip is everywhere feasible, preference
always chooses its first program x := 1 and the entire computation boils down
to x := 1, provided that no infeasibility is encountered later on. (For the sake
of simplicity, and without limiting generality, we assume the latter is the case.)
Note that this is different from nondeterminism, since we can prove that

(x := 1 ⊓ x := 2) ; (x = 1 skip)

is indeed equivalent to abort.
Let us now refine x := 1 in x := 1 ≫ x := 2 bymagic— the computation that

is everywhere infeasible and thus the top of the refinement lattice of programs. As
we already observed, the preference operator, just like nondeterministic choice,

4 Strictly, it is enough to show that x = 1 ⇒ fis(U) universally holds.
5 In the UTP theory of designs, this is equivalent to saying that healthiness condition
H4 holds for S .

A tour through the programming choices: semantics and applications 11

cannot choose a miracle; hence, we have thatmagic ≫ x := 2 must be equivalent
to x := 2. However, the composition

x := 2 ; (x = 1 skip)

can be shown to be abort (the bottom of the lattice). And abort is clearly
not a refinement of x := 1 or, indeed, any other computation apart from itself.
This exemplifies that preference is not monotonic in its first operand, given our
standard intuitive notion of refinement.

It is moreover easy to see that x := 1 ≫ x := 2 cannot be the same as
x := 2 ≫ x := 1, hence preference, unlike nondeterminism, is not commutative.
A question that remains is whether we can express its semantics at all in the
theory of wp predicate transformers, similar to other constructs of the guarded
command language of Dijkstra [40]. Sadly, the answer is no, and to illustrate
this let us recognise that both x := 1 and x := 1 ≫ x := 2 ought be able to
establish exactly the same postconditions Q , meaning that wp(x := 1,Q) and
wp(x := 1 ≫ x := 2,Q) are expected to be logically equivalent; but they are
nevertheless algebraically distinct since they can be distinguished by a context
U =̂ x ̸= 1 −→ skip. That is x := 1 ; U is magic whereas x := 1 ≫ x := 2 ; U
is x := 2. The closest we get to preferential choice in a wp semantics is Nelson’s
biased choices, described in [122].

S ⊞ T =df S ⊓ ¬ fis(S) −→ T

Unfortunately, this definition does not precisely capture our intuitive semantics
of preference, since it is not sensitive to the continuation. For example, x := 1 ⊞

x := 2 evaluates to x := 1 ⊓ fis(x := 1) −→ x := 2 which simplifies to just
x := 1 ⊓ x := 2, since assignment is universally feasible. In other words,

x := 1 ⊞ x := 2 ; (x = 1 skip)

yields abort and not skip, as we would expect for preference. This makes biased
choice less useful as a specification and implementation construct to capture
preference. What we expect (see [43] for a discussion) is that preferential choice
is sandwiched between nondeterministic choice and biased choice, pertaining to
the following refinement relationship in a suitable semantics.

S ⊓ T ⊑ S ≫ T ⊑ S ⊞ T

The endpoints of this refinement, we can express in wp semantics, but the middle
point (S ≫ T) not so. This raises the questions in what semantic framework the
S ≫ T construct may be expressible. We answered this question in [43]: instead
of using a semantics that is based on predicate transformers wp(S ,Q), we us a
semantics based on expression transformers S ⋄ E .

Intuitively, expression transformers capture the value of an expression E
after execution of some computation S . Due to the fact that S may be non-
deterministic, miraculous or abortive, we require a more powerful language of
expressions that, in effect, associates expressions with sets of possible outcomes.

12 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

Those sets may be empty (capturing the result of executing magic) or yield a
special distinct value ⊥ that denotes the outcome of the computation abort.

A bespoke mathematical structure to describe S ⋄E turns out to be Hehner’s
notion of a bunch and the underlying bunch theory [68,69]. Bunch theory defines
many properties that we expect, by default, to hold in a theory of expression
transforms, and has already been used by Morris and Bunkenburg as a vehicle
to develop their theory of term transformers [120]. We extended bunch theory
in [153,187] to account for the improper bunch ⊥, and thereby managed to give
a model to the GCL in a semantics based on prospective values (pv semantics)
that is fully isomorphic to conjunction computations, albeit not appropriate to
capture angelic nondeterminism6.

Not discussing our prospective-value semantics of the GCL in full detail, here
is the definitional axiom for the preferential choice operator:

(S ≫ T) ⋄ E =df (S ⋄ E) , (S ⋄ E) = null → T ⋄ E

To dissect the above notation, the comma corresponds to bunch union, and the
short right arrow is a guarded form of bunch that evaluates to the empty bunch
null when the guard is false. The predicate S ⋄ E = null is a way to compute
continuation-aware feasibility of S . We note that the continuation is captured
by the expression E ; we can see this more clearly by considering the expression
transformer law for sequence7:

(S ;T) ⋄ E =df S ⋄ (T ⋄ E) = S ⋄ F where F =̂ T ⋄ E

where we can think of T as the continuation of S whose effect is captured by the
expression F . So expression transformers together with improper8 bunch theory
provide a suitable abstraction and mathematical framework to formally capture
preference, examine its algebraic properties, and prove various kinds of useful
laws. (While we do not have space to indulge into this discussion here, details
can be found in various papers [43, 153,155].)

Bunch theory has sometimes been criticised on the grounds that its consis-
tency is not apparent and thus cannot be taken for granted. Morris and Bunken-
burg tried to alleviate this concern already in their publication [119] by providing
a set-theoretic model. A more recent article by Stoddart et al. [153] addresses
this problem too. Lastly, one might interject that bunch theory is as fundamental
as set theory, and therefore may not require a model—just as we usually accept
the axioms of ZFC set theory without further ado.

6 Doing so may not be beyond the possibilities of a ‘bunchy’ semantics, but may
require us to distinguish between different kinds of bunches: those that capture sets
of demonic outcomes, and those that capture sets of angelic outcomes.

7 In earlier publications, reviewers sometimes question whether the right hand of the
axiom ought not be T ⋄(S ⋄E). We reassure the reader that the law is indeed correct
in the form given here, and refer to [186] for additional intuitive justifications.

8 By this, we refer to Hehner’s bunch theory, augmented with an improper (bottom)
bunch ⊥ for every type.

A tour through the programming choices: semantics and applications 13

We share Jim Woodcock’s curiosity and interest in examining the formalisa-
tion of theories of programming in various semantic frameworks and domains.
While bunch theory gives us an elegant and concise formal model, it does make
sense to explore preference in other semantic frameworks as well; and we shall
comment on this in the subsequent paragraphs.

Preference in wp We already explained that a model of preference in conventional
wp semantics is beset with difficulties and most likely unrealizable. However,
there is a way to express preference and, more generally, the semantics of what
we call preferential computations in a wp theory that uses three-valued logic.
More specifically, Gödel logic [6] enables us to distinguish several degrees of truth
and is a precursor of fuzzy logic. How can this be useful here?

Let us take inspiration again from the pv expression transformer semantics.
Whether a computation S and its continuation is feasible can be dynamically
evaluated within the bunch logic via (S ⋄E) ̸= null; namely, the bunch of values
that E may take after executing S is non-empty. In other words, there is at
least one behaviour that gives us a prospective value for E . This enables us to
effectively check whether the execution of S succeeded or otherwise has failed
due to infeasibility. It is a crucial bit of additional information that considers
the continuation being captured implicitly in E .

The logical expression wp(S ,Q) does not offer such a test: if, for some ini-
tial state, it yields true we have established Q but we don’t know how: both
wp(x := 1, x = 1) and wp(magic, x = 1) evaluate to true where the first one
establishes x = 1 through a proper terminating behaviour, whereas the second
one establishes x = 1 vacuously by a miracle. This distinction is lost in the term
true; however, we can reintroduce it in a three-valued logic: true now means es-
tablishing the postcondition via non-miraculous behaviour, and supertrue means
establishing it miraculously. We this have three truth values: false, true and
supertrue. They are order in the way that we have enumerated them. We recall
that in Gödel logic, such ordering determines the result of logical operators.

At this point, we ask the reader for a leap of faith. While it is out of scope for
this publication to go into the details of such a wp theory built on top of a suitable
three-valued logic, we note that we have developed a complete mechanisation9

in Isabelle/HOL already to show that (a) such a theory can be defined, (b) that
it supports the definition of all GCL operators including angelic choice, and (c)
that it preserves all conventional laws of refinement if restricting ourselves to the
core GCL operators. We call this theory a wpe semantics of guarded commands.

We moreover discovered that there is a neat Galois connection between mono-
tonic wp and preferential wpe computations by approximating preference with
nondeterminism, and that the resulting laws of this Galois connection can be
used to recover a restricted form of compositional refinement in the absence of
monotonicity of program operators with respect to refinement in general. The
lose of monotonicity is a lamentable downside of our theory of preference, but we

9 Unfortunately, we have not published this material yet but envisage to do so in the
near future, via a separate publication and/or technical report.

14 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

could show that if preference is only introduced in the final step of refinement,
we are entitled to replace any nondeterministic choice S ⊓ T by a preferential
choice S ≫ T , irrespective of the absence of general monotonicity laws.

For computations that do not involve preference, our mechanised theory
shows that refinement has precisely the same meaning as in the standard wp
semantics of monotonic computations. Last but not least, we note that the
work in [43] goes further by introducing a notion of feasibility-preserving re-
finement S ⊑∗ T which strengthen conventional refinement S ⊑ T with the
caveat fis(S) ⇒ fis(T) that provides a more useful basis for using (partial) mir-
acles in implementations for backtracking algorithm implementations. Again,
this causes monotonicity to break down: here, for sequential composition in the
first operand. Nonetheless, the abovementioned replacement of S ⊓ T by S ≫ T
remains valid, even in this stronger refinement regime.

Preference in UTP Modelling preference in UTP is more challenging. While
nondeterminism is naturally represented in UTP by predicates over before and
after states, such as x ′ = x − 1 ∨ x ′ = x + 1, preference (just like probabil-
ity) gives rise to another structural dimension within the semantic space, with
entanglement and closure properties between nondeterministic and preferential
behaviours that have to be understood and made precise via healthiness condi-
tions. A sensible strategy is to index computations with a natural number, i.e.,
by adding an auxiliary variable idx in order to impose an explicit order on be-
haviours. E.g., x := 1 ≫ x := 2 in the UTP theory of relations could be modelled
as idx = 1 ∧ x ′ = 1 ∨ idx = 2 ∧ x ′ = 2. More accurately, the idx variable would
need to be suitably typed in order to tabulate all choices made “along the way”,
and we would also need a variable idx ′ to propagate the (updated) value of idx
through sequential compositions, similar to the tr and tr ′ variables in reactive
computations. A notable open question is whether this will turn out sufficient for
a compositional definition of sequential composition, and what the underlying
healthiness conditions ought be. To account for unbounded nondeterminism10,
we would most likely have to move to some larger index type.

A denotational semantics may express preferential computations as sequences
of functions (for deterministic programs) or relations (for nondeterminstic pro-
grams). Again, we have not developed such a model yet or identified any validity
or closure constraints on the underlying mathematical structure. A UTP the-
ory may likely enable us to easily derive a clean denotational model, since UTP
typically encodes mathematical structures in a predicative manner, so the gap
is inherently small between these approaches.

It is again not the ambition of this chapter to develop such a UTP theory,
and the reason we mention it is that we believe it could be just the thing that
Jim Woodcock may be excited about, with all the wonderful work he has done in
producing novel theories of computation in UTP and pushing the UTP approach
to and beyond its perceived limits. We flag this as a future work.

10 Unbounded nondeterminism is a misnomer: often, we mean infinite albeit bounded

nondeterminism, i.e., by some transfinite ordinal.

A tour through the programming choices: semantics and applications 15

Application of preference So far, we confined our discussion mostly the semantic
aspects of preference and the ability to mathematically describe it. A fair ques-
tion is “What can it actually be used for?”. And “Is it worth the trouble?”. We
believe there are a number of applications that still need to be explored, but
one of them is to verify the implementation of heuristics in guiding backtracking
search. While demonic nondeterminism is often used to express implementor’s
choice, it is also well understood that nondeterminism exhibits backtracking11

when combined with guarded computations. In this context, we think of nonde-
terministic choice as providing the possible moves (or steps) of an algorithmic
search problem. An infeasible guard thus triggers backtracking from a dead end
during search exploration.

