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Abstract

In the Tricolored Euclidean Traveling Salesperson problem, we are given k = 3 sets of points in the

plane and are looking for disjoint tours, each covering one of the sets. Arora (1998) famously gave

a PTAS based on “patching” for the case k = 1 and, recently, Dross et al. (2023) generalized this

result to k = 2. Our contribution is a (5/3 + ε)-approximation algorithm for k = 3 that further

generalizes Arora’s approach. It is believed that patching is generally no longer possible for more

than two tours. We circumvent this issue by either applying a conditional patching scheme for three

tours or using an alternative approach based on a weighted solution for k = 2.
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1 Introduction

We consider the k-Colored Euclidean Traveling Salesperson problem (k-ETSP) where k sets

of points have to be covered by k disjoint curves in the plane (cf. Figure 1). This is a

fundamental problem in geometric network optimization [24] and generalizes the well-known

Euclidean Traveling Salesperson problem (ETSP). It captures applications ranging from VLSI

design [12, 21, 29, 30] to set visualisation of spatial data [1, 7, 11, 16, 27].

Formally, an instance of k-ETSP is a partition (Tc)c∈C of a set of terminals T ⊆ R
2

in the Euclidean plane, where ♣C♣ = k. We consider every c ∈ C to be a color and every

point in Tc to be of color c. A solution to the instance is a k-tuple Π = (πc)c∈C of closed

curves in R
2, also referred to as tours, such that every curve πc visits all terminals of color c,

i.e., Tc ⊆ πc,1 and the curves are pairwise disjoint, i.e., πc ∩ πc′ = ∅ for c ̸= c′.

1 For convenience, we identify curves with their images.
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15:2 A (5/3+ε)-Approximation for Tricolored Non-Crossing Euclidean TSP

Figure 1 An instance of 3-ETSP together with two possible solutions. An optimum solution

does not exist: The curves can get arbitrarily close but must not touch. Observe that, in the middle

subfigure, the red and green tour are not δ-close for any δ > 0, as the blue tour lies in between.

The objective of k-ETSP is to minimize the total length of the tours, i.e., to minimize

l(Π) :=
∑

c∈C l(πc), where l(π) denotes the Euclidean length of π. It is important to note

that, for k > 1, an optimum does not always exist (cf. Figure 1).2 In order to still define

an approximation, we follow the approach of [10] by defining the value Opt
∗ := inf¶l(Π) :

Π is a solution♢ and saying that a solution Π is an α-approximation if l(Π) ≤ αOpt
∗.

The k-ETSP problem inherits NP-hardness from its special case ETSP [25] for k = 1.

It is well-known that 1-ETSP (i.e., ETSP) admits a Polynomial-Time Approximation

Scheme (PTAS) [2], and the result was recently extended to a PTAS for 2-ETSP [10]. The

best known approximation factor for 3-ETSP was (10/3 + ε) via doubling of the solution to

3-Colored Non-crossing Euclidean Steiner Forest from [5].

Our results. Our main result is the following.

▶ Theorem 1. For every ε > 0, there is an algorithm that computes a
(

5
3 + ε

)

-approximation

for 3-ETSP in time
(

n
ε

)O(1/ε)
.

To prove Theorem 1, we adapt Arora’s algorithm for Euclidean TSP [2]. One of the

key ingredients of that algorithm is the so-called Patching Lemma which allows to locally

modify any tour such that the number of crossings with a line segment is bounded, without

increasing the length of the tour too much. It was shown in [10] that this is still possible

for two tours, but it does not seem to be possible for more than two non-crossing tours

(see Figure 2, [5, 10]). We show how to circumvent this issue by imposing an additional

condition on the tours to be patched. For this, we say that two tours are δ-close if they can

be connected by a straight line segment of length at most δ that is disjoint from the third

tour (cf. Figure 1).

▶ Lemma 2. Let s be a straight line segment and δ = l(s) be its length. Let a solution

to 3-ETSP be given in which two of the three tours are not δ-close. For every δ′ > 0, the

solution can be modified inside a δ′-neighbourhood3 of s such that it intersects s in at most 18

points and its cost is increased by at most O(δ).

