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Abstract

Graph Burning models information spreading in a given graph as a process such that in each step
one node is infected (informed) and also the infection spreads to all neighbors of previously infected
nodes. Formally, given a graph G = (V, E), possibly with edge lengths, the burning number b(G) is
the minimum number g such that there exist nodes v0, . . . , vg−1 ∈ V satisfying the property that for
each u ∈ V there exists i ∈ {0, . . . , g − 1} so that the distance between u and vi is at most i.

We present a randomized 2.314-approximation algorithm for computing the burning number of
a general graph, even with arbitrary edge lengths. We complement this by an approximation lower
bound of 2 for the case of equal length edges, and a lower bound of 4/3 for the case when edges are
restricted to have length 1.

This improves on the previous 3-approximation algorithm and an APX-hardness result.
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1 Introduction

Graph Burning was introduced by Bonato et al. [4] as a model of information spreading and,

more specifically, as a model of contagion or influence in social networks. The idea is that

“infecting” several nodes in the network and spreading information from them may reach

the whole network very fast. Formally, it is defined as the following process, where burned

nodes in a graph represent the infected part of the network.

At time t = 0, no node of the graph is burned. At time t = 1, we choose a node and burn

it. At each time step t > 1, all neighbors of already burned nodes are also burned, and we

may choose another node to burn. The process stops when all nodes are burned. We call

the sequence of chosen nodes a burning schedule of the graph. The burning number b(G) of

a graph G is the minimum number of steps needed for all nodes of G to be burned.
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9:2 Approximation Algorithms and Lower Bounds for Graph Burning

For a burning schedule of length ℓ, the node selected at time t ensures that all nodes

within distance ℓ− t from it will be burned. We can thus reformulate the Graph Burning

problem as looking for the minimal g such that all nodes of the graph can be covered by

some placement of g balls with unique radii from g − 1 to 0. Placing a ball with radius r at

node v thus ensures the coverage of all nodes within the ball and represents selecting node v

to be set on fire at time g − r in the original formulation of the problem. This formulation

also works naturally in the presence of arbitrary edge lengths.

The ball formulation emphasizes the relation of Graph Burning to the k-Center problem,

where we try to cover the graph by k balls of equal radius, with the objective of minimizing

the radius. In the non-uniform variant of the k-Center problem [7], different balls (centers)

can have different radii, and in particular, the variant with a constant number of different

radii is well-studied [11, 10]. Graph Burning can be viewed as an extreme version of the

Non-Uniform k-Center problem, where neither the number of centers nor the number of

distinct radii are fixed. This setting is challenging both for the design of efficient algorithms

and for proving lower bounds. Thus studying Graph Burning can help to develop new

techniques and insights that may be useful even for variants of k-Center and/or other facility

location problems.

1.1 State of the art

Adapting a well-known greedy 2-approximation algorithm for the k-Center problem, Bonato

and Kamali [5] gave a 3-approximation algorithm for Graph Burning. In fact, the approxim-

ation ratio of the algorithm is 3 − 2/b(G), which is a slight improvement if b(G) is small;

see also Appendix 3 for a review of this algorithm. Another (3− 2/b(G))-approximation

algorithm for arbitrary graphs was reported in [9]. In [5] it was stated as an open problem

to find an improved algorithm, but no (3− ε)-approximation algorithm for general graphs

was known before our work.

In previous work approximation algorithms and approximation schemes were developed

for trees [5] and other special graph classes [6], we refer to survey [3] for further references.

This stream of research is now subsumed by [15], where it is shown that for graphs of small

treewidth, a PTAS exists. The parameterized complexity of Graph Burning was studied

in [12, 13, 14].

On the hardness side, it is known that computing the burning number of a graph is

NP-complete even on simple classes of graphs such as trees or even disjoint unions of paths

with unit edge lengths [2]. Answering an open question from [5], Mondal et al. [17, 18] have

shown that Graph Burning is APX-hard, using a complex reduction from vertex cover in

cubic graphs, but did not give an explicit lower bound on the approximation ratio.

1.2 Our results

In this paper, we present a randomized (α + ε)-approximation algorithm for the Graph

Burning problem on graphs with arbitrary edge lengths, where α = 2e2/(e2 − 1) < 2.314 and

ε > 0 is arbitrarily small. This is the first improvement of the previous easy 3-approximation

algorithm based on k-Center results.

It has been speculated in [5] that an improved approximation algorithm will need to use

a better lower bound on the burning number, presumably combinatorial. We do not use

this line of attack. Instead, we use the power of randomization and analyze the following

procedure: we greedily process the yet uncovered nodes and, on each such node, we put

a center with radius chosen uniformly from a range 0, . . . , R for a carefully chosen R. This
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process is not easy to analyze, as the choices of nodes to be covered depend on the previous

random choices. Nevertheless, we are able to show that it has a martingale property and use

this to prove that the process succeeds with high probability.

On the hardness side, we give simple and explicit lower bounds on the approximation

ratio for Graph Burning. We first prove a lower bound of 2 on the approximation ratio for

graphs with edge lengths, which is close to our upper bound. This is an important insight

since the methods we use in our algorithms but also other current approaches work even in

the presence of arbitrary edge lengths, so they are all subject to this lower bound. We note

that the lower bound works even if all the edge lengths are equal. We also prove a lower

bound of 4/3 for graphs where all edges have length 1.

In [5] the authors note that known hardness results for related problems such as the

k-Center or Dominating Set problems do not apply to Graph Burning. Indeed, they cannot

be applied directly, as in approximations for Graph Burning we implicitly use both more

centers and larger radii of the balls. Lower bounds for this kind of bicriteria approximations

are naturally harder to show, which explains the slow progress on the inapproximability side.

We use a somewhat indirect reduction from the Dominating Set problem. For edges

of length 1 the reduction is more complicated, as we need to subdivide the edges of the

Dominating Set instance. As a consequence, when converting the dominating set to a Graph

Burning solution, we have to use larger radii to cover the new vertices, which decreases

the inapproximability bound. When other edge lengths are allowed, the subdivided edges

can be replaced by long edges, which leads to the improved lower bound of 2. This is close

to the performance of our algorithm.