The simple semantics of nondeterminism and guarded commands in wp
promises a proof-economic technique to verify computations that make use of
guards and choice in the way we hinted above, e.g. to solve puzzles like the Eight
Queens or Knight’s Tour problem, or similar. The downside is that we have no
control of the order in which choices are attempted. And implementing choice
as preference is a refinement that resides outside the scope of formal reasoning.
Preferential choice, as a semantic operator, lifts it into the realm of formal ver-
ification and thereby opens up the possibility of verifying algorithms that use
preference as an implementation operator (which most algorithms do).

We concede that this deployment of choice and guards is not the only way to
specify search procedures in formal languages: a dual method is to use angelic
rather than demonic choice, and use abort as a means to trigger backtracking.
This approach comes with its own issues: whether a computation fails to termi-
nate and thus behaves like abort may be difficult to detect in practice12, and,
semantically, we may need to do so in a sufficiently expressive target language
that supports iteration and recursion. Lastly, we may not require demonic or
angelic choice either, and use a standard iterative or recursive sequential imple-
mentation instead to explore the search space via a stack.

Another application of preference relates to the example of a co-simulation
master algorithm (MA) discussed later in Section 4.1. Though this is not further
developed in this chapter, we believe that preference can be used to model a
trial-and-error loop of the MA to steps a set of FMUs with step sizes that
become progressively smaller, until all FMUs succeed to concurrently perform
the simulation step. In order to reject a (too large) step size, an FMU can
use a programming guard FMUi =̂ stepsize ≤ maxstepi −→ FMUbeh . And
the exploration of step sizes at the MA modelling level could be realised by a
preferential choice as follows:

(stepsize := 4 ≫ stepsize := 2 ≫ stepsize := 1) ; (FMU1 || FMU2 || · · ·)

11 More accurately, reversibility as all state is implicitly restored during backtracking.
12 Note that abort is semantically equivalant to a non-terminating computation such

as while true do skip.

16 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

where FMUi correspond to a model of the computation carried out by the Func-
tional Mockup Units and the above parallel composition is a suitable version of
parallel-by-merge, assuming that FMUs only modify their local disjoint states.

Summary of preference We conclude our mini exposition of preferential choice
by observing that, despite its elusiveness to a simple semantic treatment, it turns
out to be an operator that we believe has significant use in both specifications
and implementations. We are hoping to publish further work in the near future
that presents a wp(e) semantic model for preferential computations that has
been fully formalised in Isabelle/HOL, with key laws and the aforementioned
Galois connection being defined and verified. Development of a UTP model is a
more long-term goal and we hope we sparked Jim’s interest in this as well.

3.4 Probabilistic choice

Probabilistic algorithms [121] are algorithms that can make random choice at
some points. They have been widely applied in many areas such as distributed
systems (e.g. Rabin’s mutual exclusion with bounded waiting [133], Aspnes et
al.’s fast randomized consensus [5]), security and cryptography (public key proto-
cols [42]), sorting (e.g. Hoare’s randomized QuickSort [75]), number theory (e.g.
Rabin’s probabilistic primality testing algorithm [132]), data structuring (e.g.
randomized hashing scheme [121]), and robotics (e.g. localisation, mapping, and
planning [158]) to simplify algorithms and improve performance. These algo-
rithms are classified as either Las Vegas (they always give correct results but
the running time varies) or Monte Carlo (there is a small probability that they
may give wrong results, but the running time is fixed).

To program probabilistic algorithms, conventional non-probabilistic programs
are extended with a capability to model randomness, usually using a discrete
probabilistic choice construct (P ⊕r Q) [67, 104] or a random number genera-
tor (rand) [34, 66, 92] sampling from the uniform distribution over a set (either
finite or infinite for discrete or continuous distributions). To capture high-level
specifications for probabilistic programs or analyse them in the abstract level,
nondeterministic choice is also introduced in probabilistic programming, such as
pGCL [104,114], in which both nondeterministic choice (P⊓Q) and probabilistic
choice are present.

The semantics for conventional programs such as weakest precondition [40],
Hoare logic [76], and predicative programming [65] are boolean functions over
state space. They can reason about these programs qualitatively, but not quan-
titatively which is natural in probabilistic programs. These semantics have been
extended to deal with probabilistic programs. We mainly discuss the relational
semantics and the predicate-transformer semantics for imperative sequential
probabilistic programs, and briefly review probabilistic process algebras.

Imperative - relational semantics In Kozen’s seminal papers [92,93], nonde-
terministic choice in conventional programs is replaced with probabilistic choice

A tour through the programming choices: semantics and applications 17

and boolean functions are generalised to real-valued functions over state spaces
to give the semantics for probabilistic programs as partial measurable functions
on a measurable space and continuous linear operators on a Banach space.

The pGCL has relational and predicate-transformer semantics by He, Mor-
gan, and McIver [64]. The relational semantics extends the theory of designs
for standard non-probabilistic programs in UTP to probabilistic designs. In the
relational model, any probabilistic choice refines nondeterministic choice. Actu-
ally, the semantics of nondeterministic choice of two programs P and Q is the
nondeterministic choice of the probabilistic choices of the embeddings of P and
Q in all possible ways (all possible weights from 0 to 1 inclusive). The rela-
tional model embeds standard UTP designs in probabilistic designs through the
weakest prespecification [80], a generalisation of wp from conditions (specified
in only initial observation variables v) to relations (in both initial and final ob-
servation variables v and v ′). In probabilistic designs, distributions are captured
in a probability distribution function prob of type S → [0, 1] over the observa-
tion state space S and

∑
s∈S prob(s) = 1. Different from Kozen’s semantics and

the Weakest Pre-Expectation (WPE) [104,115] where probabilistic programs are
real-valued functions over state space, the probabilistic programs in the relational
model are probabilistic (non-homogeneous) designs relating initial observation
state space S and final probabilistic state space on prob.

Woodcock [173] became interested in this relational semantics when he con-
sidered the probabilistic semantics for RoboChart [110] because of its UTP se-
mantics and algebraic properties which are suitable for reasoning and automa-
tion in Isabelle/UTP. He formalised the semantics of the relational model and
the proof that the semantic embedding is a homomorphism on the structure of
standard programs, probabilistic choice, nondeterministic choice, and sequen-
tial composition. He also found interesting details like a law requiring a side
condition [173] of the H3 healthiness condition [79, 171] and the lifting law for
sequential composition requiring finite state space [180]. The formalisation re-
sulted in the mechanisation of probabilistic designs in Isabelle/UTP [46] by Ye,
Woodcock, and Foster [180].

A uniform distribution algorithm modelled in RoboChart using a binary
probabilistic choice is proved in [180]. Ye, Woodcock, and Foster [180] found
that the most difficult part in proving probabilistic programs using probabilistic
designs is the supplement of a witness Q for the existential quantification in [180,
Definition 8.2] used in sequential composition of two probabilistic designs in [180,
Theorem 8.4]. This is due to a fact that probability distributions are encoded in
the variable prob which is inside relations. In this view, probabilistic programs are
relational in terms of probability distributions over state space, and so relations or
predicates deal with distributions. To address this challenge, Woodcock and Ye
started to look at other approaches with different views of probabilistic programs.
They should also be suitable for the mechanisation in Isabelle/UTP.

Hehner’s Probabilistic Predicative Programming (PPP) [66,67] takes another
view. PPP generalises boolean functions for predicative programming to real-
valued functions. In PPP, conditional and joint probability are modelled through

18 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

sequential and parallel composition. One unique feature of the language is its
capability to model both epistemic uncertainty (due to the lack of knowledge of
information) using the subjective Bayesian approach and aleatoric uncertainty
(due to the natural randomness of physical processes). In PPP, programs are
probabilistic (real-valued functions) and relations are over state space, and so
relations only deal with usual state space, not distributions over state space like
the relational semantics. This interested Woodcock because the relations over
usual state space can be formalised using UTP’s alphabetised relations, and so
PPP can be mechanised in Isabelle/UTP.

There are, however, several obstacles to the broader adoption of Hehner’s
work, such as informal syntax and semantics, and simple semantics for prob-
abilistic loops but that is difficult to mechanise. For these reasons, Woodcock
introduced an Iverson bracket notation [[P]] [183] (of type S → R), which maps
a predicate P (of type S → B) into real numbers. This also separates relations
from arithmetic. Woodcock replaced PPP’s relations with UTP’s alphabetised
relations, which allows UTP theories on relations and their mechanisation in
Isabelle/UTP reused.

Ye, Woodcock, and Foster [183] formalised the syntax and semantics of this
new probabilistic framework, called Probabilistic Unifying Relations (ProbURel),
and introduced the constructive semantics for probabilistic loops using Kleene’s
fixed-point theorem and the unique fixed-point theorem to simplify the reasoning
about probabilistic loops. ProbURel is mechanised in Isabelle/UTP, leveraging
the recent mechanisation of the Z mathematical toolkit13 in Isabelle/UTP by
Foster and Woodcock.

PPP does not include nondeterminism. In [66], Hehner discussed informally
an approach to reason about nondeterministic choice. Nondeterministic choice
is equivalent to an existentially quantified deterministic choice.

P ⊓Q = ∃ b : B • if b then P elseQ

Each nondeterministic choice is replaced by such a quantified conditional choice
with a new fresh quantifier variable b. The strategy is to move all quantifiers
outwards. Based on this definition, nondeterministic choice after a probabilistic
choice, such as P ⊕r Q ; P ⊓ Q , is oblivious (that is, making a choice without
looking at the current (or past) state).

Similarly to PPP, ProbURel does not support nondeterministic choice and
continuous distributions. Woodcock and Ye are interested in extending ProbURel
in these aspects.

Imperative - predicate-transformer semantics He, Morgan, and McIver’s
predicate-transformer semantics [64] for pGCL uses the same weakest prespec-
ification [80] technique to inject standard predicates in Dijkstra’s predicate-
transformer semantics (the weakest pre-condition) [40] into probabilistic predi-
cates. Based on this injection, probabilistic predicate transformer is an embed-
ding of standard predicate transformer. However, for the constructs that are not

13 https://github.com/isabelle-utp/Z_Toolkit.

A tour through the programming choices: semantics and applications 19

standard, such as probabilistic choice, an additional healthiness condition con-
tinuity is imposed on the probabilistic transformer. Monotonicity and “scaling”
can be derived from continuity. They showed the embedding preserves program
structure. Interestingly, the embedding of demonic non-deterministic choice (con-
junction in standard predicate transformer) becomes minimum for probabilistic
transformer. The key healthiness condition for this transformer semantics is sub-
linearity [105].

McIver and Morgan gave WPE or expectation transformer semantics [104,
115] to pGCL. In WPE, the real-valued functions or expressions over state space
are called expectations (indeed random variables). So a probabilistic program
maps a post-expectation (postE) to a pre-expectation (preE). Indeed, its WPE
semantics defines the greatest preE (gp) for a postE: preE = gp(P , [postE])
where the square bracket [] converts a boolean-valued predicate to an arithmetic
value, especially [true] = 1 and [false] = 0. The semantics for probabilistic choice
are the standard weighted average of pre-expectations of its all alternatives. The
semantics for nondeterministic choice, however, are the smaller pre-expectation
(that is, the demonic behaviour against the greatest pre-expectation) in the
pre-expectations of its two alternatives. We show below an example of gp for a
probabilistic choice.

gp(x := x + 1⊕(2/3) x := x − 1, [x ≥ 0])

=(1/3) ∗ [x + 1 ≥ 0] + (2/3) ∗ [x − 1 ≥ 0]

=(1/3) ∗ [x ≥ −1] + (2/3) ∗ [x ≥ 1]

=(1/3) ∗ [x = −1 ∨ x = 0] + [x ≥ 1]

It means that in order for the program to establish x ≥ 0, the probability of x
being −1 or 0 (or x ≥ 1, or x < −1) in its initial state is at least 1/3 (or 1, or 0).
McIver and Morgan [106] also developed refinement for probabilistic programs
(pGCL) to ensure correctness by construction.

McIver and Morgan [102] extended expectation transformer from finite state
spaces to infinite state spaces, and constructed deterministic, demonic, demonic
and angelic probabilistic transformers sequentially (characterised by transformer
properties linearity, sublinearity, semi-sublinearity respectively), as Back and von
Wright [7] did for non-probabilistic transformers (characterised by transformer
properties disjunctivity and conjunctivity, conjunctivity, monotonicity respec-
tively). [102, Fig. 9] illustrates the transformer structure.

WPE attracted the interest of many. Kaminski [88] developed an advanced
weakest precondition calculus. McIver et al. [107] presented additional proof rules
for loops and loop termination. Further three advancements: expected runtimes,
conditioning [128], and mixed-sign expectations were developed and presented
in Kaminski’s PhD thesis. Schröer et al. [145] developed a deductive verification
infrastructure for discrete probabilistic programs to use SMT solvers to verify
programs automatically. Batz et al. [11] proposed an approach to use inductive
synthesis to find loop invariants for probabilistic programs from templates. Batz
et al. [10] used deductive verification technique [145] to synthesise nondetermin-
istic probabilistic programs to find memoryless and deterministic strategies.

