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Abstract

In this paper we reassess the parameterized complexity and approximability of the well-studied

Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-

weighted graph and pairs of vertices as input, and the aim is to Ąnd a minimum cost subgraph in

which each given vertex pair lies in the same connected component. It is known that this problem

is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex

set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme

with a runtime of n
O(k2/ε) on graphs of treewidth k. Our main result is a much faster efficient

parameterized approximation scheme (EPAS) with a runtime of 2O( k2

ε
log k

ε
)

· n
O(1). If k instead

is the vertex cover number of the input graph, we show how to compute the optimum solution

in 2O(k log k)
· n

O(1) time, and we also prove that this runtime dependence on k is asymptotically

best possible, under ETH. Furthermore, if k is the size of a feedback edge set, then we obtain a

faster 2O(k)
· n

O(1) time algorithm, which again cannot be improved under ETH.
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1 Introduction

The Steiner Forest problem is one of the most well-studied problems in network design [16,

23, 24, 28]. In this problem the input consists of a graph G = (V, E) with positive edge

weights, a set of terminals R ⊆ V , and a set of demands D ⊆
(

R
2

)
. The objective is to

select a subgraph F ⊆ G, minimizing the total cost of selected edges, while ensuring that

for every demand pair ¶s, t♢ ∈ D, s and t are in the same connected component of F . Since

edge weights are positive, it is easy to see that the optimal solution is always a forest. The

Steiner Forest problem finds many applications (see surveys [11, 28, 32, 33]), for example

in telecommunication networks (cf. [33]).

Our goal in this paper is to reassess the complexity of this fundamental problem from the

point of view of parameterized complexity and approximation algorithms.1 In order to recall

the context, it is helpful to compare Steiner Forest to the even more well-studied Steiner

1 We assume the reader is familiar with the basics of parameterized complexity and approximation
algorithms, such as the classes FPT and APX and the deĄnition of treewidth, as given in standard
textbooks [14, 19, 34]. We give full deĄnitions of all parameters in Section 2.

E
A
T
C
S

© Andreas Emil Feldmann and Michael Lampis;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 61; pp. 61:1–61:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:feldmann.a.e@gmail.com
https://orcid.org/0000-0001-6229-5332
mailto:michail.lampis@dauphine.fr
https://orcid.org/0000-0002-5791-0887
https://doi.org/10.4230/LIPIcs.ICALP.2024.61
https://arxiv.org/abs/2402.09835
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


61:2 Parameterized Algorithms for Steiner Forest in Bounded Width Graphs

Tree problem, which is the special case of Steiner Forest where all terminals are required

to be connected, i.e., D =
(

R
2

)
, and an optimal solution is a tree. Steiner Tree was

already included in Karp’s seminal list [25] of NP-hard problems from the 1970s. From the

approximation point of view, Steiner Tree (and therefore Steiner Forest) is known to be

APX-hard [13], but both problems admit constant factor approximations in polynomial time

for general input graphs, where the best approximation factors known are ln(4)+ε < 1.39 [10]

and 2 [1, 31], respectively. Despite this similarity, when considering graph width parameters

the problems exhibit wildly divergent behaviors from the parameterized complexity point

of view: whereas Steiner Tree is FPT parameterized by standard structural parameters

such as treewidth and can in fact even be solved in single exponential 2O(k)nO(1) time [6]

when k is the treewidth, Steiner Forest is NP-hard on graphs of treewidth 3, as shown

independently by Gassner [21] and Bateni, Hajiaghayi, and Marx [4].

Steiner Forest is therefore a problem that presents a dramatic jump in complexity in

this context, compared to Steiner Tree, as the hardness result on graphs of treewidth 3 rules

out even an XP algorithm for parameter treewidth. One of the main positive contributions

of Bateni, Hajiaghayi, and Marx [4] was an algorithm attempting to bridge this gap using

approximation. In particular, they showed that Steiner Forest admits an approximation

scheme for graphs of treewidth k, which computes a (1 + ε)-approximation in nO(k2/ε) time

for any ε > 0. Hence, if we allow slightly sub-optimal solutions, we can at least place the

problem in XP parameterized by treewidth. In their paper, Bateni, Hajiaghayi, and Marx [4]

remark that because the exponent of the polynomial of this runtime depends on k and ε, “it

remains an interesting question for future research whether this dependence can be removed”,

that is, whether a (1 + ε)-approximation can be obtained in FPT time.

The main result of our paper is a positive resolution of the question of [4]: we show

that Steiner Forest admits an efficient parameterized approximation scheme (EPAS) for

treewidth, that is, a (1 + ε)-approximation algorithm with a runtime of the form f(k, ε)nO(1).

In other words, we show that their algorithm can be improved in a way that makes the

running time FPT not only in the treewidth, but also in 1/ε. More precisely, we show the

following:

▶ Theorem 1. The Steiner Forest problem admits an EPAS parameterized by the

treewidth k with a runtime of 2O( k2

ε
log k

ε
) · nO(1).

Moving on from treewidth, we ask what the most general parameter is for which we

may hope to obtain an FPT exact algorithm for Steiner Forest. We observe that the

NP-hardness result of [4, 21] for Steiner Forest on graphs of treewidth 3 actually has

some further implications for some even more restricted parameters: the graphs constructed

in their reductions also have constant treedepth and feedback vertex set size, implying that

the problem remains hard for both of these parameters (which are incomparable in general).

More precisely, known reductions imply the following:

▶ Theorem 2 ([4, 21]). The Steiner Forest problem is NP-hard on graphs of treewidth 3,

treedepth 4, and feedback vertex set of size 2.

This leads us to consider even more restricted parameters, such as the size of a vertex

cover and feedback edge set, which are not bounded in this reduction. Indeed, not only do

we prove that Steiner Forest is FPT for both of these parameters, but we are also able

to determine the correct parameter dependence, under the Exponential Time Hypothesis

(ETH). For feedback edge set the optimal dependence is single exponential:



A. E. Feldmann and M. Lampis 61:3

▶ Theorem 3. The Steiner Forest problem is FPT parameterized by the size k of a

feedback edge set and can be solved in 2O(k)nO(1) time. Furthermore, no 2o(k)nO(1) time

algorithm exists, under ETH.

For the parameterization by the vertex cover size, we obtain a slower runtime for our

FPT algorithm. Interestingly, we are also able to prove that this is best possible, under ETH.

Our lower bound for Steiner Forest is in contrast to the Steiner Tree problem, for

which a faster 2O(k)nO(1) time algorithm exists, even if k is the treewidth [6].

▶ Theorem 4. The Steiner Forest problem is FPT parameterized by the size k of a

vertex cover and can be solved in 2O(k log k)nO(1) time. Furthermore, no 2o(k log k)nO(1) time

algorithm exists, under ETH.

We remark that Bodlaender et al. [8] recently independently showed that Steiner

Forest admits a 2O(k log k)nO(1) time algorithm for the size k of a vertex cover (improving

an algorithm for the unweighted version of the problem given in [22]). While they develop

their own dynamic program to solve this problem, we rely on an existing algorithm by [4]

(see Theorem 5). Accordingly our description of the algorithm is very short compared to [8].

The more interesting part of Theorem 4 however is the proof of the lower bound.

1.1 Overview of Techniques

Let us briefly sketch the high level ideas of our results given by Theorems 1, 3, and 4.

EPAS for treewidth. Our algorithm extends the work of [4], so let us briefly recall some

key ideas. Given a rooted tree decomposition, a terminal t is called active for a bag B if

there is a demand ¶s, t♢ ∈ D such that t lies in the sub-tree rooted at B while s does not (see

Section 2 for formal definitions). It is a standard property of tree decompositions that every

bag is a separator. Hence the component of any feasible solution that contains an active

terminal must intersect B. The hardness of the problem now inherently stems from the fact

that we have to decide for all active terminals of a bag, how the corresponding component

intersects the bag, and therefore how the active terminals (whose number is unbounded by k)

are partitioned into connected components. Suppose, however, that someone supplied us

with this information, that is, suppose that for each bag B we are given a set of partitions ΠB

of its active terminals and we are promised that the optimal solution conforms to all ΠB.