Closing the remaining gap is an interesting open problem. We conjecture that the optimal

approximation ratio is 2 at least for the version with arbitrary edge lengths.

1.3 Paper overview

In Section 2 we introduce some notations and conventions. In Section 3, we review the

3-approximation algorithm in our framework, which amounts to using the same radius

for all centers. In Sections 4 and 5 we gradually introduce the building blocks of our

algorithm. We examine the possibility of using a constant number of different radii, which

leads to a deterministic algorithm for a logarithmic number of centers (Section 4). Then we

examine the possibility of randomly choosing among two radii in Section 5. This leads to an

approximation ratio below 3 and allows us to gently introduce the necessary probabilistic

machinery, including the martingale approach. In Section 6 we apply all the ingredients and

present the final 2.314-approximation algorithm. Finally, in Section 7 we present our lower

bounds.

2 Preliminaries

We start with a formal definition of Graph Burning.

▶ Definition 2.1. An instance of Graph Burning is an undirected graph G = (V, E) with

non-negative edge lengths. The distance d(u, v) is defined as the length of the shortest path

from u to v. We let n = ♣V ♣.

A center is a pair c = (v, r) with v ∈ V and r a non-negative integer; v denotes

the node where the center is placed and r denotes the radius. Given a center c we de-

note its radius by r(c). A solution of a Graph Burning instance is a set of centers

¶(v0, 0), (v1, 1), . . . , (vg−1, g− 1)♢. It is feasible if for any node w ∈ V there exists i < g such

that d(w, vi) ≤ i. The objective of the Graph Burning problem is to minimize g over all

feasible solutions. The minimum g is called the burning number of G and is denoted b(G).

APPROX/RANDOM 2023



9:4 Approximation Algorithms and Lower Bounds for Graph Burning

Conventions for the algorithms. When running our algorithms, we will be building up a set

of centers alg. We allow the set alg not to use all the radii between 0 and the maximal

radius. At the end of the algorithm, if needed, balls with the remaining radii can be placed

arbitrarily completing a feasible solution without changing the maximal radius.

The set ¶(v0, 0), . . . , (vn−1, n− 1)♢ is a trivial valid solution for any ordering of V =

¶v0, . . . , vn−1♢. Thus b(G) ≤ n even with arbitrary edge lengths. We assume that V ̸= ∅

and thus b(G) ≥ 1. For most of our algorithms, we will assume that the algorithm is given

an integer g, presumably the burning number, and its goal is to find a feasible solution of

size at most σg for some approximation ratio σ, or possibly fail if g is smaller than b(G). We

then try all n possible values of g in our final algorithm.

Notations for the optimum. In the analysis of our algorithms, we fix some optimal solution

opt using centers with unique radii from 0 to b(G) − 1. Furthermore, we assign each

node w ∈ V to a unique center copt(w) = (v, r) ∈ opt that is covering it (i.e., d(w, v) ≤ r),

thus creating a partition of the set of nodes of the graph. For every copt ∈ opt we denote

the set of nodes assigned to it as V (copt).

Good centers. For any center copt in the optimal solution, if the computed solution alg

contains a center calg = (v, r) where r ≥ 2r(copt) and v ∈ V (copt), then all nodes in V (copt)

are covered by calg. If such a calg exists, we say that copt is made good by calg.

▶ Definition 2.2. A center copt ∈ opt is good if there exists a calg = (v, r) ∈ alg with

r ≥ 2r(copt) and v ∈ V (copt).

Note that copt being good is not a necessary condition for all of V (copt) to be covered –

a well-placed center of radius r < 2r(copt), multiple smaller centers, and/or centers located

outside of V (copt) might cover all of V (copt).

We design our algorithms so that the (expected) number of good centers increases in

each step and rely on the fact that a solution alg is feasible whenever it makes all centers of

the optimum good. While it may happen that not all centers of opt become good, eventually

all nodes end up covered as the number of good centers is increasing and it cannot increase

beyond the number of centers in the optimal solution.

Classes of centers. Most of our algorithms divide the radii at their disposal using a series

of thresholds. The thresholds are given as a list q1, q2, q3, . . . of increasing numbers (not

necessarily integers). For a center copt ∈ opt, we define its class as the smallest i such that

using qi for v ∈ V (copt) ensures that copt becomes good:

▶ Definition 2.3. For a center copt ∈ opt we refer to the minimal i such that the threshold qi

is larger than or equal to 2r(copt) as the class of copt.

Procedure for selecting a radius. Whenever our algorithms need to use a radius to add

a center to alg, they call the procedure Select(q), which takes a number q (typically

a threshold) as its input. It then returns the minimal integer radius that has not yet been

used by the algorithm and is at least q.

This procedure guarantees that our algorithms always use centers of distinct radii, at the

cost of possibly increasing the largest radius and thus the size of the solution. In the analysis,

we then need to prove that the maximal radius used is (with high probability) small enough.

Notations. We use exp(x) to denote ex. We also use the convention that x/yz = x/(yz).
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3 Deterministic 3-approximation algorithm and overall approach

We revisit the 3-approximation algorithm from [4]. See Algorithm 1 for our formalization;

recall that we assume that the algorithm is given g. We use a single threshold q1 = 2(g − 1).

This means that all centers copt are class 1, as the optimum uses radii up to g − 1, while our

algorithm will use radii 2g − 2, 2g − 1 and so on.

Algorithm 1 The deterministic 3-approximation algorithm.

alg← ∅; q1 = 2g − 2

while an uncovered node exists do

Select an arbitrary uncovered node v

r = Select(q1)

Add center (v, r) to alg and update the set of uncovered nodes

return alg

Observe that whenever we select an uncovered node v, it is covered by some class 1

center copt(v) that is not good. Placing a center calg with radius at least q1 at v is guaranteed

to make copt(v) good. Thus, once we place g centers calg with radii at least q1, all centers of

opt will be good and the algorithm finishes. Note that all nodes might be covered without all

centers of opt being good, making the algorithm finish sooner. Either way, we are guaranteed

to never select a radius greater than q1 + g − 1 = 3g − 3, making this a 3-approximation

algorithm. More precisely, the algorithm uses 3g− 2 centers, as opposed to optimal b(G) ≤ g.