20 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

Stoddart and Zeyda et al. [153,154] proposed a guarded command language
that is able to model nondeterministic choice, preferential choice, and probabilis-
tic choice. The semantics of the language is based on wp and conjugate weakest
precondition (cwp), and interpreted in bunch theory [69], instead of set theory.
They use S ⋄ E to denote the prospective values of an expression E after the
execution of a program S . A basic law is developed to link prospective values
to cwp. The PV semantics is shown to represent backtracking and the imple-
mentation of backtracking via reversible computing [186]. Their semantics for
probabilistic choice is a weighted choice of a bunch of three terms, which takes
into account the interaction of probabilistic with nondeterministic choice, and
the feasibility/continuation and abortion behaviour of probabilistic choice.

In addition to Kozen’s, relational, and predicate transformer semantics, many
other semantics for imperative probabilistic programming exist. Dahlqvist et al.’s
simple imperative probabilistic language [34] uses two constructs, coin() and
rand(), to introduce discrete and continuous uniform distributions, and both
operational and denotational semantics are presented. Hoare logic has also been
used to reason about probabilistic programs [9, 26, 37,135,136].

Probabilistic process algebras Woodcock’s interest in probabilistic program-
ming is not restricted to sequential imperative programs. Indeed, he is interested
in probabilistic programming based on CSP and Circus, and UTP in general,
and how it can be used to give semantics to RoboChart. We review different
probabilistic models in process algebras, particularly in (1) how to model prob-
ability, (2) how to interact with their environment, and (3) how probabilistic
choice interacts with nondeterministic choice. Then we discuss the approach
that RoboChart uses for probabilistic modelling.

Hansson’s alternating model [62] distinguishes between nondeterministic and
probabilistic choice. Either a nondeterministic choice or a probabilistic choice
can be made in each state of this model, and the order of availability of these
choices is strictly alternating between a nondeterministic and a probabilistic
choice.

In Segala and Lynch’s probabilistic automata [147], transitions are labelled
with probability values. The transition relation is a steps function which maps
source states to probability distributions over (action, target state) pairs. Actions
can be external, modelling interactions with the environment through events, or
internal, modelling computation steps through internal events τ . In probabilistic
automata, a distribution from a source state may contain more than one action.
If all distributions in a probabilistic automaton contain only one action, this
automaton is called simple. Otherwise, it is called general. If from each source
state, there is at most one step (or one distribution) enabled, this automaton is
called fully probabilistic.

Van Glabbeek et al. [162]’s reactive, generative, and stratified models are the
different ways to interpret probabilities [98] in processes. Multiple actions can
be offered by a process to its environment, but the environment is allowed to
choose only one in the reactive model or some in the generative and stratified

A tour through the programming choices: semantics and applications 21

models. After actions are chosen by the environment, the process makes an
internal transition based on the current state and (1) the probability distribution
associated with the action in the reactive model, or (2) the globally (or locally)
redistributed probability distribution for chosen actions in the generative (or
the stratified) model. The reactive model corresponds to the simple probabilistic
automaton model without internal nondeterministic choice involving the same
actions, in that both allow external nondeterministic choice between different
actions (that is, multiple transitions with different external actions from the
same state). Interestingly, zero probabilities are permitted in the stratified model
to model process priorities.

There are many probability extensions based on: CSP [55, 58, 94, 97, 113,
116, 124, 148, 157], CCS [56, 61, 162, 184], and ACP [2], probabilistic transition
systems [15, 86, 96], and automata [63, 177]. We particularly review CSP-based
extensions because CSP supports refinement and has its semantics in UTP.

Seidel [148] proposed two semantics models for probabilistic CSP: the in-
dependent model with external and internal choice and the conditional model
without internal choice and hiding.

Lowe [97] presented two languages as refinements of Timed CSP [35, 143]:
a fully deterministic model (DTCSP) with a notion of priority (the prioritized
model) and a probabilistic model (PDTCSP) extended from DTCSP. The two
models feature biased external choice, parallel composition, and interleaving.
They have no internal nondeterministic choice though PDTCSP has a (internal)
probabilistic choice.

Gómez et al.’s probabilistic variant [58] of CSP has no internal nondetermin-
istic choice but has two versions of probabilistic choice: one generative and one
reactive to replace internal and external choice in CSP. Similarly, Núñez et al.’s
PPA [124] has similar two versions of probabilistic choice.

Morgan and McIver et al.’s PCSP [113,116] uses Jones’s general construction
to extend CSP with probabilistic choice. In PCSP, probabilistic choice distributes
through all other operators, including external choice and internal choice. But
internal choice is not idempotent in PCSP. Morgan [113] linked probabilistic
action systems (written in pGCL with expectation transformer semantics) and
probabilistic CSP, gave traces, failures, and divergences from the probabilistic
CSP to the probabilistic action systems.

Mislove’s [109] proposed an approach to consider the family of probability
convex sets in three possible power domains: lower, upper, and convex to provide
a probabilistic extension of CSP (Morgan’s PCSP) with both nondeterminism
choice and probabilistic choice, importantly, all the laws for them are valid,
including the idempotent law for nondeterministic choice.

Georgievska and Andova [55] presented a probabilistic extension of CSP
which preserves the distributivity laws and the idempotent law for internal non-
deterministic choice, via restricted schedulers. This extension supports internal
nondeterministic choice, external choice, probabilistic choice, and parallel com-
position with hiding.

22 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

Sun et al. [157] proposed PCSP#, a probability extension of CSP# which
combines high-level modelling operators with low-level procedural codes. The se-
mantics of PCSP# is Markov Decision Processes (MDPs) [130]. The verification
of PCSP# programs is supported by the Process Analysis Toolkit (PAT) [156].

Semantics for RoboChart Because RoboChart’s standard semantics is based
on CSP and tock-CSP [12], Woodcock showed interest in probabilistic extensions
of CSP, discussed previously, to give RoboChart a probabilistic semantics. How-
ever, the main issue is the lack of tool support. For this reason, inspired by
Jansen et al.’s P-statecharts [83], Woodcock and Ye et al. [179] gave RoboChart
a semantics based on the PRISM language [95]. RoboChart adopts the same al-
ternation as [62] between nondeterministic and probabilistic choice, but a proba-
bilistic choice is made only within a transition originating from a nondeterminis-
tic state. The PRISM semantics for RoboChart, however, is subject to the state
space explosion problem, as discussed in [182] by Ye and Woodcock. Because of
these challenges, Woodcock is also interested in the UTP semantics for proba-
bilistic process algebras and its mechanisation in Isabelle/UTP to verify them
using theorem proving. However, there are some important questions left to be
answered, such as “Out of the existing and possible extensions of CSP to cover
probability, which one should be adopted?”, “should probability be encoded in
traces, or should traces be probabilistic?”, etc.

In [181], Ye et al. gave RoboChart operational semantics based on the mecha-
nised CSP and Circus [49] in Isabelle/UTP using interaction trees (ITrees) [178],
and used priority-based hiding and renaming operators to resolve nondetermin-
ism. Ye, Woodcock, and Foster are interested in extending CSP and Circus with
probabilistic choice to have sound animation for probabilistic RoboChart models.

4 Applications

In this section, we explore the application of the various choice operators to
co-simulation, the semantics of RoboChart, and the modelling of random walks.

4.1 Co-simulation for cyber-physical systems

Simulation techniques are widely adopted in the development of cyber-physical
systems (CPS). Typically, their components may be developed using different
techniques. To simulate a complete system, co-simulation can be used where
components are encapsulated as simulation units (SUs) and a master algorithm
orchestrates the simulation by exchanging values between SUs at sample times.

Co-simulation has advantages, in that stakeholders can protect their intellec-
tual property by conforming to an API, such as FMI [14]. However, the master
algorithm needs to handle SUs that may reject a simulation step if the chosen
time step is too large. Backtracking algorithms have been proposed [33] that can
perform step revision. An example of using FMI is reproduced [33] in Figure 2,

A tour through the programming choices: semantics and applications 23

FMU

ConstantSignal
Generator

FMU

FMU

ConstantSignal
Generator

Integrator with
reset

FMU
Adder

FMU

Zero-Crossing
Detector

c: 1

c: -10

FMU

Microstep
delay

Fig. 2. Example of FMI setup with 6 connected FMUs.

consisting of 6 connected SUs, known as FMUs: constant signal generators, one
integrator, an adder, a microstep delay, and a zero-crossing detector (ZCD).

The verification of co-simulation algorithms is a topic that Woodcock and his
collaborators approached in [60], where they consider an Uppaal encoding, how-
ever, the step revision procedure is modelled explicitly. The question is whether
a formal specification can be constructed using abstract choice operators.

Process algebraic model In what follows, we sketch a process algebraic speci-
fication for execution of SUs in FMI with step revision using the Circus notation.
It is loosely based on the architecture in [24] and follows the constraints of [60].
The communications between SUs are modelled using the following channels:

Value ::= absent | value⟨⟨R⟩⟩ channel get : OUTPUT × Value

channel doStep : SU × T× T channel set : INPUT × Value

get to obtain the output of a SU, and set to provide an input, respectively, and
doStep to step the simulation of a SU. OUTPUT and INPUT are types labeling
the inputs and outputs of each SU, so that the connections between SUs can be
modelled, and Value is the type of values admissible for communications, a real
value or absent . doStep contains three values, the first drawn from SU , a set of
SU identifiers, the second is the requested step size, and the third the actual step
size accepted, over a time domain T. We observe that according to the FMI2
standard it is possible that a SU may not report an accepted step size at all, and
just yield an error. In this model, we omit this detail without loss of generality.

Connections Input and output labels are associated with SUs via total functions
while the connections between them are defined by a total surjection L from
INPUT to OUTPUT . From L, we define a process Exchange that captures the
valid interactions for FMUs, via synchronisation on get , set and doStep.

process Exchange =̂ 9 x : L • SetC (first(x), second(x))

It is defined by an iterated interleaving over pairs x , drawn from L, of processes
SetC , omitted here and parameterised by input and output labels, that define

24 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

when an output is available given its dependency on an input, and whether a
SU has been stepped forward in time, following the criteria defined in [60].

Then, given a process algebraic model of all SUs, captured by a process of
the same name and whose definition we omit here, we can capture all possible
interactions, by taking into account their connections, via a parallel composition
with Exchange synchronising on doStep, get and set , defined as follows.

processSUExchange =̂ SUs J {| doStep, get , set |} K Exchange

This process captures all possible simulations, including those that may not step
through by the requested step size. A valid simulation is therefore defined by

process Simulation =̂ SUExchange J {| doStep |} K ChooseStep

where ChooseStep captures the valid steps, that is, where doStep is observed with
requested and accepted simulation step sizes that are the same. We consider an
approach where angelic choice is used to choose a step size, before a prefixing on
doStep.u.tr .ta , for every SU u. This is sketched in the following Circus process.

process AngelicStep =̂ begin state S == [h : T1]

DoStep =̂ su : SU • doStep!su!h?t →{h = t}
Step =̂ 9 su : SU • DoStep(su)

Main =̂ h : guess(T1) ; Step ; Main

• Main
end

It has a state variable h and its behaviour is defined by the Main action, that
angelically guesses a step size h from a finite domain T1, and then behaves as
Step followed by the recursion. Step is defined by the iterated interleaving over
su, drawn from the set SUs, of actions DoStep(su). Each action has a prefixing
on doStep!su!h?t , that uses the chosen step h and is prepared to synchronise on
any accepted size t , and afterwards there is an assertion ({h = t}). If it fails,
then the action aborts, including up to the point in Main where h was chosen.
While this captures all valid step sizes, it does not require h to be maximal.

Maximum angelic step To address the shortcomings of the previous solution, we
consider a modified version of the AngelicStep using both angelic and demonic
choice. We assume that a SU that accepts a step size h may also accept a step
size h ′, such that h ′ ≤ h. Intuitively, to determine the maximum admitted step
size, we need “to experiment” with stepping a SU with values above and below
an angelically chosen maximum step size, such that step sizes less than or equal
to the maximum suceed, but values above do not. Crucially, failed experiments
should be pruned from the model. We frame this in a game-like way as follows.