By this we mean that if we look at how the optimal solution partitions the active terminals

of B into connected components and call this partition π, then π ∈ ΠB , that is, the optimal

partition is always one of the supplied options. In this case, using this extra information, the

problem does become tractable, as shown in [4]:

▶ Theorem 5 ([4]). For an input graph G on n vertices, let a rooted nice tree decomposition

of width k be given, such that all terminals lie in bags of leaf nodes of the decomposition.

Also, let a set ΠB of partitions of the active terminals of each bag B of the decomposition

be given. If p =
∑

B ♣ΠB ♣ is the total number of partitions, then a minimum cost Steiner

Forest solution conforming to all ΠB can be computed in 2O(k log k) · (pn)O(1) time.

The above theorem does not seem immediately helpful, since one would still need to find

a small collection of partitions ΠB in order to obtain an efficient algorithm. Note however,

that the partition sets may conform to an approximate solution as well, which would let

the algorithm compute a solution that is at least as good. The strategy of [4] therefore is

to construct a collection of partitions that has size polynomial in n (when k, ε are fixed

ICALP 2024
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constants) by stipulating that when two active terminals are “close” to each other, they

should belong in the same set of the partition of some near-optimal solution. In order to

bound the resulting approximation ratio, they need to provide a charging scheme: starting

from an optimal solution, they merge components which are “close”, to obtain a solution

that conforms to the ΠB used by the algorithm. They then show that the resulting solution

is still near-optimal by charging the extra cost incurred by a merging operation to one of the

two merged components.

A blocking point in the above is that we need to make sure we do not “overcharge” any

component. This is accomplished in [4] via a partial ordering of the components: we order

the components according to the highest bag of the rooted tree decomposition they intersect,

and whenever two components are merged we charge this to the lower component. As shown

in [4], this ensures that no component is charged for more than k merges. Unfortunately,

this also implies that the merging procedure is not symmetric, which severely diminishes the

contexts in which we can apply it.

Let us now describe how our approach improves upon this algorithm. A key ingredient

will be a more sophisticated charging scheme, which will allow us to obtain a better (smaller)

collection of partitions ΠB , without sacrificing solution quality. Counter-intuitively, we will

achieve this by introducing a second parameter: the height h of the tree decomposition.

Informally, we will now construct a near-optimal solution by merging two components

whenever the connection cost is low compared to the cost of (a part of) either component

(as opposed to the lower component). As in [4], this runs the risk of charging many merging

operations to a higher component, but by performing an accounting by tree decomposition

level and using the fact that the decomposition only has h levels, we are able to show that

our solution is still near-optimal even though we merge components much more aggressively

than [4]. In this way, for each bag we construct one partition of its active terminals into a

number of sets that is polynomial in k + h + 1
ε + log n, in a way that guarantees that this

partition is a refinement of a near-optimal solution. That is, whenever we decide to place

two terminals together in our partition, the near-optimal solution does the same. However,

this solution does not necessarily conform to the resulting partitions, as two terminals of the

same component might end up in different sets of the partition for a bag.

At this point an astute reader may be wondering that since we consider both the width k

and the height h of the decomposition as parameters, we are effectively parameterizing by

treedepth, rather than treewidth. This is correct, but we then go on to invoke a result

of [7] which states that any tree decomposition can be rebalanced to have height O(log n)

without severely increasing its width. Hence, the family of partitions we now have has

size polynomial in k + 1
ε + log n. However, we are not done yet, since at this point we can

only guarantee that our partitions are refinements of a near-optimal solution. To complete

the algorithm, we work from this family of partitions to obtain a collection of partitions

conforming to our near-optimal solutions using δ-nets (this is similar to the approach of [4]).

This leads to a running time of the form (log n)O( k2

ε
)nO(1), which by standard arguments of

parameterized complexity is in fact FPT and can be upper-bounded by a function of the form

2O( k2

ε
log k

ε
) · nO(1). To summarize, our high-level strategy is to show that the approach of [4]

can be significantly improved when the input decomposition has small width and height,

but then we observe that our new scheme is efficient enough in the height that even if we

replace h by a bound that can be obtained for any graph, we still have an algorithm with an

FPT running time, that is, significantly faster than that of [4].
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Vertex Cover. For the parameterization by the vertex cover size, as mentioned we obtain

an FPT exact algorithm with dependence 2O(k log k). A similar algorithm was recently inde-

pendently obtained by [8] via dynamic programming. However, our algorithm is significantly

simpler, because our strategy is to show how to construct a tree decomposition and a

collection of partitions ΠB such that we only need one partition of the active terminals for

each bag. As a consequence, p = O(n) and Theorem 5 implies the algorithm of Theorem 4,

without the need to formulate a new dynamic program.

Our main result for this parameter is that under ETH the runtime dependence is

asymptotically optimal. Note that this also implies that the runtime of the dynamic program

given by Theorem 5 cannot be improved with regards to the dependence on the treewidth.

To show this, we present a reduction from 3-SAT, where the goal is to compress an n-

variable formula into a Steiner Forest instance such that the graph has vertex cover size

O(n/ log n). The intuition on why it is possible to achieve such a compression is the following:

suppose we have an instance with vertex cover of size k and a demand between two vertices

of the independent set. Then the simplest way to satisfy such a demand is to connect both

vertices to a common neighbor in the vertex cover. This encodes a choice among k vertices,

and hence it is sufficient to encode the assignment for log k binary variables. The strategy of

our reduction is to set up some choice gadgets which allow us to encode the assignments to

the original formula taking advantage of the fact that each choice can represent a logarithmic

number of variables. Hence we can obtain a construction of slightly sub-linear (O(n/ log n))

size. We then of course need to add some verification gadgets, representing the clauses, to

check that the formula is indeed satisfied. But even though the number of such gadgets is

linear in n, we make sure that they form an independent set, and hence the total vertex cover

size remains sufficiently small to obtain our lower bound. We note that this compression

strategy is similar to techniques recently used to obtain slightly super-exponential lower

bounds for vertex cover for other problems [26, 27], but the constructions we use are new

and tailored to Steiner Forest.

Feedback Edge Set. For the parameterization by the size k of a feedback edge set, instead

of relying on the dynamic program given by Theorem 5 we go an entirely different route

in order to obtain the faster 2O(k)nO(1) time FPT algorithm of Theorem 3. First off, it is

not hard to reduce the Steiner Forest problem to an instance in which all vertices have

degree at least 2. We then consider paths with internal vertices of degree 2, with endpoints

that are vertices incident to the feedback edge set or vertices of degree at least 3. We call

these paths topo-edges and argue that there are only O(k) of these. We then guess for which

topo-edges the two endpoints lie in different components of the optimal Steiner Forest

solution, which can be done in 2O(k) time. If a topo-edge has both its endpoints in the

same component of the optimum, we show that it can be easily handled. For the remaining

topo-edges, we can decide which edges along the path do not belong to the optimal solution

by a reduction to the polynomial-time solvable Min Cut problem.

1.2 Related work

Bateni, Hajiaghayi, and Marx [4] show that one of the consequences of their XP approximation

scheme is a PTAS for Steiner Forest on planar graphs, by using the common technique

pioneered by Baker [2] of reducing this problem to graphs for which the treewidth is bounded

as a function of ε. Because their algorithm is not FPT, their PTAS has a running time

of the form nf(ε). By using our algorithm from Theorem 1 we can improve this runtime

to f(ε)nO(1), i.e., we obtain on EPTAS for planar graphs. However, [18] already showed that

ICALP 2024
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a (1 + ε)-approximation algorithm with a runtime of O(f(ε) · n log3 n) exists for Steiner

Forest on planar graphs. While they build on the work of [4], and in particular also reduce

to graphs of treewidth bounded as a function of ε, interestingly they do not obtain an

EPAS parameterized by treewidth. Instead they use a different route and show that given

a graph H of treewidth k, in O(f(k, ε) · n log2 n) time it is possible to compute a Steiner

Forest solution in H whose cost is at most cost(F ⋆) + ε cost(H), i.e., there is an additive

error that depends on the cost of H compared to the optimum solution F ⋆. If the input

graph G is planar, then a result by [9] implies that from G a so-called banyan [3, 30] can

be computed, which is a subgraph of G with cost bounded by O(g(ε) cost(F ⋆)), and which

contains a near-optimal approximation of every Steiner forest (cf. [18, Lemma 2.1]). By

applying the framework of [4] on the banyan instead of the input graph, it is then possible

to obtain a graph H of treewidth bounded by a function of ε, for which the algorithm of [18]

computes a (1 + O(ε))-approximation for the input.