So the approximation ratio becomes 3− 2/b(G), as mentioned in the introduction.

4 Deterministic algorithm for small burning number

Let us now explore an approach that uses z thresholds equally spaced between 0 and 2(g− 1),

for some constant z. This means, disregarding rounding, that the optimum centers are

divided into z classes, where the class i has g/z centers of radii between (i− 1)g/z and ig/z.

The algorithm will aim to cover the centers of class i using thresholds approximately 2ig/z,

each for g/z nodes. As a result the largest radius can be bounded by 2g + g/z.

Similar to before, this algorithm will choose an uncovered node in each iteration as

a center for the approximate solution. This would work easily if we knew in advance the

class of the center copt covering the chosen node, so that we could use the corresponding

threshold in the algorithm. Instead, we try all the possible sequences of thresholds, using

each threshold for at most ⌈g/z⌉ nodes, matching the number of optimal centers of each

class. The analysis is somewhat subtle, as the node to be processed depends on the previous

choices of the algorithm, so the sequence of thresholds used in the optimum needs to be

constructed based on the nodes chosen by the algorithm.

Formalizing this idea with some attention to rounding and also the fact that the optimum

can use fewer than g centers, we obtain an algorithm that finds a Graph Burning solution

with objective at most (2 + 1/z)g in time O (zgpoly(n)) for any given integer z and g ≥ b(G);

see Algorithm 2.

▶ Theorem 4.1. If g ≥ b(G) then Algorithm 2 runs in O (zgpoly(n))-time and achieves an

approximation ratio of (2 + 1/z).

For the full proof of Theorem 4.1 see Appendix A. (For z ≥ g, the proof actually gives ratio

2− 1/g. We omit that in the statement, as in the relevant case z is small.)

APPROX/RANDOM 2023



9:6 Approximation Algorithms and Lower Bounds for Graph Burning

Algorithm 2 Deterministic algorithm for small g.

if z > g then z ← g

Order V arbitrarily

qi ← 2gi/z − 2 for i ∈ ¶1, . . . , z♢

Let S be a set of all possible sequences S = s0, s1, . . . , sg−1 with st ∈ ¶1, . . . , z♢

such that each value is used at most ⌈g/z⌉ times

for S ∈ S do

alg← ∅

for t← 0, 1, . . . , g − 1 do

Let v be the first uncovered node; r ← Select(qst
)

Add center (v, r) to alg and update the set of uncovered nodes

if all nodes are covered then return alg

return Fail

The running time is polynomial if g ∈ O (log n) and z ∈ O (1), thus we get a deterministic

(2 + 1/z)-approximation algorithm in this case. We will later use this result in our final

algorithm with z = 4, ensuring an approximation ratio of 2 + 1/4 < 2.314 for small b(G).

5 Randomized approach with two classes of centers

As a warmup, in this section we introduce the main ideas of our techniques by considering

a simpler setup. In particular, let us only use two thresholds g − 1 and 2(g − 1), and choose

a radius randomly among the two values of the threshold; see Algorithm 3.

Algorithm 3 The randomized algorithm with two classes.

alg← ∅; qi ← i(g − 1) for i ∈ ¶1, 2♢

while an uncovered node exists do

Select an arbitrary uncovered node v

Let kv ∈ ¶1, 2♢ be chosen uniformly at random, independently from other choices

r ← Select(qkv
)

Add center (v, r) to alg and update the set of uncovered nodes

return alg

Note that, as the radii start with 0, the optimum has ⌈g/2⌉ class 1 centers and ⌊g/2⌋ class 2

centers. Observe that a class 1 center copt becomes good whenever we select an uncovered

node from V (copt). A class 2 center copt becomes good if we select an uncovered node from

V (copt) and then randomly decide to use threshold q2. If we were to make all centers of opt

good, we would use in expectation one radius per class 1 center and two radii per class 2

center, evenly distributed between threshold q1 and threshold q2. Since each class of centers

of opt contains roughly 0.5g centers, we expect at most 1.5g total radii being needed. Of

these, we expect half, i.e., 0.75g, to be at least the threshold q2 ≤ 2g. This indicates that

roughly a 2.75-approximation algorithm should be the result.

Using a detailed analysis it is indeed possible to prove that Algorithm 3 is a (2.75 + ε)-

approximation algorithm, improving on the previously known 3-approximation. For simplicity

and to introduce the key ideas for our main algorithm, we will however only prove that this

is a 2.9-approximation algorithm for g divisible by 10 (to avoid rounding issues), and then

move on to give our 2.314-approximation in the following section. We show that the following

holds with high probability:
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less than 1.6g centers calg are placed by Algorithm 3, and

less than 0.9g centers calg with radius at least q2 are placed, conditioned on the previous

event (i.e., that the algorithm uses less than 1.6g centers).

5.1 Total number of centers

We will use martingales to analyze the algorithm; see the textbooks [1, 16] for reference.

For convenience, we use a slight modification of the one-sided Azuma inequality for super-

martingales. This follows easily, as any supermartingale can be converted to a martingale by

shifting (increasing) the random variables appropriately.

▶ Definition 5.1. A sequence of random variables X0, X1, X2, . . . is a supermartingale if

and only if both ♣E [Xt] ♣ <∞ and E [Xt+1 ♣ X0, . . . , Xt] ≤ Xt for all t.

▶ Theorem 5.2 (Azuma Inequality). If X0, X1, X2, . . . is a supermartingale with ♣Xt−Xt−1♣ ≤

δ for all t, the following inequality holds:

Pr[Xt −X0 ≥ ∆] ≤ exp



−∆2

2δ2t



.

We will track the progress of our algorithm by defining a potential describing the difference

between the algorithm’s true and expected behaviour. Formally, let Ct be a random variable

denoting the set of centers of opt made good by the first t centers calg placed by Algorithm 3.

Let us define f(copt) as the class of copt. Finally, let the potential be

Φt = t−
∑

copt∈Ct

f(copt) .