A tour through the programming choices: semantics and applications 25

process MaxAngelicStep =̂ begin state S == [h : T1; real : B]

DoStep =̂ su : SU • ([real = True] ; Stop)
@ doStep!su!h?t →{real = True ⇔ h = t}

Step =̂ 9 su : SU • DoStep(su)

Main =̂ h : guess(T1);
h, real :[true, (h ′ ≤ h ∧ real ′ = True) ∨ (h ′ > h ∧ real ′ = False)];
Step ; [real = True] ; Main

• Main
end

Differently from before, MaxAngelicStep has an additional boolean variable real ,
that is used to differentiate between an actual stepping, so it is True, and
otherwise when an “experiment” with a larger step size is conducted it is False.

As before, theMain action begins by guessing the step size h. Afterwards, we
have a specification statement, whereby the value of h is demonically changed,
such that, for lower values the variable real is True, and for higher values it
is False. This is followed by a composition with a revised Step action and an
assumption ([real = True]), followed by the recursion. In DoStep there is now
an external choice between two processes: the first has an assumption that real is
True, in which case it behaves as Stop, and otherwise is miraculous; the second
has a prefix on doStep followed by an assertion that requires real to be True if,
and only if, the step succeeds with value h. We consider all possible cases:

1. real = True ∧ h ̸= t : the assertion fails as before, and so the process Step
aborts given that h is not an admissible step size;

2. real = True ∧ h = t : the assertion succeeds and so do both assumptions, so
h is an admissible step size;

3. real = False ∧ h ̸= t : the assertion succeeds, but both assumptions fail.
Therefore the external choice becomes equal to ⊤ @ doStep → ..., where ⊤
is miracle, which prunes waiting behaviours from the process, that is, the
pericondition. When this behaviour is propagated to Main, as Step, its com-
position with the subsequent assumption [real = True] ensures that overall
that behaviour is pruned, given that a failed assumption is miraculous.

4. real = False ∧ h = t : both the assertion and the assumptions fail. This
corresponds to an experiment for which a larger step size is admissible, but
because of the failed assertions and assumptions the behaviour is also pruned.

The above is but a sketch of a specification for a master algorithm with step revi-
sion. Further work is required to establish the laws that would allow introducing
the specific mechanisms for step revision in a refinement.

4.2 RoboChart

RoboChart [110] is a diagrammatic modelling language designed to support the
specification of robotic software in terms of reactive state machines. These state
machines can be combined in parallel to form controllers, which can be com-
posed in parallel to describe the overall software. State machines are formed of

26 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

transitions, states, and junctions. Transitions represent changes in a system’s
configuration; they connect two nodes (states and junctions), can be triggered
by events and guarded by conditions, and can cause actions to be executed.

States model stable decision points, that is, configurations of the software in
which the machine is allowed, potentially indefinitely, to wait for a particular
input. Junctions, on the other hand, are not stable; they allow for decisions to
be made but do not allow the system to wait indefinitely.

The semantics of RoboChart is defined in terms of Circus/CSP processes
and supports formal analysis via model-checking and theorem proving. Several
well-formedness conditions are necessary to adequately specify the semantics of
RoboChart models. Of particular interest is the requirement that the guards of
transitions leaving the same junction form a cover (the disjunction of the guards
is true). This requirement guarantees that if a junction is reached, there is always
one transition whose guard is true, and the system does not get stuck.

There are a number of reasons why this well-formedness condition might
be inconvenient. For example, the particular path taken to a junction could
guarantee that one of the outgoing transitions is always enabled. Alternatively,
a modeller may wish to have simpler models (fewer transitions) and rely on an
interpretation in which a transition from a state is only taken if there is a path
to another state in which all the transitions are enabled.

Angelic choice discussed in Section 3.2 is a suitable alternative to specify the
semantics of RoboChart models, in which the well-formedness condition above
is relaxed and where the previously discussed interpretation is adopted. The
standard semantics of transitions leaving a state can be specified as the external
choice of the events that trigger the transitions. In order to adapt this semantics,
we must first replace the external choice (in the selection of transitions) with
angelic choice and adopt the theory described in [142]. Finally, we must also
encode the omitted guards as Chaos. This guarantees that if a junction is reached
in which none of the guards of the outgoing transitions is true, the process would
backtrack, and an alternative path would be taken.

While such an approach has the potential for more succinct diagrams, it
presents practical and theoretical challenges for verification due to the lack of tool
support around angelic choice and the extra complexity in analysing the possible
paths. The standard semantics balances specification power and automation,
with a well-formedness condition that, while not amenable to static analysis,
can be checked locally using automated theorem provers.

4.3 Random walks

Grimmett and Welsh [59] defined various random walks (RW). A RW is simple
if at each time step it can move only to its next (or neighbouring) positions ran-
domly in one of the lattice directions. A symmetric RW has the equal probability
for each direction. Otherwise, it is asymmetric.

According to Pólya’s recurrence theorem [131], a symmetric random walk is
recurrent (the probability of revisiting its starting point is 1) only if it is one- or
two-dimensional. This simple random walk does not terminate. For this reason,

A tour through the programming choices: semantics and applications 27

researchers [29,81,89,103,107] in probabilistic programming and verification are
more interested in a variant of the one-dimensional simple random walk (SRW).
It is also the Gambler’s Ruin Problem with an absorbing barrier at 0. We can
model it as a probabilistic program below.

x := m; while(x > 0){x := x − 1⊕p x := x + 1} (PSRW)

where x is an integer variable, m denotes the starting position and m > 0, and
p is the probability of decreasing x by 1.

Grimmett and Welsh [59] proved the termination probability for SRW is
(p/q)m if q > p where q = 1 − p, and 1 otherwise. This program is proved
to have its termination probability equal to 1 (that is, almost-sure termination
(AST)) if p is equal to 1/2 (so symmetric, as SSRW), according to [29, 81, 103,
107], using the invariant and variant reasoning technique for probabilistic loops.
McIver et al. [107] and Chatterjee et al. [29]’s variant rules for loops are based
on supermartingale [165], a sequence of random variables (RVs) for which the
expected value of the current random variable is larger than or equal to that
of the subsequent random variable. Moosbrugger et al. [111] developed the tool
Amber to automatically prove the one-dimensional SSRW is AST. Furthermore,
McIver et al. [107] proved the two-dimensional SSRW terminates almost-surely.
Kaminski [89] proposed a wp-style reasoning for bounded expected runtimes and
proved the expected runtime of SSRW is infinite.

These studies show the verification of AST for probabilistic loop programs.
They, however, have not inferred the exact value of probabilities (either distribu-
tion or sub-distribution depending on p and m) and expected runtimes in terms
of steps or iterations, or have not automated the inference, which are important
for the evaluation of the correctness and performance of probabilistic algorithms
(both Las Vegas and Monte Carlo). ProbURel [183] uses a unique (Kleene’s)
fixed-point theorem to give the semantics to probabilistic loops, which makes it
able to infer the exact value of probabilities and expected runtimes. The most
difficult part using this theorem is to construct a fixed point fp, or the invariant
for the loop. As shown in [183], the exact value of probabilities and expected
runtimes of two loop examples (flip a coin till a heads and throw a pair of dices
till they have the same outcome) are proved and mechanised in Isabelle/UTP.

Here, we sketch a strategy for the exact inference (to explicitly represent the
probability distribution or sub-distribution of PSRW in terms of iterations, para-
metric in m and p) of this SRW using mathematics and then use probabilistic
programming to give the semantics by constructing a fixed point or invariant for
the loop in PSRW. Mathematical calculation is not used in programming but is
used for comparison.

Mathematics We define Xi (where i ∈ N) for the ith toss of the coin or the
ith step of the moves, and

P{Xi = 1} = q P{Xi = −1} = p

where both p and q are non-negative real numbers and p + q = 1.

28 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

We use Sm
n to denote the current position of the walker (when starting at

position m) after n time steps, so Sm
n = m +

∑n

i=0 Xi . Then the minimum
number of time steps the walker reaches 0 from m is defined below.

σ0(m) = min({n : N | Sm
n = 0})

So σ0(1) is the minimum number of time steps the walker reaches 0 from 1.
We omit the subscript 0 here for simplicity. What we are interested in is the
distribution in terms of σ(m) or the number of iterations in the PSRW program.

From m, to reach the position 0, the walker needs to reach m − 1 first, then
m − 2 etc. We note that Xi is independent and the distribution of the walker
reaching m − 1 from m is exactly the same as reaching 0 from 1. We can treat
σ(m) as the summation of m copies of σ(1). Therefore, σ(m) =

∑m

i=1 σ(1).
So our question is to find out the distribution in terms of the discrete random
variable σ(1): P{σ(1) = n}, denoted as ϕ(n). The probability generation func-
tion [59] of σ(1) is

Gσ(1)(z) = E

(
zσ(1)

)
=

∞∑

n=0

P{σ(1) = n}zn =

∞∑

n=0

ϕ(n)zn (G1)

Then according to the theorem [59] that the generation function for the sum
of independent random variables is the product of those for each independent
random variable,

Gσ(m)(z) = G∑
m
i=0

σ(1)(z) =
(
Gσ(1)

)m
=

(
∞∑

n=0

ϕ(n)zn

)m

(Gm)

So our question now is to determine ϕ(n). First, we can get E(zσ(1)) by
solving an equation which is formed by conditioning the first move of the walker,
as described in [159]. The result is shown below.

Gσ(1)(z) = E(zσ(1)) =
1−

√
1− 4pqz 2

2qz
(G1r)

The sum of probabilities is just the generation function when z = 1, so

Gσ(1)(1) =
1−√

1− 4pq

2q
=

{
p/q if p < q

1 if p ≥ q

SRW for m = 1 (that is, σ(1)) is AST only when p ≥ q . The Taylor expansion
of (G1r) gives the power series below.

1−
√
1− 4pqz 2

2qz
=

∞∑

n=1

(2n − 3)!!2n−1

n!
pnqn−1z 2n−1

where !! denotes the double factorial. Particularly, (−1)!! = 1. We use a(i) to
denote the coefficient in the power series for z i , and so

a(2n − 1) =
(2n − 3)!!2n−1

n!
pnqn−1

A tour through the programming choices: semantics and applications 29

We note that the corresponding a(2 ∗n) to z 2n is 0. Let i = 2n − 1, so n = i+1
2 .

a(i) =
(i − 2)!!2

i−1

2

(i+1
2)!

p
i+1

2 q
i−1

2

We can rewrite this power series as follows using the Iverson bracket notation
defined in [183].

∞∑

n=1

a(2n − 1)z 2n−1 =

∞∑

n=0

[[n%2 = 1]]a(n)zn (G1pgf)

where [[n%2 = 1]] is 0 for all n that is even. According to (G1), now ϕ(n) =
[[n%2 = 1]]a(n). Now we expand the mth power in (Gm),

(
∞∑

n=0

ϕ(n)zn

)m

=

∞∑

n=0

µ(m,n)︷ ︸︸ ︷
n∑

i1=0

i1∑

i2=0

...

im−2∑

im−1=0︸ ︷︷ ︸
m−1

ϕ(n − i1)ϕ(i1 − i2) . . . ϕ(im−1)

zn

Finally, µ(m,n) above gives the probability of SRW reaching 0 after exact n
steps, when starting from m.

Probabilistic programming To reason about expected runtimes, as shown
in [183], an additional variable t of type natural numbers is introduced in PSRW
to count the iterations.

x := m; t := 0; while(x > 0){x := x − 1⊕p x := x + 1; t := t + 1} (TPSRW)

Unlike the other two verified loop examples (flip a coin and throw a pair of
dices) in [183] whose every experiment or iteration is independent of the previous
iterations, TPSRW’s each iteration is related to all previous iterations because
the value of x is updated in each step. For this reason, its loop invariant or the

fixed point does not share the same pattern: p
(n−1)
f ∗ ps where pf (or ps) is the

probability of non-termination (or termination) for each experiment.
However, we observe that µ(m,n) = p ∗µ(m−1,n−1)+q ∗µ(m+1,n−1),14

that is, the termination from m in n steps is only through two alternative ways:
move to the left (with probability p) and then terminate from m − 1 in n − 1
steps, or move to the right (with probability q) and then terminate from m + 1
in n − 1 steps. This observation helps us to define the fixed point of the loop.