If it would be possible to compute a banyan for bounded treewidth graphs, then the

algorithm of [18] would also imply an EPAS for treewidth. However, to the best of our

knowledge, and as explicitly stated by [3], banyans are only known for planar graphs [9, 18],

Euclidean metrics [30], and doubling metrics [3] (in fact, the latter are so-called forest

banyans, which have weaker properties). Thus it is unclear how to obtain an EPAS for

Steiner Forest parameterized by the treewidth via the algorithm of [18]. We leave open

whether a banyan exists for bounded treewidth graphs, which could give an alternative

algorithm to the one given in Theorem 1. However, a further remark is that the cost of the

banyan for planar graphs obtained by [9] has exponential dependence on 1/ε, which implies

a double exponential runtime dependence on 1/ε for the EPTAS for planar graphs. If a

banyan can be obtained for bounded treewidth graphs by generalizing the techniques of [9]

to minor-free graphs, then the resulting EPAS parameterized by treewidth would also have

double exponential runtime in 1/ε. In this case however, our EPAS given by Theorem 1

would be exponentially faster.

A different parameter that is often studied in the context of Steiner problems is the

number p = ♣R♣ of terminals. The classic result of [15] presents an FPT algorithm for

Steiner Tree with a runtime of 3pnO(1). For unweighted graphs, this was improved [5, 29]

to 2pnO(1), while the fastest known algorithm for weighted graphs can compute the optimum

in (2 + ε)pnO(
√

1
ε

log 1
ε

) time [20] for any ε > 0. The algorithm of [15] can be generalized to

solve Steiner Forest in 2O(p)nO(1) time (cf. [12]). A somewhat dual parameter to the

number of terminals is the number q of non-terminals (so-called Steiner vertices) in the

optimum solution. For this parameter, a folklore result states that Steiner Tree (and

thus also Steiner Forest) is W[2]-hard (cf. [14, 17]). However, an EPAS with a runtime

of 2O(q2/ε4)nO(1) was shown to exist for Steiner Tree [17]. For Steiner Forest it is

not hard to see that such an EPAS parameterized by q cannot exist unless P=NP (cf. [17]),

but if c denotes the number of components of the optimum solution, there is an EPAS

with a runtime of (2c)O((q+c)2/ε4)nO(1) [17]. Similar results have been found for related

Steiner problems in directed graphs [12]. For further results in the area of parameterized

approximations, we refer to the survey in [19].

2 Preliminaries

As mentioned, we assume the reader is familiar with the basics of parameterized complexity,

such as the class FPT [14], and approximation algorithms such as a PTAS [34]. A parame-

terized approximation scheme (PAS) is an algorithm that computes a (1 + ε)-approximation
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for a problem in f(k, ε)ng(ε) time for some functions f and g, while an an efficient parame-

terized approximation scheme (EPAS) is a (1 + ε)-approximation algorithm running in time

f(k, ε)nO(1) (that is, the running time is FPT in k + 1
ε ). The distinction between a PAS and

an EPAS is similar to the one between a PTAS and an EPTAS.

By w : E → R
+ we denote an edge-weight function, so that the cost of a solution F to the

Steiner Forest problem is cost(F ) =
∑

e∈E(F ) w(e). We will use F ⋆ to denote an optimal

solution, and for α ≥ 1 we will say that a solution F is α-approximate if cost(F ) ≤ α cost(F ⋆).

For u, v ∈ V we use dist(u, v) to denote the shortest-path distance from u to v in G according

to the weight function w.

▶ Definition 6. Given a graph G = (V, E), a tree decomposition is a pair (T, ¶Bi♢i∈V (T )),

where T is a tree and each node i ∈ V (T ) of the tree is associated with a bag Bi ⊆ V , with

the following properties:

1.
⋃

i∈V (T ) Bi = V , i.e., all vertices of G are covered by the bags,

2. for every edge uv ∈ E of G there exists a node i ∈ V (T ) of the tree for which u, v ∈ Bi,

and

3. for every vertex v ∈ V of G the nodes ¶i ∈ V (T ) ♣ v ∈ Bi♢ of the tree for which the bags

contain v induce a (connected) subtree of T .

The width of the tree decomposition is maxi∈V (T )¶♣Bi♣ − 1♢ and the treewidth of G is the

minimum width over all its tree decompositions.

A rooted tree decomposition is nice if for every i ∈ V (T ) we have one of the following:

1. i has no children2 (i is a leaf node),

2. i has exactly two children i1 and i2 such that Bi = Bi1 = Bi2 (i is a join node),

3. i has a single child i′ where Bi = Bi′ ∪ ¶v♢ for some v ∈ V (i is an introduce node), or

4. i has a single child i′ where Bi = Bi′ \ ¶v♢ for some v ∈ V (i is a forget node).

Given a rooted tree decomposition T of a graph G, for a node u of T let B be the bag

associated with it. Then VB is the set of vertices of all bags in the subtree rooted at u. The

set AB ⊆ R denotes the active terminals of the bag B: for any demand pair ¶s, t♢ ∈ D,

if s ∈ VB and t /∈ VB then s ∈ AB. For any Steiner Forest solution F , if a connected

component C of F contains an active terminal, then we say that C is an active component

for B. For a fixed solution F , we denote the set of all active components for B by CB . Note

that every active component must intersect the bag B.

If for every bag B a set of partitions ΠB of AB is given, a Steiner Forest solution F

is conforming to all ΠB , if for each bag B there exists a partition π ∈ ΠB such that any two

active terminals in AB are in the same set S ∈ π if and only if they are part of the same

active component C of F , i.e., S ⊆ V (C) and S′ ∩V (C) = ∅ for any S′ ∈ π with S′ ≠ S (note

that this implies ♣π♣ ≤ ♣B♣). One technicality of Theorem 5 is that the algorithm needs a nice

tree decomposition as input, for which the terminals only appear in bags that are leaf nodes

of the decomposition. Given any tree decomposition, these conditions are not hard to meet

(cf. [4, Lemma 6]). However, for our algorithms we are going to rely on tree decompositions

with certain additional properties. Hence we will need to revisit the conditions needed for

the algorithm of Theorem 5 when using it for our purposes.

We will also consider the following parameters: The treedepth of a graph G can be defined

recursively as follows: (i) the treedepth of K1 is 1 (ii) the treedepth of a disconnected graph

is the maximum of the treedepth of any of its components (iii) the treedepth of a connected

graph G is 1 + minv∈V (G) td(G − v). A feedback vertex set is a set of vertices whose removal

2 here we do not demand the leaf nodes to be empty, as is often assumed for this deĄnition.
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leaves a forest. A vertex cover is a set of vertices such that its removal leaves an edge-less

graph. A feedback edge set is a set of edges whose removal leaves a forest. In a connected

graph with n vertices and m edges the minimum feedback edge set always has size m − n + 1.

As part of our approximation algorithm we will use the notion of δ-nets, defined as

follows. A well-known fact is that a δ-net exists for any metric and any δ ≥ 0, and it can be

constructed greedily in polynomial time.