The value f(copt) is chosen so that a center copt is expected to become good after the

algorithm selects f(copt) centers from V (copt). Thus, at a given moment, the sum in the

potential denotes the number of centers the algorithm was expected to select to make all

copt ∈ Ct good. If t, the actual number of centers of the algorithm, is smaller than the sum,

the potential is negative and the algorithm is progressing better than expected. If t is smaller

than the sum, the potential is positive and the algorithm is progressing worse than expected.

Our goal is to show that the potential is unlikely to be positive and large.

The random choice of a threshold influences whether the current copt(v) enters Ct.

Besides that, the random choices also possibly change the set of covered nodes, influencing

the later choices of the algorithm. Thus the changes of the potential in different steps are

not independent (even if the choices of thresholds are) and we need to analyze the process as

a martingale.

Observe that Φ0, Φ1, . . . is a sequence of random variables with Φ0 = 0. When we select

node v as the (t + 1)-st node to cover, only copt = copt(v) can become good. If center copt is

class 1, then f(copt) = 1 and we make it good with probability 1, which guarantees Φt+1 = Φt.

If center copt is class 2, f(copt) = 2. We make it good with probability at least 1/2 and in

this case Φt+1 = Φt − 1. Otherwise Φt+1 = Φt + 1. Thus E [Φt+1 ♣ Φ0, . . . , Φt] ≤ Φt and

Φ0, Φ1, . . . is a supermartingale with Φ0 = 0 and δ = 1.

We have
∑

copt∈opt
f(copt) ≤ 1.5g, corresponding to the fact that the expected number

of radii needed for the algorithm is 1.5g. Thus, if the algorithm does not stop before placing

1.6g centers, we have Φ1.6g = 1.6g−
∑

copt∈C1.6g
f(copt) ≥ 0.1g. We use Azuma’s inequality to

show that the probability of this happening is small, keeping in mind that Φ0 = 0 and δ = 1:

Pr [Φ1.6g ≥ 0.1g] ≤ exp



−0.01g2

3.2g



= exp



−g

320



.

APPROX/RANDOM 2023



9:8 Approximation Algorithms and Lower Bounds for Graph Burning

5.2 Number of large centers

To show that less than 0.9g centers calg with radius at least q2 are placed among the

first 1.6g centers chosen by the algorithm, we use the standard Chernoff bound, see the

textbooks [1, 16].

▶ Theorem 5.3 (Chernoff bound). Suppose X1, . . . , XJ ∈ ¶0, 1♢ are independent random

variables. Let X =
∑

Xj and µ = E [X] =
∑

E [Xj ]. Then for any ε ∈ (0, 1],

Pr[X ≥ (1 + ε)µ] ≤ exp



−ε2µ

3



.

Suppose that the algorithm chooses J centers for some J ≤ 1.6g. Let Xj , j = 1, . . . , J ,

be a 0-1 indicator variable equal to 1 if we use a threshold q2 when choosing the j-th center

in the algorithm. Since every Xj is equal to 1 with probability 1/2 we have µ = E [
∑

Xj ] =

J/2 ≤ 0.8g. By Chernoff’s bound, the probability of using threshold 2 more than 0.9g times

is at most

Pr[X ≥ (1 + 1
8 )µ] ≤ exp



−( 1
8 )2µ

3



≤ exp



−g

320



.

5.3 Final bound

▶ Theorem 5.4. The probability that Algorithm 3 uses a radius larger than or equal to 2.9g

is at most 2 exp (−g/320).

Proof. Using the previous two estimates, the probability that the algorithm uses more than

1.6g centers in total or more than 0.9g times threshold q2 is bounded by 2 exp (−g/320).

If none of these events happen, we distinguish two cases. Either the algorithm uses all

the radii between q1 and q2; then we use the fact that the total number of centers is at most

1.6g and thus the largest radius is at most q1 + 1.6g < 2.6g. Otherwise, radii q2 and larger

are used only when threshold q2 is selected, which happens at most 0.9g times and thus the

largest radius is less than q2 + 0.9g < 2.9g. ◀

6 Main randomized algorithm

The performance of Algorithm 3 can be further improved by using more thresholds. Ultimately,

this leads to using a range of integers as thresholds. In particular, for a given g we use all

integers up to approximately αg where α is the desired approximation ratio given by the

following definition.

▶ Definition 6.1. We set α = 2e2/(e2 − 1) < 2.314.

Let us present and analyze Algorithm 4 which is the key part of the final algorithm. For

any ε > 0, we shall show that its approximation ratio is at most (1 + ε)4α. We assume

that ε < 1 (as otherwise we could use the known 3-approximation), αg < ♣V ♣ (as otherwise

a trivial solution is an α-approximation), g ≥ b(G) (as we will later iterate over all g) and

g ≥ 100/ε3 (as we will use Algorithm 2 otherwise).

6.1 Expected number of centers

Next we analyze the expected number of centers that the algorithm uses. This is the key

part that determines the approximation ratio and our choice of α. In particular, we set

α so that the expected number of centers used is αg. On one hand, the largest radius is
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Algorithm 4 The randomized algorithm for large g.

alg← ∅; R← (1 + ε)2αg

while an uncovered node exists do

Select an arbitrary uncovered node v

Let kv ∈ ¶0, . . . , ⌊R⌋♢, be chosen uniformly and independently at random

r ← Select(kv)

Add center (v, r) to alg and update the set of uncovered nodes

return alg

necessarily at least the number of centers used, on the other hand, once the range of radii

exceeds the expected number of centers by a small factor, we will be able to show that with

high probability the largest radius used is not much larger than the expected number of

centers. This eventually gives an approximation factor arbitrarily close to the chosen α.

Similar to Section 5, the value f(copt) is chosen so that a center copt is expected to

become good after the algorithm selects f(copt) centers from V (copt).

▶ Definition 6.2. For any center copt of the optimum, define

f(copt) =
αg

αg − 2r(copt)
=

1

1− 2r(copt)
αg

.

▶ Lemma 6.3. For any given center copt, whenever Algorithm 4 selects a node in V (copt),

the probability that copt is made good is at least 1/f(copt). The expected number of nodes in

V (copt) selected by Algorithm 4 is bounded by E [♣alg ∩ V (copt)♣] ≤ f(copt).