Ht =̂[[¬ x > 0]] ∗ [[x ′ = x]] ∗ [[t ′ = t]] + [[x > 0]] ∗ [[x ′ = 0]]∗
(
[[t ′ − t ≥ x]] ∗ [[((t ′ − t)− x)%2 = 0]] ∗ µ(x − 1, t ′ − t − 1) ∗ p+
[[t ′ − t ≥ x + 2]] ∗ [[((t ′ − t)− (x + 2))%2 = 0]] ∗ µ(x + 1, t ′ − t − 1) ∗ q

)

14 This equation equips us another way to calculate the distribution µ(m,n) of SRW
through recursive functions.

30 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

which means if the initial value of x is not larger than 0, the loop behaves like
skip (unchanged variables). Otherwise, the loop terminates (that is, when the
final value of x is 0, x ′ = 0) through two possible initial steps: x decreased by
1 with probability p or increased by 1 with probability q , corresponding to two
operands of the addition in the parenthesis. In the first case, x is equal to 0 only
after more than x steps (t ′−t ≥ x) and the number (t ′−t) of steps must be even
(or odd) if x is even (or odd), as encoded in ((t ′ − t)− x)%2 = 0. In the second
case, x is equal to 0 only after more than x + 2 steps (t ′ − t ≥ x + 2) because
the first step moves away from 0 and the number (t ′ − t) of steps must be even
(or odd) if x + 2 is even (or odd), as encoded in ((t ′ − t)− (x + 2))%2 = 0.

We have proved that Ht is a fixed point. And the proof is omitted here for
brevity. The proof, however, has not been mechanised in Isabelle/UTP. This is
part of the future work Ye and Woodcock are interested in.

As shown above, finding the distributions of probabilistic loops and proving
their semantics is non-trivial, even for this simple program—PSRW. In ProbU-
Rel, Ye et al. [183] developed a constructive semantics for probabilistic loops
using Kleene’s fixed-point theorem. This can be used to approximate semantics
for loops in practice based on iterations. We explain the algorithm as follows.

A loop characterisation function is defined below where P is the loop body.

F (b,P ,X) =̂ if b then
(
P ;p X

)
else IIp

According to the theorems [183] about the least fixed point (lfp) and greatest
fixed point by construction, lfp and gfp can be constructed using the itera-
tion Fn (b,P ,⊥) from the bottom and the iteration Fn (b,P ,⊤) from the top
of the complete lattice. Additionally, Fn (b,P ,⊥) is an increasing chain and
Fn (b,P ,⊤) is an decreasing chain. The unique fixed point theorem shows that
if, for all states, the difference Fn (b,P ,⊤) − Fn (b,P ,⊥) between the two it-
erations tends to 0 when n approaches ∞, then the iterations coincide. Using
the iterations to determine lfp and gfp, in general, are not decidable because the
difference might never be 0 for any n (though its limit might be 0). However,
if we bound the difference as ε > 0, there always exists a n such that, for all
states, Fn (b,P ,⊤) − Fn (b,P ,⊥) < ε. Then Fn (b,P ,⊤) is an approximation
of lfp and Fn (b,P ,⊤) is an approximation of gfp though they bias. Then this
bounded approximation is decidable. For PSRW, the algorithm is shown below.

(1) choose a small ε, such as 1e − 9;

(2) compute a n such that the differences for all states are less than ε;

(3) compute F i (b,P ,⊥) for i from 0 to n; these are the termination probabilities
in terms of the number of steps (i), that is, the probability distribution of
PSRW up to n steps.

We note that in the approximated distribution, the probabilities for 0 to n
steps are exact and only the probabilities after n+1 are cut off (that is, all zero).

This approach could address the difficulty of finding and proving the distri-
bution in practice. We plan to also investigate this further in the future.

A tour through the programming choices: semantics and applications 31

5 Conclusions

In this chapter, we have taken a tour through the programming choices avail-
able across state- and process-based paradigms. Nondeterminism plays a funda-
mental role and traces its roots to the early theories of computation, where it
can be viewed as demonic or angelic. Semantically, the predicate transformer
view is perhaps simpler than the (multi)relational one, yet it’s pleasing that the
choices are duals in the respective lattices induced by refinement. The applica-
tions sketched in Sections 4.1 and 4.2 highlight the need for further work in this
area, not least the mechanisation of the theory [142] in Isabelle/UTP [46] and
the exploration of refinement laws. Extensions of that theory to calculi covering
time [21], perhaps via a relational account of tock -CSP [12], and other aspects
are also future work. A related question is whether Foster’s interaction trees [49]
could be extended to give an operational account to both choices, thus paving the
way for sound animation, an important bridge for engaging with practitioners.

Preferential choice forces us to step outside the realm of wp predicate trans-
formers, while having an elegant and easy to define model in prospective-value
(pv) expression transformers. The core logic of a theory of prospective values
that is able to account for both nondeterminism and nontermination requires
improper bunch theory (a self-flattening set theory with a ⊥ value for every
type) as an integral part, i.e., to model the outcome of computations. Prefer-
ential computations forfeit monotonicity, e.g., in the first operand of S ≫ T ,
but a restricted form of compositional refinement can be recovered via a Galois
connection between wp and pv computations. This enables us to safely replace
S ⊓ T in specification by S ≫ T in implementations, and thereby formally
justify the introduction of heuristics when exploring search spaces.

As hinted in Section 3.3, we managed to define and mechanise a suitable
model for preference and preferential computations in a wp calculus that builds
on top of a three-value logic—an instance of Gödel-Dummett logic—and man-
aged to verify the existence of the abovementioned Galois connection between
plain monotonic computations in wp semantics and preferential computations.
We expect this work to be published in the near future.

Probabilistic choice can be seen as a refinement of nondeterministic choice be-
cause it provides more specific information (probabilities) about how the choice
can be made. The semantics of probabilistic choice with the presence of nonde-
terministic choice are very different in the relational model and the predicate
transformer for imperative programs, and in process algebras. The review of
probabilistic choice in Section 3.4 and its application presented in Section 4.3
reveal the need for further work (1) in the extension of ProbURel to support
nondeterministic choice and concurrency, (2) in the practical tool support for
approximating probabilistic loops using ProbURel in addition to theorem prov-
ing for exact verification, and (3) in the extension of ITrees-based CSP and
Circus [49, 181] to support probabilistic choice for the sound animation of prob-
abilistic programs with nondeterministic choice resolved by priorities.

In summary, the type of programming choice that is most suitable very much
depends on our modelling needs. In some cases, several types of choices are even

32 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

feasible to adopt: e.g., backtracking can be modelled by both demonic and angelic
choice, using eithermagic or abort as a special program to trigger backtracking.
The deeper connections between choices at a semantic level are a fascinating area
of fundamental research, and the combination of several notions of choice in a
single universal theory remains a key challenge for unification.

Acronyms

ACP Algebra of Communicating Processes
API Application Programming Interface
AST Almost Sure Termination
CCS Calculus of Communicating Systems
CPS Cyber-Physical System
CSP Communicating Sequential Processes
cwp Conjugate Weakest Precondition
FDC Free Distributive Completion
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
GCL Guarded Command Language
MA Master Algorithm
MDP Markov Decision Process
PPP Probabilistic Predicative Programming
ProbURel Probabilistic Unifying Relations
PV Prospective Value
RW Random Walk
(S)SRW (Symmetric) Simple Random Walk
SU Simulation Unit
UTP Unifying Theories of Programming
wp Weakest Precondition
wpe A wp theory but built on top of three-valued logic
WPE Weakest Pre-Expectation
ZFC Zermelo–Fraenkel set theory with axiom of choice

Acknowledgments

The work on FMI benefited from discussions with Claudio Gomes, Simon Hansen,
Jaco van de Pol and JimWoodcock. EPSRC projects RoboCalc (EP/M025756/1),
RoboTest (EP/R025479/1), and CyPhyAssure (EP/S001190/1) funded the work
discussed here related to RoboChart.

References

1. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs,
Second Edition. MIT Press (1996)

A tour through the programming choices: semantics and applications 33

2. Andova, S.: Probabilistic process algebra. Ph.D. thesis, Mathematics and Com-
puter Science, Technische Universiteit Eindhoven (2002). 10.6100/IR561343

3. Apt, K.R., Olderog, E.: Nondeterminism and guarded commands. In: Apt,
K.R., Hoare, T. (eds.) Edsger Wybe Dijkstra: His Life, Work, and Legacy,
ACM Books, vol. 45, pp. 169–204. ACM / Morgan & Claypool (2022).
10.1145/3544585.3544595

4. Armoni, M., Ben-Ari, M.: The concept of nondeterminism: its development
and implications for teaching. ACM SIGCSE Bull. 41(2), 141–160 (2009).
10.1145/1595453.1595495

5. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal
of Algorithms 11(3), 441–461 (Sep 1990). 10.1016/0196-6774(90)90021-6

6. Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Annals of Pure and
Applied Logic 147(1), 23–47 (Jun 2007). 10.1016/j.apal.2007.03.001

7. Back, R.J.R., von Wright, J.: Duality in specification languages: a
lattice-theoretical approach. Acta Informatica 27(7), 583–625 (Jul 1990).
10.1007/bf00259469

8. Back, R., von Wright, J.: Refinement Calculus - A Systematic Introduction. Grad-
uate Texts in Computer Science, Springer (1998). 10.1007/978-1-4612-1674-2

9. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-
based cryptographic proofs. In: Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. p. 90–101.
POPL ’09, Association for Computing Machinery, New York, NY, USA (2009).
10.1145/1480881.1480894

10. Batz, K., Biskup, T.J., Katoen, J.P., Winkler, T.: Programmatic Strategy
Synthesis: Resolving Nondeterminism in Probabilistic Programs. Proceedings
of the ACM on Programming Languages 8(POPL), 2792–2820 (Jan 2024).
10.1145/3632935

11. Batz, K., Chen, M., Junges, S., Kaminski, B.L., Katoen, J.P., Matheja, C.: Prob-
abilistic Program Verification via Inductive Synthesis of Inductive Invariants, pp.
410–429. Springer Nature Switzerland (2023). 10.1007/978-3-031-30820-8 25

12. Baxter, J., Ribeiro, P., Cavalcanti, A.: Sound reasoning in tock-CSP. Acta Infor-
matica (Apr 2021). 10.1007/s00236-020-00394-3

13. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theor. Comput. Sci. 37, 77–121 (1985). 10.1016/0304-3975(85)90088-X

14. Blochwitz, T., Otter, M., Åkesson, J., Arnold, M., Clauss, C., Elmqvist, H.,
Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., et al.: Functional mockup
interface 2.0: The standard for tool independent exchange of simulation models.
In: 9th International Modelica Conference. pp. 173–184. The Modelica Associa-
tion (2012). 10.3384/ecp12076173

15. Bloom, B., Meyer, A.R.: A remark on bisimulation between probabilistic pro-
cesses. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik ’89. pp. 26–40.
Springer Berlin Heidelberg, Berlin, Heidelberg (1989). 10.1007/3-540-51237-3 4

16. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequen-
tial processes. J. ACM 31(3), 560–599 (1984). 10.1145/828.833

17. Broy, M., Wirsing, M.: On the algebraic specification of nondeterministic pro-
gramming languages. In: Astesiano, E., Böhm, C. (eds.) CAAP ’81, Trees in
Algebra and Programming, 6th Colloquium, Genoa, Italy, March 5-7, 1981, Pro-
ceedings. Lecture Notes in Computer Science, vol. 112, pp. 162–179. Springer
(1981). 10.1007/3-540-10828-9 61

34 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

18. Butler, M.J., Leuschel, M.: Combining CSP and B for specification and property
verification. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005: Formal
Methods, International Symposium of Formal Methods Europe, Newcastle, UK,
July 18-22, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3582, pp.
221–236. Springer (2005). 10.1007/11526841 16

19. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-circus. In: Davies, J., Gibbons,
J. (eds.) Integrated Formal Methods, 6th International Conference, IFM 2007,
Oxford, UK, July 2-5, 2007, Proceedings. Lecture Notes in Computer Science,
vol. 4591, pp. 75–97. Springer (2007). 10.1007/978-3-540-73210-5 5

20. Canham, S., Woodcock, J.: Three approaches to timed external choice in UTP. In:
Naumann, D.A. (ed.) Unifying Theories of Programming - 5th International Sym-
posium, UTP 2014, Singapore, May 13, 2014, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 8963, pp. 1–20. Springer (2014). 10.1007/978-3-
319-14806-9 1

21. Cavalcanti, A., Mota, A., Woodcock, J.: Simulink timed models for program ver-
ification. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and
Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th
Birthday. Lecture Notes in Computer Science, vol. 8051, pp. 82–99. Springer
(2013). 10.1007/978-3-642-39698-4 6

22. Cavalcanti, A., Sampaio, A., Woodcock, J.: A refinement strategy for circus. For-
mal Aspects Comput. 15(2-3), 146–181 (2003). 10.1007/S00165-003-0006-5

23. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in Unifying Theories

of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) Refinement
Techniques in Software Engineering, First Pernambuco Summer School on Soft-
ware Engineering, PSSE 2004, Recife, Brazil, November 23-December 5, 2004,
Revised Lectures. Lecture Notes in Computer Science, vol. 3167, pp. 220–268.
Springer (2004). 10.1007/11889229 6