▶ Definition 7. Given a metric (X, dist), a δ-net is a subset N ⊆ X of points, such that

1. any two net points u, v ∈ N are far from one another, i.e., dist(u, v) > δ, and

2. for any node u ∈ X there is some net point v ∈ N close by, i.e., dist(u, v) ≤ δ.

3 An efficient parameterized approximation scheme for treewidth

In this section we describe the main result of this paper which is an EPAS for Steiner

Forest parameterized by treewidth. We begin by giving two preliminary tools (Lemma 8

and Lemma 9) which facilitate the algorithm by ensuring that the given tree decomposition

has logarithmic height and that the instance has aspect ratio (ratio of the weights of the

heaviest over the lightest edge) bounded by a polynomial in n.

We then go on to Subsection 3.1 where we introduce a second parameter, the height h of

the decomposition. Our goal is to fix an almost-optimal solution Fε and describe an algorithm

that produces a partition ζB of the active terminals for each bag B of the decomposition,

where ζB is a refinement of the partition implied by Fε (Lemma 10). In other words, we

seek a partition ζB of AB such that if two terminals t1, t2 are in the same set of ζB, then

they are also in the same component of Fε. Of course, it is trivial to achieve this by giving

a ζB where each active terminal is in its own set, so the interesting part here is how we

group terminals together in a way that in the end allows us to bound ♣ζB ♣ by a polynomial

of k + h + 1
ε + log n, while still ensuring that Fε is almost optimal.

The partition ζB of Lemma 10 is not yet conforming, because two terminals which are

in distinct sets of ζB may still be in the same component of Fε, and thus we cannot apply

Theorem 5 at this point. Therefore in Subsection 3.2, given ζB we focus on how to obtain

every possible partition of the set of active terminals, which could be conforming with an

almost-optimal solution. By an appropriate use of δ-nets, similar to [4], we are able to “guess”

(that is, brute-force) a choice of a small number of net points per active component. Since

the number of choices for each point is at most ♣ζB ♣ and we choose roughly O(k2/ϵ) points

in total, the total number of produced partitions (and hence the running time given by

Theorem 5) is of the form (log n + k + 1
ϵ )O(k2/ϵ)nO(1), which is FPT.

Let us now recall a result of Bodlaender and Hagerup [7] which states that a tree

decomposition of logarithmic height can always be obtained.

▶ Lemma 8 ([7]). Given a tree decomposition of width k of a graph G on n vertices, there is

a polynomial time algorithm computing a nice tree decomposition of G of width O(k) and

height O(k log n).

We also need to reduce the aspect ratio of the given graph to a polynomial. This can be

done using a standard technique, where however we need to make sure that the treewidth

of the given graph remains bounded. Note that the aspect ratio of the resulting graph G′

in the following lemma is polynomially bounded in the size of the original graph, but not

necessarily in the size of G′ (because G′ may have significantly fewer vertices).

▶ Lemma 9. Given ε > 0, an instance of Steiner Forest on a graph G with n vertices,

and a (nice) tree decomposition T of width k and height h for G, in polynomial time we can

compute an instance on a graph G′ with at most n vertices and a (nice) tree decomposition T ′
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of width at most k and height h for G′, such that the ratio of the longest to the shortest

edge in G′ is at most 2n/ε, and any α-approximation for G′ can be converted into an

(α + ε)-approximation for G.

For simplicity, in the following we will scale the edge lengths of any given graph so that

the shortest edge has length 1. In particular, after applying Lemma 9, the longest edge has

length at most 2n/ε.

3.1 Tree decompositions with bounded height

In this section we informally assume that the height h of the given tree decomposition is

bounded as well as the width k. Our aim is to prove the following statement, where we

restrict ourselves to input graphs of polynomial aspect ratio, which we may do according to

Lemma 9 (keeping in mind that n is the number of vertices of the original input graph).

▶ Lemma 10. Let an instance of Steiner Forest on a graph G with at most n vertices be

given together with a tree decomposition T of width k and height h for G. For any ε > 0,

if the ratio between the longest and shortest edge of G is at most 2n/ε, then there exists

a (1 + ε)-approximation Fε with the following properties. There exists a polynomial time

algorithm, which for every bag B of T outputs a partition ζB of the active terminals AB,

such that each set of ζB belongs to the same component of Fε and ♣ζB ♣ = O( k4h2

ε2 log n
ε ).

To prove Lemma 10 we first identify the solution Fε, after which we will show how to

compute the partitions ζB .

3.1.1 A near-optimal solution

The high-level idea to obtain a (1 + ε)-approximate solution Fε is to connect components

of the optimum solution F ⋆ that lie very close to each other. In particular, if the distance

between two components C and C ′ of F ⋆ is of the form f(k, h, ε) cost(C) for some small

enough function f , then we may hope to add a shortest path between C and C ′ and charge

this additional cost to C, in order to obtain a (1 + ε)-approximation. Unfortunately, this

approach is not viable, since the number of components that are very close to C may be

very large, meaning that the function f in the distance bound would have to linearly depend

on the number of vertices in order to result in a (1 + ε)-approximation. This in turn would

mean that the size of the partition ζB would depend polynomially on the number of vertices,

making it unsuitable for an FPT time algorithm. This issue lies at the heart of the problem

and is the reason for why it is non-trivial to obtain an approximation scheme parameterized

by the treewidth. To get around this issue we will measure the distance between components

using a modified cost function, which we define next.

Given a bag B of the rooted tree decomposition T , we denote by TB the subtree of T

rooted at the node associated with B, and by GB = G[VB ] the graph induced by the vertices

VB lying in bags of TB. We also define the graph G↓
B ⊆ GB as the graph spanned by all

edges of GB , except those induced by B, i.e., the edge set of G↓
B is

E(G↓
B) = ¶uv ∈ E(GB) ♣ u /∈ B ∨ v /∈ B♢.

The cost of a component C of some Steiner Forest solution restricted to G↓
B only counts

the edge weights of C in G↓
B , and is denoted by

cost↓
B(C) =

∑

e∈E(C)∩E(G↓

B
)

w(e).
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Based on these definitions, we fix an optimal solution F ⋆ and construct a solution Fε

by initially setting Fε = F ⋆, and then connecting components by exhaustively applying the

following rule, where we say that two components C and C ′ share a bag B if V (C) ∩ B ̸= ∅
and V (C ′) ∩ B ̸= ∅:

▶ Rule 1. If C, C ′ are components of F ⋆ sharing a bag B with dist(C, C ′) ≤ ε
kh · cost↓

B(C)

but C and C ′ are in different components of Fε, then add a shortest path of length dist(C, C ′)

between C and C ′ to the solution Fε.

▶ Lemma 11. The cost of the solution Fε obtained by Rule 1 from F ⋆ is at most (1 + ε) cost(F ⋆).

Proof. It suffices to prove that the cost of all paths added to F ⋆ in order to obtain Fε according

to Rule 1 is at most ε · cost(F ⋆). For this we use a charging scheme that charges new paths

to components of F ⋆. In particular, we charge a path of length dist(C, C ′) ≤ ε
kh · cost↓

B(C)

to component C.

Fix a component C of F ⋆ and a bag B with V (C) ∩ B ̸= ∅. We define charge(C, B) to

be the cost we charge to C for operations involving other components of F ⋆ that share B.

It is not hard to see that charge(C, B) ≤ ε
h · cost↓

B(C), because there are at most k other

components of F ⋆ that share B.

For ℓ ∈ ¶0, . . . , h − 1♢, let Bℓ be the set of bags of the tree decomposition that appear at

distance exactly ℓ from the root, i.e., they lie on level ℓ of the tree. We now observe that

∑

B∈Bℓ

charge(C, B) ≤
∑

B∈Bℓ

ε

h
· cost↓

B(C) ≤ ε

h
cost(C),

where the last inequality follows because if we have two bags B, B′ ∈ Bℓ, then E(G↓
B) ∩

E(G↓
B′) = ∅: note that every edge of E(G↓

B) must be incident on a vertex v that appears in

a descendant of B, but not in B. By the properties of tree decompositions, notably by the

fact that B is a separator of G, v cannot appear in B′ or any of its descendants. Therefore

none of its incident edges are contained in E(G↓
B′). Because

∑
B∈Bℓ

cost↓
B(C) is the sum of

costs of C over disjoint sets of edges, the sum is a lower bound on the total cost of C.