Proof. Every time the algorithm selects a node in V (copt), the number of possible values for

uniformly random kv is 1 + ⌊R⌋ ≥ R ≥ αg. Thus the algorithm selects a radius r′ ≥ 2r(copt)

with probability at least p = 1− 2r(copt)/αg = 1/f(copt) and this makes copt good. Once

copt is made good, no more nodes in V (copt) are selected. Since the choices of kv are

independent, we get E [♣alg ∩ V (copt)♣] ≤ 1/p = f(copt). ◀

▶ Lemma 6.4. The expected total number of radii used by Algorithm 4 is at most αg.

Proof. Each node of G is in V (copt) for exactly one copt. Thus, by Lemma 6.3 and linearity

of expectation,

E [♣alg♣] = E



∑

copt∈opt

♣alg ∩ V (copt)♣

]

=
∑

copt∈opt

E [♣alg ∩ V (copt)♣] ≤
∑

copt∈opt

f(copt) .

We have, using α = 2e2/(e2 − 1) in the penultimate step,

∑

copt∈opt

f(copt) =

g−1
∑

r=0

αg

αg − 2r
<

∫ g

0

αg

αg − 2r
dr =

[

−
αg

2
ln(αg − 2r)

]g

0

=
αg

2
ln



αg

αg − 2g



=
αg

2
ln



α

α− 2



=
αg

2
ln

(

e2
)

= αg . ◀

6.2 High-probability bound

Next, we need to prove that there is a low probability that Algorithm 4 will use significantly

more radii than expected. Similar to Section 5 we define a potential Φt comparing the number

of the algorithm’s centers to the expected progress and use martingale bounds to show that

the potential is unlikely to be large.

APPROX/RANDOM 2023



9:10 Approximation Algorithms and Lower Bounds for Graph Burning

▶ Definition 6.5. Let Ct be a random variable denoting the set of centers of opt made good

by the first t centers calg placed by the algorithm and

Φt = t−
∑

copt∈Ct

f(copt) .

Observe that Φ0 = 0 and that Φ0, Φ1, . . . is a sequence of random variables, since

Ct depends on the random choices of the values kv in Algorithm 4. We now prove that

the potential is a supermartingale and thus we can use Azuma’s inequality to show that

Algorithm 4 is unlikely to use more than (1 + ε)αg radii.

▶ Lemma 6.6. Φ0, Φ1, . . . is a supermartingale with ♣Φt − Φt−1♣ ≤ 7 for all t.

Proof. Let v be the t-th selected node. Since v is not covered when it is selected, we have

copt(v) ̸∈ Ct−1. Only copt(v) can be made good by a center calg placed at v and thus Φt

is equal to either Φt−1 + 1 − f(copt(v)) or Φt−1 + 1. By Lemma 6.3, the probability p

of center copt(v) being made good is at least 1/f(copt(v)), making E [Φt♣Φ0, . . . , Φt−1] =

p(Φt−1 + 1 − f(copt(v)) + (1 − p)(Φt−1 + 1) = Φt−1 + 1 − pf(copt(v)) ≤ Φt−1 and thus

Φ0, Φ1, . . . is a supermartingale.

As α = 2e2/(e2 − 1) > 16/7 and r(copt) < g, we get f(copt) < αg/(αg − 2g) < 8. Thus

Φt − Φt−1 is at least 1 − f(copt) ≥ −7 and at most 1, meaning that ♣Φt − Φt−1♣ ≤ 7 for

all t. ◀

▶ Lemma 6.7. The probability that Algorithm 4 uses at least (1 + ε)αg radii is at most 1/e.

Proof. We know that Φ0 = 0. By Lemma 6.4 we know that
∑

f(copt) ≤ αg. Thus, if the

process has not finished before using T = ⌈(1 + ε)αg⌉ radii, the value of ΦT is at least εαg.

By Lemma 6.6 we know that Φ0, Φ1, . . . is a supermartingale with differences at most 7.

From Azuma’s inequality (Theorem 5.2) for Xt = Φt, ∆ = εαg, T = ⌈(1 + ε)αg⌉ and δ = 7,

using also the bounds g ≥ 100/ε3 and ε < 1 we get

Pr [ΦT ≥ εαg] ≤ exp



−(εαg)2

2 · 72 · ⌈(1 + ε)αg⌉



< exp



−ε2g

100



<
1

e
. ◀

6.3 Bounding the maximum radius

The only possibility for Algorithm 4 to use a radius larger than R is due to the procedure

Select in which case the larger radii are used one by one in increasing order. In particular,

to use a radius larger than R + b, the algorithm must, for some x, generate at least b + x

values kv that are at least R− x and thus cause Select to pick a radius larger than R at

least b times. Using Chernoff bounds, we now show that this event is unlikely for b = εR.

▶ Lemma 6.8. Conditioned on the event that Algorithm 4 uses no more than (1 + ε)αg radii,

Algorithm 4 uses a radius of value at least (1 + ε)3αg with probability at most 1/100.

Proof. Recall that R = (1 + ε)2αg and let b = εR = (1 + ε)2εαg. Therefore, (1 + ε)3αg =

(1 + ε)R = R + b. We proceed to show that the probability of Algorithm 4 using radius

⌈R + b⌉ is small.

Let rmin be a random variable denoting the minimal radius such that all radii from

¶rmin, . . . , ⌈R + b⌉♢ are used by Algorithm 4; if ⌈R + b⌉ is not used, rmin is undefined.

Algorithm 4 uses a radius at least R + b if and only if rmin is defined.
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Informally, the proof idea is as follows. We partition this event according to the value of

rmin, grouping its possible values into blocks of size b (disregarding rounding) so that block

i contains values in (R − ib, R − (i − 1)b] for i ∈ ¶1, . . . , ⌈1/ε⌉♢. If rmin is in block 1, i.e.,

larger than R− b, it must be the case that kv was chosen larger than R− b at least b times.

In general, for block i, kv must have been chosen to be larger than R− ib at least ib times.

This probability decreases geometrically with i; this follows from Chernoff bounds, using

also the conditioning in the lemma, which implies that the number of chosen radii is smaller

than R by a constant factor (1 + ε).