24. Cavalcanti, A., Woodcock, J., Amálio, N.: Behavioural models for FMI co-
simulations. In: Sampaio, A., Wang, F. (eds.) Theoretical Aspects of Computing -
ICTAC 2016 - 13th International Colloquium, Taipei, Taiwan, ROC, October 24-
31, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9965, pp. 255–273
(2016). 10.1007/978-3-319-46750-4 15

25. Cavalcanti, A., Woodcock, J., Dunne, S.: Angelic nondeterminism in the unify-
ing theories of programming. Formal Aspects Comput. 18(3), 288–307 (2006).
10.1007/S00165-006-0001-8

26. Chadha, R., Cruz-Filipe, L., Mateus, P., Sernadas, A.: Reasoning about prob-
abilistic sequential programs. Theor. Comput. Sci. 379(1-2), 142–165 (2007).
10.1016/j.tcs.2007.02.040

27. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981). 10.1145/322234.322243

28. Chandy, K.M., Misra, J.: Parallel program design - a foundation. Addison-Wesley
(1989)

29. Chatterjee, K., Fu, H., Novotný, P.: Termination Analysis of Probabilistic
Programs with Martingales, p. 221–258. Cambridge University Press (2020).
10.1017/9781108770750

30. Chomsky, N.: Context-free grammars and pushdown storage. MIT Res. Lab. Elec-
tron. Quart. Prog. Report. 65, 187–194 (1962)

31. Commission of the European Communities: Information technology security eval-
uation criteria (ITSEC): Preliminary harmonised criteria. (June 1991)

A tour through the programming choices: semantics and applications 35

32. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A.,
Banerji, R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Sympo-
sium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA. pp.
151–158. ACM (1971). 10.1145/800157.805047

33. Cremona, F., Lohstroh, M., Broman, D., Natale, M.D., Lee, E.A., Tripakis, S.:
Step revision in hybrid co-simulation with FMI. In: 2016 ACM/IEEE Interna-
tional Conference on Formal Methods and Models for System Design, MEM-
OCODE 2016, Kanpur, India, November 18-20, 2016. pp. 173–183. IEEE (2016).
10.1109/MEMCOD.2016.7797762

34. Dahlqvist, F., Silva, A., Kozen, D.: Semantics of Probabilistic Programming:
A Gentle Introduction. In: Barthe, G., Katoen, J.P., Silva, A. (eds.) Founda-
tions of Probabilistic Programming, p. 1–42. Cambridge University Press (2020).
10.1017/9781108770750.002

35. Davies, J., Schneider, S.: A brief history of Timed CSP. Theoretical Computer
Science 138(2), 243–271 (Feb 1995). 10.1016/0304-3975(94)00169-j

36. Davis, M.D.: Computability and Unsolvability. McGraw-Hill Series in Information
Processing and Computers, McGraw-Hill (1958)

37. den Hartog, J., De Vink, E.: Verifying Probabilistic Programs Using a Hoare like
Logic. International journal of foundations of computer science 13(3), 315–340
(Jun 2002). 10.1142/S012905410200114X, imported from DIES

38. Dijkstra, E.W.: Correctness concerns and, among other things, why they are
resented (Nov 1974), http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD450.
PDF, invited paper, to be presented at the International Conference on Reliable
Software, Los Angeles, 21–23 April 1975; circulated privately

39. Dijkstra, E.W.: Guarded commands, non-determinacy and a calculus for the
derivation of programs (Jun 1974), http://www.cs.utexas.edu/users/EWD/

ewd04xx/EWD418.PDF, see EWD:EWD472; circulated privately
40. Dijkstra, E.: A Discipline of Programming. Prentice-Hall Series in Automa,

Prentice-Hall (1976)
41. Dijkstra, R.M.: DUALITY: A simple formalism for the analysis of UNITY. Formal

Aspects Comput. 7(4), 353–388 (1995). 10.1007/BF01211214
42. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions

on Information Theory 29(2), 198–208 (1983). 10.1109/TIT.1983.1056650
43. Dunne, S., Ferreira, J.F., Mendes, A., Ritchie, C., Stoddart, B., Zeyda, F.: bGSL:

An imperative language for specification and refinement of backtracking pro-
grams. Journal of Logical and Algebraic Methods in Programming 130, 100811
(Jan 2023). 10.1016/j.jlamp.2022.100811

44. Fischer, C.: How to combine Z with a process algebra. In: Bowen, J.P., Fett, A.,
Hinchey, M.G. (eds.) ZUM ’98: The Z Formal Specification Notation. pp. 5–23.
Springer, Berlin, Heidelberg (1998). 10.1007/978-3-540-49676-2 2

45. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967).
10.1145/321420.321422

46. Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying semantic
foundations for automated verification tools in Isabelle/UTP. Science of Com-
puter Programming 197, 102510 (2020). 10.1016/j.scico.2020.102510

47. Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying the-
ories of reactive design contracts. Theor. Comput. Sci. 802, 105–140 (2020).
10.1016/J.TCS.2019.09.017

48. Foster, S., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying theories of time
with generalised reactive processes. Inf. Process. Lett. 135, 47–52 (2018).
10.1016/J.IPL.2018.02.017

36 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

49. Foster, S., Hur, C., Woodcock, J.: Formally verified simulations of state-rich pro-
cesses using interaction trees in Isabelle/HOL. In: Haddad, S., Varacca, D. (eds.)
32nd International Conference on Concurrency Theory, CONCUR 2021, August
24-27, 2021, Virtual Conference. LIPIcs, vol. 203, pp. 20:1–20:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2021). 10.4230/LIPICS.CONCUR.2021.20

50. Foster, S., Zeyda, F., Nemouchi, Y., Ribeiro, P., Wolff, B.: Isabelle/utp: Mech-
anised theory engineering for unifying theories of programming. Arch. Formal
Proofs 2019 (2019), https://www.isa-afp.org/entries/UTP.html

51. Francez, N., Hoare, C.A.R., Lehmann, D.J., de Roever, W.P.: Semantics of nonde-
terminism, concurrency, and communication. J. Comput. Syst. Sci. 19(3), 290–308
(1979). 10.1016/0022-0000(79)90006-0

52. Freitas, L., Woodcock, J.: Mechanising mondex with z/eves. Formal Aspects Com-
put. 20(1), 117–139 (2008). 10.1007/S00165-007-0059-Y

53. Furusawa, H., Struth, G.: Taming multirelations. ACM Trans. Comput. Log.
17(4), 28 (2016). 10.1145/2964907

54. Gardiner, P.H.B., Morgan, C.: Data refinement of predicate transformers. Theor.
Comput. Sci. 87(1), 143–162 (1991). 10.1016/0304-3975(91)90029-2

55. Georgievska, S., Andova, S.: Probabilistic CSP: Preserving the Laws via Re-
stricted Schedulers. In: Schmitt, J.B. (ed.) Measurement, Modelling, and Evalua-
tion of Computing Systems and Dependability and Fault Tolerance. pp. 136–150.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012). 978-3-642-28540-0 10

56. Giacalone, A., Jou, C., Smolka, S.A.: Algebraic Reasoning for Probabilistic Con-
current Systems. In: Broy, M., Jones, C.B. (eds.) Programming concepts and
methods: Proceedings of the IFIP Working Group 2.2, 2.3 Working Conference
on Programming Concepts and Methods, Sea of Galilee, Israel, 2-5 April, 1990.
pp. 443–458. North-Holland (1990)

57. Gleirscher, M., Foster, S., Woodcock, J.: New opportunities for integrated formal
methods. ACM Comput. Surv. 52(6), 117:1–117:36 (2020). 10.1145/3357231

58. Gómez, F.C., de Frutos Escrig, D., Ruiz, V.V.: A sound and complete proof system
for probabilistic processes. In: Bertran, M., Rus, T. (eds.) Transformation-Based
Reactive Systems Development. pp. 340–352. Springer Berlin Heidelberg, Berlin,
Heidelberg (1997). 3-540-63010-4 23

59. Grimmett, G., Welsh, D.: Probability: An Introduction. Oxford University Press,
Clarendon Press (1986)

60. Hansen, S.T., Gomes, C., Palmieri, M., Thule, C., van de Pol, J., Woodcock, J.:
Verification of co-simulation algorithms subject to algebraic loops and adaptive
steps. In: Lluch-Lafuente, A., Mavridou, A. (eds.) Formal Methods for Industrial
Critical Systems - 26th International Conference, FMICS 2021, Paris, France,
August 24-26, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12863,
pp. 3–20. Springer (2021). 10.1007/978-3-030-85248-1 1

61. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and
probabilities. In: [1990] Proceedings 11th Real-Time Systems Symposium. pp.
278–287 (1990). 10.1109/REAL.1990.128759

62. Hansson, H.: Time and Probabilities in Formal Design of Distributed Systems.
PhD thesis, Department of Computer Systems, Uppsala University (1991)

63. Hartmanns, A., Hermanns, H.: In the quantitative automata zoo. Science of Com-
puter Programming 112, 3–23 (2015). 10.1016/j.scico.2015.08.009, fundamentals
of Software Engineering (selected papers of FSEN 2013)

64. He, J., Morgan, C., McIver, A.: Deriving Probabilistic Semantics Via the ‘Weakest
Completion’. In: Davies, J., Schulte, W., Barnett, M. (eds.) Formal Methods and

A tour through the programming choices: semantics and applications 37

Software Engineering. pp. 131–145. Springer Berlin Heidelberg, Berlin, Heidelberg
(2004). 978-3-540-30482-1 17

65. Hehner, E.C.R.: Predicative programming part i. Commun. ACM 27(2), 134–143
(feb 1984). 10.1145/69610.357988

66. Hehner, E.C.R.: Probabilistic predicative programming. In: Kozen, D., Shank-
land, C. (eds.) Mathematics of Program Construction, 7th International Confer-
ence, MPC 2004, Stirling, Scotland, UK, July 12-14, 2004, Proceedings. Lecture
Notes in Computer Science, vol. 3125, pp. 169–185. Springer (2004). 10.1007/978-
3-540-27764-4 10

67. Hehner, E.C.R.: A probability perspective. Formal Aspects Comput. 23(4), 391–
419 (2011). 10.1007/s00165-010-0157-0

68. Hehner, E.C.R.: a Practical Theory of Programming (2024-1-14 edition). Springer
(first edition) (Jan 2024), https://www.cs.toronto.edu/~hehner/aPToP/aPToP.
pdf

69. Hehner, E.C.: Bunch theory: A simple set theory for computer science. Informa-
tion Processing Letters 12(1), 26–30 (Feb 1981). 10.1016/0020-0190(81)90071-5

70. Hesselink, W.H.: LR-parsing derived. Sci. Comput. Program. 19(2), 171–196
(1992). 10.1016/0167-6423(92)90007-X

71. Hesselink, W.H.: Programs, Recursion and Unbounded Choice. Cambridge Uni-
versity Press (1992)

72. Hesselink, W.H.: Nondeterminacy and recursion via stacks and games. Theor.
Comput. Sci. 124(2), 273–295 (1994). 10.1016/0304-3975(92)00016-K

73. Hesselink, W.H.: Alternating states for dual nondeterminism in imper-
ative programming. Theor. Comput. Sci. 411(22-24), 2317–2330 (2010).
10.1016/J.TCS.2010.03.016

74. Hesselink, W.H., Reinds, R.: Temporal preconditions of recursive procedures. In:
de Bakker, J.W., de Roever, W.P., Rozenberg, G. (eds.) Sematics: Foundations
and Applications, REX Workshop, Beekbergen, The Netherlands, June 1-4, 1992,
Proceedings. Lecture Notes in Computer Science, vol. 666, pp. 236–260. Springer
(1992). 10.1007/3-540-56596-5 36

75. Hoare, C.A.R.: Algorithm 64: Quicksort. Commun. ACM 4(7), 321 (jul 1961).
10.1145/366622.366644

76. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). 10.1145/363235.363259

77. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978). 10.1145/359576.359585

78. Hoare, C.A.R.: A model for communicating sequential processes. In: McKeag,
R.M., Macnaghten, A.M. (eds.) On the Construction of Programs, pp. 229–254.
Cambridge University Press (1980)

79. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
80. Hoare, C., He, J.: The weakest prespecification. Information Processing Letters

24(2), 127–132 (Jan 1987). 10.1016/0020-0190(87)90106-2
81. Hurd, J.: Formal verification of probabilistic algorithms. Tech. Rep. UCAM-

CL-TR-566, University of Cambridge, Computer Laboratory (May 2003).
10.48456/tr-566