For the case where patching is not possible, we take a different approach. For this,

we define a two-tour presolution to be a pair of disjoint tours (πcc′ , πc′′) such that πcc′

visits all terminals colored c and c′, and πc′′ visits all terminals colored c′′. Such tours can

easily be transformed into a feasible solution to 3-ETSP by “doubling” πcc′ (cf. Figure 3,

Observation 6). We call the resulting solution an induced two-tour solution.

2 For k = 1, an optimum always exists because tours are allowed to self-intersect.
3 A formal definition is given in Section 3.
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Figure 2 A modified example from [5] that is presumably non-patchable.

▶ Lemma 3. For every ε > 0, there exists δ > 0 such that, for every (1 + ε)-approximate

solution to 3-ETSP in which the two shorter tours are δ-close, we can find a two-tour

presolution (π1, π2) with 2l(π1) + l(π2) ≤
(

5
3 + 2ε

)

· Opt
∗.

Similarly as in [2], we place a suitable grid on the plane and place so-called portals on the

grid lines (cf. Section 3.1). Roughly speaking, a solution to k-ETSP is portal-respecting if it

only intersects grid lines at portals and intersects every portal at most a constant number of

times (see Section 3.1 for a formal definition). Combining the ideas in [2] with Lemmas 2

and 3, we obtain the following result.

▶ Theorem 4. For every instance of 3-ETSP and ε > 0, either, there is a solution that is

a (1 + ε)-approximation and portal-respecting with respect to a suitable grid, or there is a

portal-respecting two-tour presolution that induces a
(

5
3 + ε

)

-approximation.

Theorem 4 allows us to restrict ourselves to finding portal-respecting solutions. The

last step is to show that such solutions can be computed in polynomial time using dynamic

programming. For this, we generalize the approach in [10] to any number of colors k while

simultaneously allowing for weighted tours. We denote this generalized problem by k-ETSP′

(see Section 4 for a formal definition).

▶ Theorem 5. For every k ∈ N, there is a polynomial-time algorithm that computes a

parametric solution Π(λ) to k-ETSP′ such that limλ→0 l (Π(λ)) = Opt
∗.

Here, a parametric solution is a function Π: (0, ∞) → ¶Π′ : Π′ is a solution♢ that con-

tinuously4 interpolates between solutions. Intuitively, the algorithm of Theorem 5 computes

the optimal combinatorial structure of a solution, i.e., the optimal order in which portals and

terminals are visited or bypassed, and the parameter λ sets the spacing between the tours.

Importantly, our solution allows to efficiently recover the (non-parametric) solution Π(λ) for

given λ > 0 and to compute Opt
∗.

Comparison to previous work. Our work is closely related to the papers by Dross et al. [10]

and Bereg et al. [5]. While each work adapts Arora’s algorithm [2], we have to overcome

significant additional difficulties. The main contribution of [5] is that Arora’s patching lemma

can be adapted to two Steiner trees, and three Steiner trees if one of them may use parts

of another. The main contribution of [10] is that Arora’s patching lemma can be adapted

to two TSP tours. In contrast to these two results, our patching procedure needs to be

4 For example, with respect to the Fréchet-distance on the space of curves, which is defined as follows: For
π1, π2 : [0, 1] → R

2, the Fréchet distance between π1 and π2 is dFr(π1, π2) := supt∈[0,1]∥π1(t) − π2(t)∥.

ESA 2024



15:4 A (5/3+ε)-Approximation for Tricolored Non-Crossing Euclidean TSP

more involved: in our setting we have to deal with more complex crossing patterns whose

mono-colored groups cannot be reduced to a single size (they were reduced to size 1 in [5]

and 2 in [10]), and we have to ensure that the modified tours remain connected (which is more

immediate in [5] and [10]) and that they remain Jordan curves (which is more immediate

in [10] and not needed in [5]). Additionally, in contrast to [10], we develop an alternative

approach when patching is not possible. We also generalize Arora’s dynamic program to any

number of weighted, portal-respecting tours, and its portal-snapping technique to arbitrary

arrangements of line segments.