For a full version of the proof, please see Appendix B. ◀

6.4 Final algorithm

We combine the preceding algorithms to get the final Algorithm 5.

Algorithm 5 The Ąnal algorithm.

Input: Graph G(V, E) and real number ε̄ > 0

Output: A burning schedule for G of length at most (α + ε̄)b(G)

ε← (1 + ε̄/α)1/4 − 1; ℓ← 100/ε3 ▷ Note that ε ∈ Θ(ε̄)

for g ← 1, . . . , ⌊♣V ♣/α⌋ do

if g ≤ ℓ then

Use Algorithm 2 with z = 4 to get alg or Fail

if alg was found then return alg

else

Use Algorithm 4 to get alg

if alg uses no radius greater than (1 + ε)3αg − 1 then return alg

return a trivial solution ¶(v0, 0), . . . , (vn−1, n− 1)♢ for V = ¶v0, . . . , vn−1♢

▶ Theorem 6.9. Algorithm 5 is an (α + ε̄)-approximation algorithm for any given ε̄ > 0 and

runs in time 2O(1/ε̄3)poly(n).

Proof. By Theorem 4.1, Algorithm 2 is guaranteed to succeed if run with g ≥ b(G) and it

never uses a radius greater than 2.25g − 1. Thus, if b(G) ≤ ℓ, Algorithm 5 always finds a

2.25-approximation.

If b(G) > ℓ, either Algorithm 2 succeeds with g < b(G), or we run Algorithm 4 while

increasing g. By Lemma 6.7, once g ≥ b(G), Algorithm 4 uses more than (1 + ε)αg radii

with probability at most 1/e. By Lemma 6.8, if Algorithm 4 uses at most (1 + ε)αg radii, it

uses a radius greater than (1 + ε)3αg − 1 with probability at most 1/100. Thus it succeeds

with probability at least 1/2. This probability is independent and increasing for each

successive iteration, ensuring that the expected number of failures is at most 2. Thus the

expected maximum radius is at most (1 + ε)3α(b(G) + 2)− 1. We get (1 + ε)3α(b(G) + 2) =

(1+ε)3αb(G)+2(1+ε)3α ≤ (1+ε)3αg+50 ≤ (1+ε)4αb(G)−1, using the value of α for the first

inequality and for the last one also the case condition b(G) > ℓ and ℓ ≥ 100/ε ≥ 51/ε(1+ε)3α.

By the choice of ε in the algorithm, the approximation ratio is at most (1 + ε)4α = α + ε̄.

Since Algorithm 5 iterating over the possible values of g multiplies the time complexity

by at most n, the running time is dominated by Algorithm 2, and thus it is bounded by

2O(ℓ)poly(n). Our choice of ε satisfies ε = Θ(ε̄) for a small ε̄ > 0 (using the fact that

(1 + ε)4 ≈ 1 + 4ε), thus we get ℓ = 100/ε3 = O
(

1/ε̄3
)

and the bound in the theorem

follows. ◀
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We note that, instead of using Algorithm 2 for g ≤ ℓ, we can find an optimal solution by

exhaustive search in time nO(g), which is still polynomial. We prefer to use Algorithm 2 to

achieve FPT-type running time dependency on ε.

7 Lower bounds for Graph Burning

In this section, we first prove a lower bound of 2 for the approximation ratio of the Graph

Burning problem on a graph with edge lengths. We also prove a lower bound of 4/3 for

graphs with unit edge lengths.

Both results rely on a reduction from the Dominating Set problem defined as follows.

▶ Definition 7.1. A dominating set of an undirected graph G = (V, E) is a set D ⊆ V such

that each vertex of G either is in D or has a neighbor in D. In an instance of the Dominating

Set problem, we are given an undirected graph and our task is to find a dominating set of the

lowest possible size.

The hardness of approximation of Dominating Set is equivalent to that of Set Cover. After a

long line of research in PCP theory, the ultimate result is the following one.

▶ Theorem 7.2 (Dinur, Steurer [8]). For any ε > 0, there exists no (1− ε) ln n-approximation

algorithm for Dominating Set or Set Cover problems unless P = NP .

In the first reduction, we modify a Dominating Set instance by setting the length of all

edges to k for some integer k. We use the fact that in the burning schedule, the centers with

radii in [k, 2k) cover exactly their neighbors (due to the edge lengths). Thus a dominating

set of size t implies a burning schedule of length t + k in the graph with edge lengths, and a

graph burning schedule with length at most 2k implies a dominating set of size at most 2k.

By considering a carefully chosen k, this together with a (2− ε)-approximation algorithm for

Graph Burning gives an O (1)-approximation algorithm for Dominating Set, contradicting

Theorem 7.2.

Technically, we try all values of k and stop at the smallest k that yields a Graph Burning

solution of size at most 2k and thus a Dominating Set approximation. The number of possible

values of k is bounded by ♣V ♣. Testing only the chosen important values of k used in the

proof (i.e., approximately k = 2t/ε for testing size t Dominating Set) would be sufficient and

slightly more efficient, but we prefer to keep the algorithm simple.

▶ Theorem 7.3. For any constant ε > 0, there exists no (2− ε)-approximation algorithm

for the Graph Burning problem with arbitrary edge lengths unless P = NP . This holds even

for the case when restricted to Graph Burning instances with all edge lengths equal.

Proof. For a contradiction, assume that we have a (2−ε)-approximation algorithm for Graph

Burning with arbitrary but equal edge lengths. Let σ = ⌈1/ε⌉. We give a reduction that

results in an approximation algorithm for the Dominating Set problem with an approximation

ratio of at most 4σ ∈ O (1).

We use the reduction described above; see Algorithm 6 for a formal description.

First, we claim that the output D is always a dominating set. Indeed, if we stop at a

feasible solution with g ≤ 2k, any w ∈ G is covered by some center (vi, i) for i < 2k, i.e., the

distance between w and vi is less than 2k. Since the lengths of the edges are set to k, this

means that vi is a neighbor of or equal to w. In the fallback case, D = V is a dominating set.