82. Jagadeesan, R., Shanbhogue, V., Saraswat, V.: Angelic non-determinism in con-
current constraint programming. Tech. rep., Technical report, Xerox Park (1991)

83. Jansen, D.N., Hermanns, H., Katoen, J.P.: A Probabilistic Extension of UML
Statecharts. In: Formal Tec. in Real-Time and Fault-Tolerant Syst. LNCS,
vol. 2469, pp. 355–374. Springer (2002). 3-540-45739-9 21

38 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

84. Jones, C.B., O’Hearn, P.W., Woodcock, J.: Verified software: A grand challenge.
Computer 39(4), 93–95 (2006). 10.1109/MC.2006.145

85. Jones, C.B.: Systematic software development using VDM. Prentice Hall Inter-
national Series in Computer Science, Prentice Hall (1986)

86. Jonsson, B., Yi, W., Larsen, K.G.: Chapter 11 - probabilistic extensions of process
algebras**this chapter is dedicated to the fond memory of Linda Christoff. In:
Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 685–
710. Elsevier Science, Amsterdam (2001). 10.1016/B978-044482830-9/50029-1

87. Jr., H.R.: Theory of recursive functions and effective computability (Reprint from
1967). MIT Press (1987)

88. Kaminski, B.L.: Advanced weakest precondition calculi for probabilistic programs.
Ph.D. thesis, RWTH Aachen University, Germany (2019), http://publications.
rwth-aachen.de/record/755408

89. Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest Precondition
Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM 65(5)
(aug 2018). 10.1145/3208102

90. Kennaway, R., Hoare, C.A.R.: A theory of nondeterminism. In: de Bakker, J.W.,
van Leeuwen, J. (eds.) Automata, Languages and Programming, 7th Colloquium,
Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings. Lecture Notes
in Computer Science, vol. 85, pp. 338–350. Springer (1980). 10.1007/3-540-10003-
2 82

91. Kok, J.N.: On Logic Programming and the Refinement Calculus: Semantics Based
Program Transformations. Technical Report RUU-CS-90-39, Utrecht University
(December 1990)

92. Kozen, D.: Semantics of probabilistic programs. Journal of Computer and System
Sciences 22(3), 328–350 (1981). 10.1016/0022-0000(81)90036-2

93. Kozen, D.: A probabilistic pdl. Journal of Computer and System Sciences 30(2),
162–178 (1985). 10.1016/0022-0000(85)90012-1

94. Kwiatkowska, M., Norman, G.: A fully abstract metric-space denotational se-
mantics for reactive probabilistic processes. Electronic Notes in Theoretical Com-
puter Science 13, 182 (1998). 10.1016/S1571-0661(05)80222-1, comprox III, Third
Workshop on Computation and Approximation

95. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6806, pp. 585–591. Springer (2011). 10.1007/978-3-642-22110-1 47

96. Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Inf. Comput.
94(1), 1–28 (1991). 10.1016/0890-5401(91)90030-6

97. Lowe, G.: Probabilistic and prioritized models of timed csp. Theoretical Computer
Science 138(2), 315–352 (1995). 10.1016/0304-3975(94)00171-E, meeting on the
mathematical foundation of programing semantics

98. López, N., Núñez, M.: An Overview of Probabilistic Process Algebras and Their
Equivalences, pp. 89–123. Springer Berlin Heidelberg (2004). 10.1007/978-3-540-
24611-4 3

99. Martin, A.P., Gardiner, P.H.B., Woodcock, J.: A tactic calculus-abridged version.
Formal Aspects Comput. 8(4), 479–489 (1996). 10.1007/BF01213535

100. Martin, C.E., Curtis, S.A., Rewitzky, I.: Modelling nondeterminism. In: Kozen,
D., Shankland, C. (eds.) Mathematics of Program Construction, 7th Interna-
tional Conference, MPC 2004, Stirling, Scotland, UK, July 12-14, 2004, Proceed-

A tour through the programming choices: semantics and applications 39

ings. Lecture Notes in Computer Science, vol. 3125, pp. 228–251. Springer (2004).
10.1007/978-3-540-27764-4 13

101. McCarthy, J.: A basis for a mathematical theory of computation, preliminary re-
port. In: Bauer, W.F. (ed.) Papers presented at the 1961 western joint IRE-AIEE-
ACM computer conference, IRE-AIEE-ACM 1961 (Western), Los Angeles, Cali-
fornia, USA, May 9-11, 1961. pp. 225–238. ACM (1961). 10.1145/1460690.1460715

102. McIver, A., Morgan, C.: Demonic, angelic and unbounded probabilistic
choices in sequential programs. Acta Informatica 37(4–5), 329–354 (Jan 2001).
10.1007/s002360000046

103. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer (2005). 10.1007/b138392

104. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems, chap. Introduction to pGCL: Its logic and its model, pp. 3–36. Springer New
York, New York, NY (2005). 10.1007/0-387-27006-X 1

105. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems, chap. Introduction to pGCL, pp. 3–35. Monographs in Computer Science,
Springer (2005). 10.1007/b138392

106. McIver, A., Morgan, C.: Correctness by construction for probabilistic programs.
In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation: Verification Principles - 9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,
October 20-30, 2020, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 12476, pp. 216–239. Springer (2020). 10.1007/978-3-030-61362-4 12

107. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.P.: A New Proof Rule for
Almost-Sure Termination. Proc. ACM Program. Lang. 2(POPL) (dec 2017).
10.1145/3158121

108. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer
Science, vol. 92. Springer (1980). 10.1007/3-540-10235-3

109. Mislove, M.: Nondeterminism and Probabilistic Choice: Obeying the Laws, pp.
350–365. Springer Berlin Heidelberg (2000). 10.1007/3-540-44618-4 26

110. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.:
Robochart: modelling and verification of the functional behaviour of robotic appli-
cations. Softw. Syst. Model. 18(5), 3097–3149 (2019). 10.1007/s10270-018-00710-z

111. Moosbrugger, M., Bartocci, E., Katoen, J., Kovács, L.: The Probabilistic Termi-
nation Tool Amber. In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.) Formal
Methods - 24th International Symposium, FM 2021, Virtual Event, November
20-26, 2021, Proceedings. Lecture Notes in Computer Science, vol. 13047, pp.
667–675. Springer (2021). 10.1007/978-3-030-90870-6 36

112. Morgan, C.: Programming from specifications. Prentice Hall International Series
in computer science, Prentice Hall (1990)

113. Morgan, C.: Of probabilistic wp and csp—and compositionality. In: Abdallah,
A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes.
The First 25 Years: Symposium on the Occasion of 25 Years of CSP, London, UK,
July 7-8, 2004. Revised Invited Papers, pp. 220–241. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005). 10.1007/11423348 12

114. Morgan, C., McIver, A.: pGCL: formal reasoning for random algorithms. South
African Computer Journal 22, 14–27 (1999), http://hdl.handle.net/10500/

24296
115. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM

Transactions on Programming Languages and Systems (TOPLAS) 18(3), 325–
353 (1996). 10.1145/229542.229547

40 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

116. Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probabil-
ity for csp. Form. Asp. Comput. 8(6), 617–647 (nov 1996). 10.1007/BF01213492

117. Morris, J.M.: A theoretical basis for stepwise refinement and the programming cal-
culus. Sci. Comput. Program. 9(3), 287–306 (1987). 10.1016/0167-6423(87)90011-
6

118. Morris, J.M.: Augmenting types with unbounded demonic and angelic nondeter-
minacy. In: Kozen, D., Shankland, C. (eds.) Mathematics of Program Construc-
tion, 7th International Conference, MPC 2004, Stirling, Scotland, UK, July 12-14,
2004, Proceedings. Lecture Notes in Computer Science, vol. 3125, pp. 274–288.
Springer (2004). 10.1007/978-3-540-27764-4 15

119. Morris, J.M., Bunkenburg, A.: A theory of bunches. Acta Informatica 37(8), 541–
561 (May 2001). 10.1007/PL00013316

120. Morris, J.M., Bunkenburg, A., Tyrrell, M.: Term Transformers: A New Approach
to State. ACM Transactions on Programming Languages and Systems 31(4) (May
2009). 10.1145/1516507.1516511

121. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

122. Nelson, G.: A Generalization of Dijkstra’s Calculus. ACM Transactions
on Programming Languages and Systems 11(4), 517–561 (Oct 1989).
10.1145/69558.69559

123. Nicola, R.D., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984). 10.1016/0304-3975(84)90113-0

124. Núñez, M., de Frutos, D., Llana, L.: Acceptance trees for probabilistic processes.
In: Lee, I., Smolka, S.A. (eds.) CONCUR ’95: Concurrency Theory. pp. 249–263.
Springer Berlin Heidelberg, Berlin, Heidelberg (1995). 10.1007/3-540-60218-6 18

125. Oliveira, M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for refine-
ment. Formal Aspects Comput. 15(1), 28–47 (2003). 10.1007/S00165-003-0003-8

126. Oliveira, M., Cavalcanti, A., Woodcock, J.: Formal development of industrial-scale
systems in Circus. Innov. Syst. Softw. Eng. 1(2), 125–146 (2005). 10.1007/S11334-
005-0014-0

127. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects Comput. 21(1-2), 3–32 (2009). 10.1007/S00165-007-0052-5

128. Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.P., Mciver, A.:
Conditioning in probabilistic programming. ACM Transactions on Programming
Languages and Systems 40(1), 1–50 (Jan 2018). 10.1145/3156018

129. Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987).
10.1145/23005.23008

130. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., USA, 1st edn. (1994)

131. Pólya, G.: Über eine aufgabe der wahrscheinlichkeitsrechnung betreffend die ir-
rfahrt im straßennetz. Mathematische Annalen 84(1–2), 149–160 (Mar 1921).
10.1007/bf01458701

132. Rabin, M.O.: Probabilistic algorithm for testing primality. Journal of Number
Theory 12(1), 128–138 (Feb 1980). 10.1016/0022-314x(80)90084-0

133. Rabin, M.O.: N-process mutual exclusion with bounded waiting by 4 · log2 n-
valued shared variable. Journal of Computer and System Sciences 25(1), 66–75
(Aug 1982). 10.1016/0022-0000(82)90010-1

134. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959). 10.1147/RD.32.0114

135. Ramshaw, L.H.: Formalizing the Analysis of Algorithms. Ph.D. thesis, Stanford
University, Stanford, CA, USA (1979), aAI8001994

A tour through the programming choices: semantics and applications 41

136. Rand, R., Zdancewic, S.: VPHL: A verified partial-correctness logic for prob-
abilistic programs. In: Ghica, D.R. (ed.) The 31st Conference on the Mathe-
matical Foundations of Programming Semantics, MFPS 2015, Nijmegen, The
Netherlands, June 22-25, 2015. Electronic Notes in Theoretical Computer Sci-
ence, vol. 319, pp. 351–367. Elsevier (2015). 10.1016/j.entcs.2015.12.021

137. Rewitzky, I.: Binary multirelations. In: de Swart, H.C.M., Orlowska, E., Schmidt,
G., Roubens, M. (eds.) Theory and Applications of Relational Structures as
Knowledge Instruments, COST Action 274, TARSKI, Revised Papers, Lecture
Notes in Computer Science, vol. 2929, pp. 256–271. Springer (2003). 10.1007/978-
3-540-24615-2 12

138. Rewitzky, I., Brink, C.: Predicate transformers as power operations. Formal As-
pects Comput. 7(2), 169–182 (1995). 10.1007/BF01211604

139. Ribeiro, P.: A unary semigroup trace algebra. In: Fahrenberg, U., Jipsen, P.,
Winter, M. (eds.) Relational and Algebraic Methods in Computer Science - 18th
International Conference, RAMiCS 2020, Palaiseau, France, April 8-11, 2020, Pro-
ceedings [postponed]. Lecture Notes in Computer Science, vol. 12062, pp. 270–285.
Springer (2020). 10.1007/978-3-030-43520-2 17

140. Ribeiro, P., Cavalcanti, A.: Angelicism in the theory of reactive processes. In:
Naumann, D.A. (ed.) Unifying Theories of Programming - 5th International Sym-
posium, UTP 2014, Singapore, May 13, 2014, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 8963, pp. 42–61. Springer (2014). 10.1007/978-
3-319-14806-9 3

141. Ribeiro, P., Cavalcanti, A.: UTP designs for binary multirelations. In: Ciobanu,
G., Méry, D. (eds.) Theoretical Aspects of Computing - ICTAC 2014 - 11th In-
ternational Colloquium, Bucharest, Romania, September 17-19, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8687, pp. 388–405. Springer (2014).
10.1007/978-3-319-10882-7 23