To conclude, we observe that the total charge of C is

charge(C) ≤
h−1∑

ℓ=0

∑

B∈Bℓ

charge(C, B) ≤ ε cost(C).

Therefore, summing over all components of F ⋆, the total cost of the edges we have added

according to Rule 1 is at most ε · cost(F ⋆). ◀

3.1.2 Partitioning active terminals

We are now ready to prove Lemma 10 for the near-optimal solution Fε constructed above,

for which we will compute the partitions ζB for all bags B. We will use the following two

claims for the active terminals AB of the given bag B.

▷ Claim 12. If there exist t1, t2 ∈ AB such that dist(t1, t2) ≤ ε
kh dist(t1, B), then t1, t2 are

in the same component of Fε.

▷ Claim 13. Let A ⊆ AB and d ≥ 0 be such that (i) there exists b ∈ B such that for all

t ∈ A we have dist(t, B) = dist(t, b) and d ≤ dist(t, B) ≤ 2d (ii) for all distinct t, t′ ∈ A

we have dist(t, t′) > ε
kh d (iii) ♣A♣ ≥ 8k2(k+1)h2

ε2 . Then, there exists a component of Fε that

contains all terminals of A.
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Intuitively, Claim 12 allows us to place terminals of A which are very close to each other

into the same set of the partition ζB, as placing one terminal in a component forces the

placement of the other. Thanks to this claim we can work with an appropriate net. If we

find a large collection of such net points which also are roughly the same distance from the

bag and closest to the same vertex of the bag, Claim 13 allows us to group them all together

in the partition ζB . Armed with these tools, we can now prove the main lemma.

Proof of Lemma 10. To compute the partition ζB in polynomial time, we first partition the

active terminals AB ∩ B contained in the bag B. For this we simply add a set ¶t♢ for each

t ∈ AB ∩ B to ζB , which adds at most ♣B♣ ≤ k + 1 sets to ζB . Let now A = AB \ B be the

remaining active terminals.

To partition A, let d = mint∈AB\B dist(t, B) and D = maxt∈AB\B dist(t, B) be the

minimum and maximum distances of these active terminals from the bag B. Then partition

AB \ B into ♣B♣ ≤ k + 1 sets A1, A2, . . . , A♣B♣, depending on the vertex of B that is closest

to each t ∈ A (breaking ties arbitrarily). That is, for each Ai there exists b ∈ B such that

for all t ∈ Ai we have dist(t, B) = dist(t, b). Consider now a set Ai and further partition

it into r = ⌈log2
D
d ⌉ sets Ai,0, Ai,1, . . . , Ai,r−1, where Ai,j contains all t ∈ Ai such that

dist(t, B) ∈ [2jd, 2j+1d). Now (greedily) compute an ( ε
kh2jd)-net Ni,j of Ai,j . We observe

that Ni,j satisfies the first two conditions of Claim 13 for 2jd, so if ♣Ni,j ♣ ≥ 8k2(k+1)h2

ε2 , then

we add Ai,j as a set of our partition ζB , remove the terminals of Ni,j from A and continue

the algorithm for the remaining terminals. Repeat the previous step for all i, j for which

Ni,j is sufficiently large. This contributes at most (k + 1)⌈log D
d ⌉ sets to ζB . To partition A,

let d = mint∈AB\B dist(t, B) and D = maxt∈AB\B dist(t, B) be the minimum and maximum

distances of these active terminals from the bag B. Then partition AB \ B into ♣B♣ ≤ k + 1

sets A1, A2, . . . , A♣B♣, depending on the vertex of B that is closest to each t ∈ A (breaking

ties arbitrarily). That is, for each Ai there exists b ∈ B such that for all t ∈ Ai we have

dist(t, B) = dist(t, b). Consider now a set Ai and further partition it into r = ⌈log2
D
d ⌉

sets Ai,0, Ai,1, . . . , Ai,r−1, where Ai,j contains all t ∈ Ai such that dist(t, B) ∈ [2jd, 2j+1d).

Now (greedily) compute an ( ε
kh 2jd)-net Ni,j of Ai,j . We observe that Ni,j satisfies the first

two conditions of Claim 13 for 2jd, so if ♣Ni,j ♣ ≥ 8k2(k+1)h2

ε2 , then we add Ai,j as a set of

our partition ζB, remove the terminals of Ai,j from A and continue the algorithm for the

remaining terminals. Repeat the previous step for all i, j for which Ni,j is sufficiently large.

This contributes at most (k + 1)⌈log D
d ⌉ sets to ζB .

Suppose now that we are left with a set of terminals A such that the procedure above

fails to construct a sufficiently large net Ni,j to apply Claim 13. For every index pair i, j,

each remaining terminal t ∈ Ai,j is close enough to some net point t′ ∈ Ni,j such that we can

apply Claim 12. We therefore create a set in the partition ζB for each t′ ∈ Ni,j , placing into

such a set those terminals of Ai,j that are closest to t′ (breaking ties arbitrarily). Since we

cannot apply Claim 13 to the remaining sets Ai,j , each of the at most (k + 1)⌈log D
d ⌉ nets

Ni,j has size less than 8k2(k+1)h2

ε2 , which implies ♣ζB ♣ ≤ O( k4h2

ε2 log D
d ).

Clearly the above procedure can be implemented in polynomial time, and the fact that

every set of ζB is contained in the same component of Fε follows from Claim 12 and Claim 13.

Finally, any path in a graph with at most n vertices has less than n edges, so that D
d < 2n2/ε,

given that the ratio of the longest to the shortest edge is 2n/ε (note that d > 0 by definition).

Hence the claimed bound of ♣ζB ♣ ≤ O( k4h2

ε2 log n
ε ) follows. ◀
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3.2 Tree decompositions with logarithmic height

Given a tree decomposition T of logarithmic height, using Lemma 10 we are ready to compute

a set of partitions ΠB of FPT size for each bag B, such that a near-optimal solution conforms

to ΠB. In particular, by Lemma 8 we may assume that the height of T is h = O(k log n),

which means that the bound on ζB in Lemma 10 translates to O(k6

ε2 log3 n
ε ). As in the

previous section, we need to apply Lemma 9 in order to bound the aspect ratio of the graph,

so that n denotes the number of vertices of the original input graph, while now the graph G

has at most n vertices but the ratio between the longest and shortest edge is at most 2n/ε.

We begin by describing how to obtain the near-optimal solution, after which we will identify

the partition sets ΠB .

3.2.1 A near-optimal solution

Bateni, Hajiaghayi, and Marx [4] construct a near-optimal solution by modifying the optimum.

We will use similar techniques to obtain our near-optimal solution, but we construct it by

instead modifying the (1 + ε)-approximate solution Fε given by Lemma 10. In particular, we

construct a near-optimal (1 + ε)2-approximation F̃ε from Fε. The main idea to obtain F̃ε is

to connect components of Fε if they are very close to one another. As before however, doing

this naively would incur too much cost for the additional connections.

To make sure that the cost incurred by connecting components of Fε is not too large,

[4] introduced a partial order on the components based on the structure of a given rooted

tree decomposition T . Let C1, C2 be two components of Fε that share a bag B of T , i.e.,

V (C1) ∩ B ≠ ∅ and V (C2) ∩ B ≠ ∅. Since C1 and C2 are connected subgraphs of the input

graph, a basic property of tree decompositions implies that there are (connected) subtrees T1

and T2 of T induced by the respective bags containing vertices of C1 and C2. Because these

components both contain vertices of B, the node associated with B is part of both T1 and

T2, and therefore the roots of both subtrees lie on the path from this node to the root of T .