Now assume that G has a dominating set ¶w0, . . . , wt−1♢ of size t. We claim that for any

given k, the burning number of G with edge lengths is at most k + t. Indeed, the set of

centers ¶(wi, k + i) ♣ i = 0, . . . , t− 1♢ augmented by arbitrary centers with radii smaller than

k is a required feasible solution.
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Algorithm 6 Reduction using edge lengths.

Input: Dominating Set instance G = (V, E)

for k ← 1, . . . , ⌊♣V ♣/2⌋ do

Set the length of each edge to k

Run the (2− ε)-approximation algorithm for Graph Burning on G,

obtaining a feasible solution ¶(v0, 0), (v1, 1), . . . , (vg−1, g − 1)♢ for some g.

if g ≤ 2k then return the set D = ¶v0, v1, . . . , vg−1♢.

return the set D = V .

If t < ♣V ♣/4σ, consider k = 2σt ≤ ♣V ♣/2. The choice of k implies that εk ≥ 2t as

σ = ⌈1/ε⌉. The assumed (2− ε)-approximation algorithm for Graph Burning finds a feasible

solution of size at most (2− ε)(k + t), which is bounded by (2− ε)(k + t) < 2k− εk + 2t ≤ 2k.

Thus the algorithm stops for some k′ ≤ k with a dominating set D of size at most 2k = 4σt.

If t ≥ ♣V ♣/4σ, the reduction trivially gives a 4σ-approximation. Overall we have obtained

a 4σ-approximation for Dominating Set.

By Theorem 7.2, no O (1)-approximation algorithm for the Dominating Set problem

exists, unless P = NP . This yields the contradiction and the theorem. ◀

We can modify the previous reduction so that, instead of edges of length k, we subdivide

them into paths of unit-length edges. As a consequence, when converting the dominating

set to a Graph Burning solution, we have to use larger radii to cover the new vertices,

which degrades the inapproximability bound. Also, when converting a burning schedule to

a dominating set, we cannot use the subdivision points as elements of the dominating set.

Instead, we substitute any subdivision point with the two closest original vertices, i.e., the

endpoints of the subdivided edge.

▶ Theorem 7.4. For any constant ε > 0, there exists no (4/3− ε)-approximation algorithm

for the Graph Burning problem with unit edge lengths, unless P = NP .

Proof. For a contradiction, assume that we have a (4/3− ε)-approximation algorithm for

Graph Burning with unit-length edges. Let σ = ⌈1/ε⌉. We give a reduction that results in

an algorithm for Dominating Set with an approximation ratio of at most 8σ ∈ O (1). The

reduction follows the outline given above; see Algorithm 7 for a formal description.

Graph G′ is of polynomial size, and thus the whole reduction is polynomial. Furthermore,

if u, w ∈ V are vertices of the input graph G, then the distance between u and w in G′ is a

multiple of 2k. In particular, if u and w are not equal, their distance in G′ is equal to 2k if u

and w are neighbors in G, and their distance is at least 4k otherwise.

We claim that the output D is always a dominating set. Indeed, if we stop at a feasible

solution with g ≤ 4k, any w ∈ V is covered by some center (vi, i) for i < 4k, i.e., the distance

between w and vi is less than 4k. The construction of Di implies that the shortest path

between w and vi contains one of u ∈ Di. Thus the distance between u and w in G′ is less

than 4k and u and w are neighbors in G. It follows that D is a dominating set. In the

fallback case, D = V is a dominating set as well.

Now assume that G has a dominating set ¶w0, . . . , wt−1♢ of size t. We claim that

for any given k, the burning number of G′ is at most 3k + t. Indeed, the set of centers

¶(wi, 3k + i) ♣ i = 0, . . . , t− 1♢ augmented by 3k arbitrary centers with radii smaller than 3k

is a required feasible solution. Each vertex v in G′ has distance at most k to the closest

vertex in G, which in turn has distance at most 2k to a vertex in the dominating set. Thus

the balls of radius at least 3k at the vertices of the dominating set cover the whole G′.

APPROX/RANDOM 2023
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Algorithm 7 Reduction for unit edge lengths.

Input: Dominating Set instance G = (V, E)

for k = 1, . . . , ♣V ♣ do

Create G′ from G by replacing each edge of G by a path of 2k new edges

with 2k − 1 new internal vertices.

Run the (4/3− ε)-approximation algorithm for Graph Burning on G′,

obtaining a feasible solution ¶(v0, 0), (v1, 1), . . . , (vg−1, g − 1)♢ for some g.

if g ≤ 4k then

for i = 0, 1, . . . , g − 1 do

if vi ∈ V then ▷ i.e., vi is a vertex of the input graph G

Di ← ¶vi♢

else ▷ i.e., vi is a new internal vertex on an added path

Di ← ¶u, u′♢ where u, u′ ∈ V are such that vi is a new vertex

on the path in G′ that replaced the edge uu′ of G.

return the set D = D0 ∪D1 ∪ · · · ∪Dg−1.

return the set D = V .

If t < ♣V ♣/σ, consider k = σt ≤ ♣V ♣. The choice of k implies that t ≤ εk as σ = ⌈1/ε⌉.

The assumed (4/3− ε)-approximation algorithm for Graph Burning finds a feasible solution

of size at most (4/3− ε)(3k + t). We have



4

3
− ε



(3k + t) ≤ 4k − 3εk +
4

3
t ≤ 4k − 3t +

4

3
t < 4k .

Thus the algorithm stops for some k′ ≤ k with a dominating set D of size at most 2 ·4k = 8σt,

since each set Di contains at most two vertices for each center vi of the burning schedule.

If t ≥ ♣V ♣/σ, the reduction trivially gives an σ-approximation. Altogether we have

obtained an 8σ-approximation algorithm for Dominating Set.

By Theorem 7.2, no O (1)-approximation algorithm for the dominating set problem exists,

unless P = NP . This yields the contradiction and the theorem. ◀
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A Proof of Theorem 4.1

We first prove the following lemma.

▶ Lemma A.1. If g ≥ b(G) then Algorithm 2 always returns a solution.