142. Ribeiro, P., Cavalcanti, A.: Angelic processes for CSP via the UTP. Theor. Com-
put. Sci. 756, 19–63 (2019). 10.1016/J.TCS.2018.10.008

143. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science,
Springer (2011)

144. Schneider, S.A., Treharne, H.: Communicating B machines. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002: Formal Specification and De-
velopment in Z and B, 2nd International Conference of B and Z Users, Grenoble,
France, January 23-25, 2002, Proceedings. Lecture Notes in Computer Science,
vol. 2272, pp. 416–435. Springer (2002). 10.1007/3-540-45648-1 22

145. Schröer, P., Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C.: A Deductive
Verification Infrastructure for Probabilistic Programs. Proceedings of the ACM on
Programming Languages 7(OOPSLA2), 2052–2082 (Oct 2023). 10.1145/3622870

146. Schützenberger, M.P.: On context-free languages and push-down automata. Inf.
Control. 6(3), 246–264 (1963). 10.1016/S0019-9958(63)90306-1

147. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
J. of Computing 2(2), 250–273 (jun 1995)

148. Seidel, K.: Probabilistic communicating processes. Theoretical Computer Science
152(2), 219–249 (1995). 10.1016/0304-3975(94)00286-0

149. Sherif, A., He, J.: Towards a time model for circus. In: George, C., Miao, H.
(eds.) Formal Methods and Software Engineering, 4th International Conference
on Formal Engineering Methods, ICFEM 2002 Shanghai, China, October 21-25,
2002, Proceedings. Lecture Notes in Computer Science, vol. 2495, pp. 613–624.
Springer (2002). 10.1007/3-540-36103-0 62

42 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

150. Sherif, A., He, J., Cavalcanti, A., Sampaio, A.: A framework for specification and
validation of real-time systems using Circus actions. In: Liu, Z., Araki, K. (eds.)
Theoretical Aspects of Computing - ICTAC 2004, First International Colloquium,
Guiyang, China, September 20-24, 2004, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 3407, pp. 478–493. Springer (2004). 10.1007/978-3-540-
31862-0 34

151. Smith, G., Derrick, J.: Specification, refinement and verification of concurrent
systems-an integration of object-z and CSP. Formal Methods Syst. Des. 18(3),
249–284 (2001). 10.1023/A:1011269103179

152. Stepney, S., Cooper, D., Woodcock, J.: More powerful Z data refinement: Pushing
the state of the art in industrial refinement. In: Bowen, J.P., Fett, A., Hinchey,
M.G. (eds.) ZUM ’98: The Z Formal Specification Notation, 11th International
Conference of Z Users, Berlin, Germany, September 24-26, 1998, Proceedings.
Lecture Notes in Computer Science, vol. 1493, pp. 284–307. Springer (1998).
10.1007/978-3-540-49676-2 20

153. Stoddart, B., Dunne, S., Mu, C., Zeyda, F.: Bunch theory: Axioms, logic, appli-
cations and model. Journal of Logical and Algebraic Methods in Programming
140, 100977 (Aug 2024). 10.1016/j.jlamp.2024.100977

154. Stoddart, B., Zeyda, F.: A unification of probabilistic choice within a design-based
model of reversible computation. Formal Aspects of Computing 25(1), 107–131
(Jan 2013). 10.1007/s00165-007-0048-1

155. Stoddart, B., Zeyda, F., Dunne, S.: Preference and Non-deterministic Choice. In:
Theoretical Aspects of Computing – ICTAC 2010. LNCS, vol. 6255, pp. 137–152.
Springer (Sep 2010). 10.1007/11415787 12

156. Sun, J., Liu, Y., Dong, J.S., Pang, J.: Pat: Towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. pp.
709–714. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). 10.1007/978-3-
642-02658-4 59

157. Sun, J., Song, S., Liu, Y.: Model checking hierarchical probabilistic systems. In:
Dong, J.S., Zhu, H. (eds.) Formal Methods and Software Engineering. pp. 388–
403. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). 10.1007/978-3-642-
16901-4 26

158. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press (2005)

159. Tracy, C.A.: Lecture note in First Passage of a One-Dimensional Ran-
dom Walker. http://www.math.ucdavis.edu/~tracy/courses/math135A/

UsefullCourseMaterial/firstPassage.pdf (2020)

160. Turing, A.M.: On computable numbers, with an application to the
entscheidungsproblem. Proc. London Math. Soc. s2-42(1), 230–265 (1937).
10.1112/PLMS/S2-42.1.230

161. Tyrrell, M., Morris, J.M., Butterfield, A., Hughes, A.: A lattice-theoretic model
for an algebra of communicating sequential processes. In: Barkaoui, K., Caval-
canti, A., Cerone, A. (eds.) Theoretical Aspects of Computing - ICTAC 2006,
Third International Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4281, pp. 123–137. Springer (2006).
10.1007/11921240 9

162. Vanglabbeek, R., Smolka, S., Steffen, B.: Reactive, generative, and stratified mod-
els of probabilistic processes. Information and Computation 121(1), 59–80 (1995).
10.1006/inco.1995.1123

A tour through the programming choices: semantics and applications 43

163. Ward, N., Hayes, I.: Applications of angelic nondeterminism. In: Australian Soft-
ware Engineering Conference 1991: Engineering Safe Software; Proceedings. pp.
391–404. Australian Computer Society, Sydney, N.S.W. (1991). 10.3316/infor-
mit.553249589811640

164. Wei, K., Woodcock, J., Burns, A.: A timed model of circus with the reactive
design miracle. In: Fiadeiro, J.L., Gnesi, S., Maggiolo-Schettini, A. (eds.) 8th
IEEE International Conference on Software Engineering and Formal Methods,
SEFM 2010, Pisa, Italy, 13-18 September 2010. pp. 315–319. IEEE Computer
Society (2010). 10.1109/SEFM.2010.40

165. Williams, D.: Probability with Martingales. Cambridge University Press (1991)
166. Woodcock, J.: An introduction to refinement in Z. In: Prehn, S., Toetenel, W.J.

(eds.) VDM ’91 - Formal Software Development, 4th International Symposium
of VDM Europe, Noordwijkerhout, The Netherlands, October 21-25, 1991, Pro-
ceedings, Volume 2: Tutorials. Lecture Notes in Computer Science, vol. 552, pp.
96–117. Springer (1991)

167. Woodcock, J.: A tutorial on the refinement calculus. In: Prehn, S., Toetenel,
W.J. (eds.) VDM ’91 - Formal Software Development, 4th International Sympo-
sium of VDM Europe, Noordwijkerhout, The Netherlands, October 21-25, 1991,
Proceedings, Volume 2: Tutorials. Lecture Notes in Computer Science, vol. 552,
pp. 79–140. Springer (1991). 10.1007/BFB0019996

168. Woodcock, J.: Using circus for safety-critical applications. In: Cavalcanti, A.,
Machado, P.D.L. (eds.) Proceedings of the 6th Brazilian Workshop on For-
mal Methods, WMF 2003, Campina Grande, Brazil, October 12-14, 2003. Elec-
tronic Notes in Theoretical Computer Science, vol. 95, pp. 3–22. Elsevier (2003).
10.1016/J.ENTCS.2004.04.003

169. Woodcock, J.: The miracle of reactive programming. In: Butterfield, A. (ed.)
Unifying Theories of Programming, Second International Symposium, UTP 2008,
Dublin, Ireland, September 8-10, 2008, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 5713, pp. 202–217. Springer (2008). 10.1007/978-3-642-
14521-6 12

170. Woodcock, J.: Engineering utopia - formal semantics for CML. In: Jones, C.B.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014: Formal Methods - 19th International
Symposium, Singapore, May 12-16, 2014. Proceedings. Lecture Notes in Com-
puter Science, vol. 8442, pp. 22–41. Springer (2014). 10.1007/978-3-319-06410-9 3

171. Woodcock, J., Cavalcanti, A.: A Tutorial Introduction to Designs in Unifying The-
ories of Programming. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) Integrated
Formal Methods, 4th International Conference, IFM 2004, Canterbury, UK, April
4-7, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2999, pp. 40–66.
Springer (2004). 10.1007/978-3-540-24756-2 4

172. Woodcock, J., Cavalcanti, A.: A tutorial introduction to designs in unifying the-
ories of programming. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) Integrated
Formal Methods, 4th International Conference, IFM 2004, Canterbury, UK, April
4-7, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2999, pp. 40–66.
Springer (2004). 10.1007/978-3-540-24756-2 4

173. Woodcock, J., Cavalcanti, A., Foster, S., Mota, A., Ye, K.: Probabilistic Semantics
for RoboChart. In: Ribeiro, P., Sampaio, A. (eds.) Unifying Theories of Program-
ming. pp. 80–105. Springer International Publishing, Cham (2019). 10.1007/978-
3-030-31038-7 5

174. Woodcock, J., Cavalcanti, A., Foster, S., Oliveira, M., Sampaio, A., Zeyda, F.:
UTP, Circus, and Isabelle. In: Bowen, J.P., Li, Q., Xu, Q. (eds.) Theories of Pro-
gramming and Formal Methods - Essays Dedicated to Jifeng He on the Occasion

44 P. Ribeiro, K. Ye, F. Zeyda, and A. Miyazawa.

of His 80th Birthday. Lecture Notes in Computer Science, vol. 14080, pp. 19–51.
Springer (2023). 10.1007/978-3-031-40436-8 2

175. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal meth-
ods: Practice and experience. ACM Comput. Surv. 41(4), 19:1–19:36 (2009).
10.1145/1592434.1592436

176. Woodcock, J., Stepney, S., Cooper, D., Clark, J.A., Jacob, J.: The certification of
the mondex electronic purse to ITSEC level E6. Formal Aspects Comput. 20(1),
5–19 (2008). 10.1007/S00165-007-0060-5

177. Wu, S., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic
i/o automata. Theoretical Computer Science 176(1), 1–38 (1997). 10.1016/S0304-
3975(97)00056-X

178. Xia, L.y., Zakowski, Y., He, P., Hur, C.K., Malecha, G., Pierce, B.C., Zdancewic,
S.: Interaction trees: representing recursive and impure programs in coq. Proc.
ACM Program. Lang. 4(POPL) (dec 2019). 10.1145/3371119

179. Ye, K., Cavalcanti, A., Foster, S., Miyazawa, A., Woodcock, J.: Probabilistic mod-
elling and verification using RoboChart and PRISM. Softw. Syst. Model. 21(2),
667–716 (2022). 10.1007/s10270-021-00916-8

180. Ye, K., Foster, S., Woodcock, J.: Automated reasoning for probabilistic sequential
programs with theorem proving. In: Fahrenberg, U., Gehrke, M., Santocanale,
L., Winter, M. (eds.) Relational and Algebraic Methods in Computer Science.
pp. 465–482. Springer International Publishing, Cham (2021). 10.1007/978-3-030-
88701-8 28

181. Ye, K., Foster, S., Woodcock, J.: Formally verified animation for robochart using
interaction trees. Journal of Logical and Algebraic Methods in Programming 137,
100940 (2024). 10.1016/j.jlamp.2023.100940

182. Ye, K., Woodcock, J.: RoboCertProb: Property Specification for Probabilistic
RoboChart Models (2024), https://arxiv.org/abs/2403.08136

183. Ye, K., Woodcock, J., Foster, S.: Probabilistic relations for modelling epistemic
and aleatoric uncertainty: semantics and automated reasoning with theorem prov-
ing. CoRR abs/2303.09692 (2023). 10.48550/ARXIV.2303.09692

184. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In:
Proceedings of the IFIP TC6/WG6.1 Twelth International Symposium on Proto-
col Specification, Testing and Verification XII. p. 47–61. North-Holland Publishing
Co., NLD (1992)

185. Zabih, R., McAllester, D.A., Chapman, D.: Non-deterministic Lisp with
dependency-directed backtracking. In: Forbus, K.D., Shrobe, H.E. (eds.) Pro-
ceedings of the 6th National Conference on Artificial Intelligence. Seattle, WA,
USA, July 1987. pp. 59–65. Morgan Kaufmann (1987), http://www.aaai.org/
Library/AAAI/1987/aaai87-011.php

186. Zeyda, F.: Reversible Computations in B. Ph.D. thesis, University of Teesside,
Middlesbrough, Tees Valley, TS1 3BX, UK (Jul 2007)

187. Zeyda, F., Stoddart, B., Dunne, S.: A Prospective-Value Semantics for the GSL.
In: ZB 2005: Formal Specification and Development in Z and B. LNCS, vol. 3455,
pp. 187–202. Springer (Apr 2005). 10.1007/11415787 12

	A tour through the programming choices: semantics and applications