This defines an order on C1 and C2, and we write C1 ≤ C2 if the root of T1 is farther from

the root of T than the root of T2 is. This order is defined for any two components of Fε

that share a bag, and thus we obtain a partial order on the components of Fε, where any

components that do not share a bag are incomparable.

Using the defined order, [4] connect components of the optimum solution that are very

close to each other. In order to obtain smaller partition sets, we modify the distance bound

used in this procedure compared to [4]. In particular, for any value x > 0, let ⌊x⌋2 = 2⌊log2 x⌋

denote the largest power of 2 that is at most x. Now, starting with F̃ε = Fε we connect

components by exhaustively applying the following rule:

▶ Rule 2. If C, C ′ are components of Fε with C ≤ C ′ and dist(C, C ′) ≤ ε
k ⌊cost(C)⌋2 but

C and C ′ lie in different components of F̃ε, then add a shortest path of length dist(C, C ′)

between C and C ′ to the solution F̃ε.

A crucial but subtle observation is that for a component C of Fε there can be many

components C ′ ≤ C at distance at most ε
k ⌊cost(C)⌋2 to C, which however are not connected

to C in the resulting solution F̃ε according to Rule 2. This makes it non-trivial to find small

partition sets ΠB. Contrary to this however, an important property of the order on the

components is that for any component C of Fε, there are at most k other components C ′

for which C ≤ C ′, as we will argue for the following lemma to bound the cost of F̃ε. In

particular, the lemma implies that F̃ε is a near-optimal (1 + ε)2-approximation, given that Fε

is a (1 + ε)-approximation.

▶ Lemma 14. The cost of the solution F̃ε obtained by Rule 2 from Fε is at most (1 + ε) cost(Fε).
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3.2.2 Partitioning active terminals

Given the construction of the (1 + ε)2-approximate solution F̃ε above, the next step is to find

a set of partitions ΠB of the active terminals AB for each bag B, such that F̃ε conforms with

all sets ΠB . In the following, fix a bag B of the given tree decomposition T . The technique

used by [4] is to guess a small net for each active component of bag B,3 so that every terminal

of AB close to a net point must be part of the same component in the approximate solution,

after taking the order on the active components as defined previously into account. Next we

choose a net on the terminals of each active component and bound its size.

▶ Lemma 15. Let N ⊆ AB ∩ C be an ε
k ⌊cost(C)⌋2-net of the metric induced by the active

terminals of some active component C. The size of the net can be bounded by ♣N ♣ ≤ ⌊4k/ε⌋.4

Following the algorithm of [4], the next step would be to guess such an ε
k ⌊cost(C)⌋2-net

for each of the at most k + 1 active components C of the bag B. By Lemma 15, the total

number of net points for these at most k + 1 nets is at most ⌊4k/ε⌋(k + 1) = O(k2/ε). Since

however there may be up to n active terminals, guessing these nets for all active components

can result in nO(k2/ε) many possible choices, which leads to an XP time algorithm. To

circumvent this, we instead consider the partition ζB of the active terminals as given by

Lemma 10, and guess which of the sets of ζB contains a net point. We will argue that since

the size of ζB is O( k6

ε2 log3 n
ε ) there are only ( k

ε log n
ε )O(k2/ε) possibilities, leading to a faster

algorithm.

More concretely, to compute a set of partitions ΠB that F̃ε conforms to, our algorithm

considers every sequence ((S1, δ1), (S2, δ2), . . . , (Sℓ, δℓ), ρ) of at most k + 1 pairs (Sj , δj) and

partitions ρ of the index set ¶1, . . . , ℓ♢, where each Sj is a subset of the parts of ζB such that

♣Sj ♣ ≤ ⌊4k/ε⌋, and δj ∈ ¶2q ♣ q ∈ N0 ∧ 0 ≤ q ≤ log2(2n2/ε)♢ is an integer power of 2 between

1 and 2n2/ε, where n is the number of vertices of the original input graph in accordance

with Lemma 9. From every such sequence, the algorithm attempts to construct a partition

of the active terminals, and if it succeeds adds it to the set ΠB. As we will show, in this

process the algorithm will successfully construct one partition π of AB that F̃ε conforms to.

Before describing how a partition of the active terminals arises from such a sequence, we

bound the number of these sequences, which determines the running time. By Lemma 10,

♣ζB ♣ = O(k6

ε2 log3 n
ε ) if the tree decomposition T has logarithmic height, so that there are

at most
(

♣ζB ♣
⌊4k/ε⌋

)
= (k

ε log n
ε )O(k/ε) possible choices for each Sj . Clearly there are O(log n

ε )

choices for each δj , and ℓℓ = kO(k) possible partitions ρ, given that ℓ ≤ k + 1. Since a

sequence contains ℓ sets Sj , the total number of sequences is bounded by (k
ε log n

ε )O(k2/ε).

Each sequence may give rise to a partition π ∈ ΠB of the active terminals as follows.

First, let π = ¶Y1, . . . , Y♣ρ♣♢, i.e., π has the same number of sets as the partition ρ. Let

Uj =
⋃

U∈Sj
U denote the set of active terminals in Sj , and let ρ(j) be the part of ρ

containing j. We distinguish between active terminals t ∈ AB that lie in some set Uj and

those that do not:

if t ∈ Uj for some j ∈ [ℓ] then t ∈ Yρ(j) (i.e., Uj ⊆ Yρ(j)), and

otherwise, if pt ∈ ¶1, . . . , ℓ♢ denotes the smallest index for which dist(t, Upt
) ≤ ε

k δpt
, then

t ∈ Yρ(pt).

If this π is a partition of AB we add π to ΠB , and otherwise we dismiss the current sequence.

Clearly π can be constructed in polynomial time, given a sequence.

3 [4] refers to these nets as groups.
4 A slightly worse bound follows from [4, Lemma 19].
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▶ Lemma 16. The (1 + ε)2-approximate solution F̃ε conforms to the set ΠB of partitions

constructed above.

Proof. Consider the (1 + ε)-approximate solution Fε of Lemma 10 from which F̃ε is con-

structed according to Rule 2, and the partition ζB of AB as given by Lemma 10. Let the active

components of Fε be C1, . . . , Cℓ indexed according to their order, i.e., Cj ≤ Cj′ if and only

if j ≤ j′. For each active component Cj we fix an ε
k ⌊cost(Cj)⌋2-net Nj of size at most ⌊4k/ε⌋

according to Lemma 15. Now, consider the sequence ((S1, δ1), (S2, δ2), . . . , (Sℓ, δℓ), ρ), where

Sj contains exactly those sets of ζB that contain at least one net point of Nj ,

δj = ⌊cost(Cj)⌋2, and

ρ is the partition of the index set corresponding to the components of F̃ε, i.e., ρ(j) = ρ(j′)

if and only if Cj and Cj′ lie in the same component in F̃ε.

Recall that after applying Lemma 9 to the input, the ratio between the shortest and

longest edge is at most 2n/ε, where n is the number of vertices of the original input graph.

Since we assume that the length of the shortest edge is 1, the cost of any component lies

between 1 and 2n2/ε, given that a component is a tree with less than n edges. Therefore

⌊cost(Cj)⌋2 ∈ ¶2q ♣ q ∈ N0 ∧ 0 ≤ q ≤ log2(2n2/ε)♢, which means that the algorithm will

consider the above sequence in some iteration.

We now turn to π = ¶Y1, . . . , Y♣ρ♣♢ constructed for this sequence, and show that it is a

partition of AB and that F̃ε conforms to it. For this, note that no set of ζB contains net

points of several active components of Fε, since by Lemma 10 all active terminals in the same

set of ζB also belong to the same component of Fε. Thus the sets Sj as defined above (and

also the corresponding sets Uj) are pairwise disjoint. This means that, due to the definition

of ρ, any two terminals t ∈ Uj and t′ ∈ Uj′ end up in the same set of π if and only if t and t′

belong to the same component of F̃ε (as Uj ⊆ Yρ(j)).