Proof. Let v(S, t) be the t-th selected node while the algorithm is using sequence S. Observe

that v(S, t) only depends on the initial segment s1, . . . , st−1 of S. With this in mind, we show

in the next paragraph that there exists S∗ ∈ S such that s∗
t of S∗ is the class of copt(v(S∗, t)).
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Formally, for t = 1, 2, . . . we define s∗
t as the class of copt(v(S̄, t)) for an arbitrary extension

S̄ ∈ S of s∗
1, . . . , s∗

t−1. Such an S̄ ∈ S exists, as the optimum solution opt contains at most g

centers with no more than ⌈g/z⌉ centers of any given class. If v(S̄, t) is undefined (i.e., all

nodes are covered at this point), we choose s∗
t = s̄t. As v(S̄, t) and thus s∗

t depends only on

s∗
1, . . . , s∗

t−1, which is the initial segment of S̄, eventually S∗ is the sequence of the classes of

centers copt(v(S∗, t)).

It follows that using this S∗ in the loop makes all centers good, thus all nodes are covered

and the algorithm stops with a valid solution. ◀

▶ Theorem A.2 (Theorem 4.1). If g ≥ b(G) then Algorithm 2 runs in O (zgpoly(n))-time

and achieves an approximation ratio of (2 + 1/z).

Proof. Lemma A.1 implies that the algorithm returns a solution covering all nodes. We first

bound the maximal radius used and thus the approximation ratio. We distinguish two cases.

If z ≥ g, the algorithm uses z = g. Each threshold is used at most once, making the

maximal used radius at most qz = 2g − 2, giving a solution with 2g − 1 many centers, and

thus approximation ratio of 2− 1/g.

If z < g there are at least ⌊2g/z⌋ radii between any two consecutive thresholds as there

are at least ⌊2g/z⌋ integers in [qi, qi+1). We use the same threshold at most ⌈g/z⌉ times by

the definition of S. We have ⌈g/z⌉ ≤ ⌊2g/z⌋, as ⌈x⌉ ≤ ⌊2x⌋ for any x ≥ 1, while we use the

same threshold for at most ⌈g/z⌉ nodes by the definition of S. Thus the radii produced by

using a given threshold qi do not exceed the following threshold qi+1. Furthermore no more

than ⌈g/z⌉ nodes use the last threshold qz = 2g − 2, making the maximal used radius at

most 2g − 2 + ⌈g/z⌉ ≤ 2g + g/z − 1. Thus the objective value is at most 2g + g/z and the

ratio 2 + 1/z.

The runtime bound follows since the number of sequences of length g with numbers

from ¶1, . . . , z♢ is zg, and this gives an upper bound on the size of S. ◀

B Proof of Lemma 6.8

▶ Lemma B.1 (Lemma 6.8). Conditioned on the event that Algorithm 4 uses no more than

(1 + ε)αg radii, Algorithm 4 uses a radius of value at least (1 + ε)3αg with probability at most

1/100.

Proof. Recall that R = (1 + ε)2αg and let b = εR = (1 + ε)2εαg. Therefore, (1 + ε)3αg =

(1 + ε)R = R + b. We proceed to show that the probability of Algorithm 4 using radius

⌈R + b⌉ is small.

Let rmin be a random variable denoting the minimal radius such that all radii from

¶rmin, . . . , ⌈R + b⌉♢ are used by Algorithm 4; if ⌈R + b⌉ is not used, rmin is undefined.

Algorithm 4 uses a radius at least R + b if and only if rmin is defined.

Informally, the proof idea is as follows. We partition this event according to the value of

rmin, grouping its possible values into blocks of size b (disregarding rounding) so that block

i contains values in (R − ib, R − (i − 1)b] for i ∈ ¶1, . . . , ⌈1/ε⌉♢. If rmin is in block 1, i.e.,

larger than R− b, it must be the case that kv was chosen larger than R− b at least b times.

In general, for block i, kv must have been chosen to be larger than R− ib at least ib times.

This probability decreases geometrically with i; this follows from Chernoff bounds, using

also the conditioning in the lemma, which implies that the number of chosen radii is smaller

than R by a constant factor (1 + ε).

For i ∈ ¶1, . . . , ⌈1/ε⌉♢, we define Ai as the event that rmin is defined and i is the smallest

integer such that R − ib < rmin. Exactly one of the events Ai occurs whenever rmin is

defined. The event Ai implies that the algorithm randomly generated kv greater than R− ib
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at least ib times, as by definition of rmin, choosing kv < rmin does not allow Select to

generate a radius equal to or larger than rmin and at the same time all at least ib radii

between rmin ≤ R− (i− 1)b and ⌈R + b⌉ are used.

By the conditioning in the lemma, we assume that the algorithm uses no more than

(1 + ε)αg radii. Let p be the probability that upon processing v, the algorithm generates

kv larger than R − ib. We have p ≤ ib/R, as out of ⌊R⌋ + 1 > R options for kv, there

are at most ib values larger than R − ib. Consider X which is a sum of J = ⌊(1 + ε)αg⌋

independent indicator random variables, each equal to 1 with probability ib/R. We have

Pr[Ai] ≤ Pr[X ≥ ib], as X overestimates the number of kv larger than R− ib in two ways:

First, we possibly increase the number of trials and second, we increase the probability of

the indicator variable to be 1 from p to ib/R.

Let µ = E [X]. We have µ = ⌊(1 + ε)αg⌋ · ib/R ≤ (1 + ε)αgib/R = ib/(1 + ε). As

g ≥ 100/ε3 ≥ 100, the rounding error is small, namely we have µ ≥ 99
100 (1 + ε)αg · ib/R =

99
100 ε(1 + ε)iαg, using also b = εR. Now we use Chernoff bound and get

Pr [Ai] ≤ Pr[X ≥ ib] ≤ Pr[X ≥ (1 + ε)µ] ≤ exp



−ε2µ

3



≤ exp



− 99
100 ε3(1 + ε)iαg

3



≤ exp



−
3

4
ε3ig



≤ exp (−75i) ,

where we used 99
100 (1 + ε)α/3 > 3/4. We obtain that the probability of using radius at least

R + b is at most

Pr



⋃

i

Ai

]

≤
∞

∑

i=1

exp (−75i) ≤ 1/100 . ◀
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