Now consider a terminal t ∈ AB, which does not lie in any Uj , and let q be the index

of the active component Cq of Fε containing t. As δq = ⌊cost(Cq)⌋2, Nq is an ε
k δq-net of

Cq ∩ AB. Also, we chose Sq so that Nq ⊆ Uq. Hence we get dist(t, Uq) ≤ dist(t, Nq) ≤ ε
k δq,

and the definition of pt implies pt ≤ q. Now Cpt
is either equal to Cq, or Cq is connected

to the component Cpt
in the approximate solution F̃ε according to Rule 2: on one hand we

have Cpt
≤ Cq due to the order of the indices, and at the same time by Lemma 10 we have

Upt
⊆ V (Cpt

) ∩ AB , which implies

dist(Cq, Cpt
) ≤ dist(t, Cpt

) ≤ dist(t, Upt
) ≤ ε

k
δpt

=
ε

k
⌊cost(Cpt

)⌋2.

Hence we can conclude that t lies in the same component as Cpt
in F̃ε.

In conclusion, adding Uj to Yρ(j) and t to Yρ(pt) for each terminal t not lying in any Uj ,

partitions the terminals according to the components of F̃ε. Hence π is a partition of the

active terminals AB that is added to ΠB , and F̃ε conforms to it. ◀

Using all of the above, we can finally prove our main theorem, stating that there is an

EPAS for Steiner Forest parameterized by the treewidth.

Proof of Theorem 1. The first steps of our algorithm are to preprocess the given tree

decomposition using Lemma 8 so that it is nice and its height is O(k log n), and the input

graph using Lemma 9 so that the aspect ratio is bounded (which means that n denotes the

number of vertices in the original input graph). We then compute the partition sets ΠB for

all bags B using the above procedure, resulting in partition sets of size (k
ε log n

ε )O(k2/ε) =

2O( k2

ε
log k

ε
) · no(1). Here, we are using a well-known Win/Win argument: if k2/ε <

√
log n,

then (log n)k2/ε = no(1); otherwise, log n ≤ k4/ε2, therefore ( k
ε log n

ε )O(k2/ε) = ( k
ε )O( k2

ε
).
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Since each partition of a set ΠB can be computed in polynomial time, and the number

of bags of the nice tree decomposition is O(kn), this takes 2O( k2

ε
log k

ε
) · nO(1) time. Next

we apply Theorem 5 to compute a solution that is at least as good as F̃ε conforming to all

ΠB , in 2O( k2

ε
log k

ε
) · nO(1) time. Hence we obtain a (1 + ε)2-approximation F . According to

Lemma 9, F can be converted into a ((1 + ε)2 + ε)-approximation to the original input graph.

Since for any ε′ > 0 we may choose ε = Θ(ε′) so that ((1 + ε)2 + ε) ≤ 1 + ε′, we obtain an

EPAS as claimed. ◀

4 Vertex cover

In this section we consider the parameterization by the size of a vertex cover, which is a set

S ⊆ V of vertices such that every edge is incident on at least one of the vertices of S. In the

full version of this paper we present an easy FPT algorithm based on Theorem 5.

Our goal here is to present a reduction showing that the algorithm we have given for

Steiner Forest parameterized by vertex cover is essentially optimal, assuming the ETH.

Recall that the ETH is the hypothesis that 3-SAT on instances with n variables cannot be

solved in time 2o(n). We will give a reduction that given a 3-SAT instance ϕ, produces an

equivalent Steiner Forest instance with vertex cover at most O(n/ log n). We stress that

our reduction works even for unweighted instances.

▶ Theorem 17. If there exists an algorithm which, given an unweighted Steiner Forest

instance on n vertices with vertex cover k, finds an optimal solution in time 2o(k log k)nO(1),

then the ETH is false.

Proof. We present a reduction from 3-SAT. Before we proceed, we would like to add to our

formula the requirement that the variable set comes partitioned into three sets in a way that

each clause contains at most one variable from each set. It is not hard to show that this does

not affect the complexity of the instance much, as we demonstrate in the following claim.

▷ Claim 18. Suppose that there exists an algorithm that takes as input a 3-SAT instance ϕ

on n variables and a partition of the variables into three sets of equal size, such that each

clause contains at most one variable from each set, and decides if ϕ is satisfiable in time

2o(n). Then, the ETH is false.

In the remainder we will then assume that we are given a formula ϕ on 3n variables which

are partitioned into three sets of size n as specified by the previous claim. Without loss of

generality, suppose that n is a power of 4 (this can be achieved by adding dummy variables).

Note that this ensures that log n
2 and

√
n are both integers.

We construct an equivalent instance of Steiner Forest as follows. Let L = ⌈ n
log2 n

⌉.

We begin by constructing i choice gadgets, i.e., for i ∈ ¶1, . . . , 3 log n♢ we make:

2L left vertices, labeled ℓi
j , for j ∈ ¶0, . . . , 2L − 1♢.

2L right vertices, labeled ri
j , for j ∈ ¶0, . . . , 2L − 1♢.√

n middle vertices, labeled mi
j , for j ∈ ¶0, . . . ,

√
n − 1♢.

We connect all middle vertices to all left and right vertices, that is, for all j ∈ ¶0, . . . , 2L−1♢
and j′ ∈ ¶0,

√
n − 1♢ we connect ℓi

j and ri
j to mi

j′ .

For each j ∈ ¶0, . . . , 2L − 1♢ we add a demand from ℓi
j to ri

j .

Notice that the graph we have constructed so far contains 3 log n choice gadgets, each of

which has 4L +
√

n = O(n/ log2 n) vertices, so the graph at the moment contains O(n/ log n)

vertices in total.
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Before we proceed, let X = Xa ∪ Xb ∪ Xc be the set of 3n variables of ϕ that was given

to us partitioned into three sets of size n. We partition X into 3 log n groups X1, . . . , X3 log n

in a way that (i) ♣Xi♣ ≤ ⌈n/ log n⌉ for all i ∈ ¶1, . . . , log n♢ and (ii) for all i ∈ ¶1, . . . , log n♢
we have Xi is contained in one of Xa, Xb, Xc. This can be done by taking the n variables of

Xa and partitioning them arbitrarily into groups X1, . . . , Xlog n of size as equal as possible

(therefore at most ⌈n/ log n⌉), and we proceed similarly for Xb, Xc. Rename the variables of

ϕ so that for each i we have that Xi = ¶x(i,0), . . . , x(i,⌈n/ log n⌉−1)♢.

To give some intuition, we will now say that, for i ∈ ¶1, . . . , 3 log n♢, the choice gadget

i represents the variables of the set Xi. In particular, for each j ∈ ¶0, . . . 2L − 1♢, we will

say that the way that the demand ℓi
j → ri

j was satisfied encodes the assignment to the
log n

2 variables ¶x(i, j log n

2 ), . . . , x
(i,

(j+1) log n

2 −1)
♢. More precisely, in our intended solution the

demand ℓi
j → ri

j is satisfied by connecting both terminals to a common middle vertex mi
j′ .

We can infer the assignment to the log n
2 variables this represents simply by writing down

the binary representation of j′, which is a number between 0 and
√

n − 1, hence a number

with log n
2 bits. Note that this way we represent 2L · log n

2 ≥ ⌈ n
log n ⌉ variables, that is, we can

represent the assignment to all the variables of the group.

Armed with this intuition, we can now complete our construction. For each clause c we

construct two new vertices, c1, c2 and add a demand from c1 to c2. For each literal contained

in c, suppose that the literal involves the variable x(i, j log n

2 +α) for i ∈ ¶1, . . . , 3 log n♢,

j ∈ ¶0, . . . , 2L − 1♢, α ∈ ¶0, . . . , log n
2 − 1♢. We then connect c1 to ℓi

j . Furthermore, if

x(i, j log n

2 +α) appears positive in c, we connect c2 to all mi
j′ such that the binary representation

of j′ has a 1 in position α. If on the other hand x(i, j log n

2 +α) appears negative in c, we connect

c2 to all mi
j′ such that the binary representation of j′ has a 0 in position α. In other words,

we connect c2 to all the middle vertices to which ℓi
j could be connected and are consistent

with an assignment that satisfies c using the current literal. After repeating the above

for all literals of each clause the construction is complete. We set the target cost to be

B = 2m + 12L log n.

Before we argue about the correctness of the reduction, let us observe that if the reduction

preserves the satisfiability of ϕ, then we obtain the theorem, because the instance we

constructed has vertex cover k = O(n/ log n) and size polynomial in the size of ϕ. Indeed,

as we argued the choice gadgets have O(n/ log n) vertices in total, and all further edges

we added have an endpoint in a choice gadget. If there was an algorithm solving the new

instance in time ko(k)nO(1), this would give a 2o(n) algorithm to decide ϕ.

Regarding correctness, let us first observe that if ϕ is satisfiable, we can obtain a valid

solution using the intuitive translation from assignments to choice gadget solutions we gave

above. In particular, for each i ∈ ¶1, . . . , 3 log n♢ and j ∈ ¶0, . . . , 2L − 1♢, we consider the

assignment to variables ¶x(i, j log n

2 ), . . . , x
(i,

(j+1) log n

2 −1)
♢ as a binary number, which must have

a value j′ between 0 and
√

n − 1. We then connect both ℓi
j , ri

j to mi
j′ . Repeating this satisfies

all demands internal to choice gadgets and uses 3 log n · 4L = 12L log n edges. Consider now

a clause c and the demand from c1 to c2. Since we started with a satisfying assignment, c

must contain a true literal, say involving the variable x(i, j log n

2 +α). We select the edge from

c1 to ℓi
j . Furthermore, we observe that c2 must be a neighbor of all vertices mi

j′ such that

the bit in position α of the binary representation of j′ agrees with the value of x(i, j log n

2 +α).

Since ℓi
j is already connected to such a mi

j′ , we select the edge from that vertex to c2 to

satisfy the demand for this clause. We have therefore spent 2m further edges for the clause

demands and have used a budget of exactly B.
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For the converse direction, suppose we have a solution of cost B. We first observe that

each vertex ri
j must be connected to a middle vertex mi

j′ , since all right vertices are terminals,

but such vertices only have edges connecting them to middle vertices. Recall that, for each

i, j, the left vertex ℓi
j must be in the same component of the solution as ri

j , since there is a

demand between these two vertices. Hence, each ℓi
j is in the same component of the solution

as some mi
j′ . We now slightly edit the solution as follows: suppose there exists a vertex ℓi

j

which is not directly connected in the solution to any middle vertex mi
j′ . Since this vertex is

in the same component as one such vertex mi
j′ , we add to the solution the edge connecting

them, and since this creates a cycle, remove from the solution another edge incident on ℓi
j .

Doing this repeatedly ensures that each ℓi
j is connected to a middle vertex mi

j′ in the solution

without increasing the total cost.

We now observe that since each ℓi
j and each ri

j is connected to at least one middle vertex

mi
j′ in the solution, this already uses a cost of 3 log n · 4L = 12L log n. Furthermore, for each

clause we have constructed two terminals, each of which must use at least one of its incident

edges, giving an extra cost of 2m. Since our budget is exactly 2m + 12L log n, we conclude

that each terminal constructed for a clause is incident on exactly one edge, and each ℓi
j and

each ri
j is connected to exactly one middle vertex. Crucially, these observations imply the

following fact: if for some i, j, j′ we have that ℓi
j and mi

j′ are in the same component of the

solution, then the edge connecting ℓi
j and mi

j′ is part of the solution. To see this, observe

that any path connecting ℓi
j and mi

j′ that is not a direct edge would need to have length at

least 3. However, no clause terminal can be an internal vertex of such a path, since clause

terminals have degree 1 in the solution. Furthermore, if we remove clause terminals from the

graph, left and right vertices also have degree 1 in the remaining solution, so such vertices

also cannot be internal in the path. Finally, middle vertices are an independent set, so it is

impossible for all internal vertices of a path of length at least 3 to be middle vertices.

Armed with the observation that ℓi
j and mi

j′ are in the same connected component of

the solution if and only if they are directly connected, we are ready to extract a satisfying

assignment from the Steiner forest. For each i, j, if ℓi
j is connected to mi

j′ we write j′ in

binary and assign to variable x(i, j log n

2 +α), for α ∈ ¶0, . . . , logn
2 − 1♢ the value in position α

of the binary representation of j′. We claim that this assignment must be satisfying. Indeed,

consider the clause c, and the terminals c1, c2 which represent it. Since these terminals have

a demand, they must be in the same component. Because c1 has at most three neighbors

which are in different choice gadgets (as each clause contains variables from distinct groups),

we can see that c1 must be connected to some ℓi
j and c2 to some mi

j′ in the solution, such

that ℓi
j and mi

j′ are in the same component, and are therefore directly connected. But if

ℓi
j is directly connected to mi

j′ this means that the assignment we extracted from ℓi
j gives

a value to a variable x(i, j log n

2 +α) which satisfies the clause c, hence we have a satisfying

assignment. ◀

5 Feedback Edge Set

A feedback edge set of a graph is a set of edges that when removed renders the graph acyclic.

It is well-known that if G is a connected undirected graph on n vertices and m edges, then

all minimal feedback edge sets of G have size k = m − n + 1. Indeed, such a set can be

constructed in polynomial time by repeatedly locating a cycle in the graph and selecting an

arbitrary edge of the cycle to insert into the feedback edge set.

In this section we will consider Steiner Forest parameterized by the feedback edge

set of the input graph, which we will denote by k. Unlike the vertex cover section, here our

main result is positive: we show that Steiner Forest can be solved optimally in time
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2O(k)nO(1), that is, in time single-exponential in the parameter. Since we are able to achieve

a single-exponential dependence, it is straightforward to see that this is optimal under the

ETH.

▶ Theorem 19. If there is an algorithm solving Steiner Tree in time 2o(k)nO(1), where k

is the feedback edge set of the input, then the ETH is false.

Let us now proceed to the detailed presentation of the algorithm. Suppose that we are

given a budget b and we want to decide if there exists a Steiner Forest solution F such

that cost(F ) ≤ b. We start by applying a simple reduction rule.

▶ Rule 3. Suppose we have a Steiner Forest instance on graph G with weight function

w and budget b, such that a vertex u ∈ V has degree 1. If u ̸∈ R, then delete u. If u ∈ R,

let v be the unique neighbor of u. Then set b′ := b − w(uv), delete u from the graph and the

demand ¶u, v♢ from D if it exists, and replace, for each x ∈ V \ ¶u, v♢ such that ¶u, x♢ ∈ D

the demand ¶u, x♢ with the demand ¶v, x♢.

▶ Lemma 20. Rule 3 is safe.

Observe that if we apply Rule 3 exhaustively, then the minimum degree of the graph is 2.

As we show next, relatively few vertices can have higher degree.

▶ Lemma 21. Suppose we have a Steiner Forest instance with feedback edge set of size k

and minimum degree at least 2. Then G contains at most 2k vertices of degree at least 3.

In the remainder we will assume that we have a Steiner Forest instance G = (V, E)

with a feedback edge set H ⊆ E of size k, to which 3 can no longer be applied. We will

say that a vertex v is special if v is incident on an edge of H or v has degree at least 3. By

Lemma 21 we know that G contains at most 4k special vertices.

We define a topological edge (topo-edge for short) as follows: a path P in G is a topological

edge if the two endpoints of P are special vertices and all internal vertices of P are non-special.

Note that by this definition, all edges of H form topo-edges, since the endpoints of such

edges are special. We observe the following:

▶ Lemma 22. Suppose we have a graph G with feedback edge set of size k and minimum

degree at least 2. Then G contains at most 5k topological edges.

We are now ready to state the main algorithmic result of this section.

▶ Theorem 23. There is an algorithm that solves Steiner Forest on instances with n

vertices and a feedback edge set of size k in 2O(k)nO(1) time.
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