Related work. Our results build upon the celebrated PTAS by Arora [2] for ETSP, which

was gradually improved [26, 3] to an EPTAS [20] with the running time proven tight under

the gap-ETH. The 2-ETSP problem also admits a gap-ETH tight EPTAS [10], which is

based on the techniques introduced in [2, 20], but relies on a more involved patching lemma

compared to the one in [2]. The authors of [10] claim that patching is unlikely to work for

the 3-ETSP problem (cf. Figure 2) and they leave it as a central open problem whether there

is a PTAS for 3-ETSP. We present a ( 5
3 + ε)-approximation algorithm that combines a new

patching method for three tours with a complementary approach for the case where patching

is not possible. We believe that our approach is applicable for a wider range of non-crossing

problems, for instance for the Red-Blue-Green-Yellow Separation problem (cf. [10]).

Interestingly, similar progress was earlier obtained for the problem of computing k pairwise

non-crossing Euclidean Steiner trees, one for each color of a k-colored set of terminals in the

plane. The k-Colored Non-crossing Euclidean Steiner Forest problem (k-CESF for short)

was introduced and studied in [11]. Later, Bereg et al. [5] showed a PTAS for 2-CESF and a

( 5
3 + ε)-approximation algorithm for 3-CESF, leaving the existence of PTAS for 3-CESF a

main open question. This may suggest that 5
3 could be some natural barrier for computing

three non-crossing curves interconnecting three point sets in the plane.

Other problems in geometric network optimization include the following: In the

k-Minimum Spanning Tree problem, we have to find a spanning tree connecting a sub-

set of size k of the terminals [6, 26]. In the k-Traveling Repairperson problem, we can use

k tours (that are allowed to intersect) to cover the terminals, objective to minimizing the

latency, i.e., the sum of the times at which a terminal is visited [8, 9, 13]. In the Traveling

Salesperson problem with neighbourhoods, the task is to find a shortest tour that visits at

least one point in each of a set of neighbourhoods [15, 22, 23, 28].

Moreover, the TSP problem has been extensively studied for other metric spaces. For

example, it is known that there is a PTAS in the case of a metric space of bounded doubling

dimension [4, 14]. On the other hand, it is known that a PTAS for general metric spaces does

not exist [19]. Currently, the best approximation algorithm known in general metric spaces

was suggested by Karlin et al. [17, 18], achieving an approximation factor of 1.5 − 10−36.

2 Two-tour presolutions

Recall that a two-tour presolution for 3-ETSP is a pair of disjoint closed curves (πcc′ , πc′′)

such that πcc′ visits all terminals in Tc ∪ Tc′ and πc′′ visits all terminals in Tc′′ for

some ¶c, c′, c′′♢ = ¶R, G, B♢, where ¶R, G, B♢ denotes throughout the paper the color set C

in the case of 3-ETSP, standing for red, green, and blue. In this section, let c′′ = B without

loss of generality. We first investigate how two-tour presolutions can be transformed into

solutions to 3-ETSP.
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2λ

Figure 3 On the left, we have a single curve πRG visiting all red and green points. On the right,

we have replaced πRG by two parametrized disjoint curves πR(λ) and πG(λ) with Fréchet-distance at

most λ to πRG, visiting the terminals of the corresponding color. In particular, the Fréchet-distance

between πR and πG is at most 2λ.

xx1 x2

y1 y2y

s

Figure 4 On the left, we are given a solution to 3-ETSP where the red and green tour are δ-close.

On the right, we see how the solution can be transformed into an induced two-tour solution.

For this, note that, if we are given a single tour πRG that visits all red and green terminals,

it is possible to replace it by two parametrized disjoint tours πR(λ) and πG(λ) that have

Fréchet-distance at most λ from πRG such that πR(λ), πG(λ) visit all red, respectively green,

terminals and limλ→0 l(πR(λ)) = limλ→0 l(πG(λ)) = l(πRG) (cf. Figure 3). Choosing λ > 0

small enough and considering the tours πR(λ), πG(λ), we obtain the following.

▶ Observation 6. Fix an instance of 3-ETSP and let πRG, πB be a two-tour presolution. For

every δ > 0, there is a solution to 3-ETSP of cost at most 2 · l(πRG) + l(πB) + δ, called an

induced two-tour solution.

Next, we show that, if the two shorter tours of a (1 + ε)-approximation for 3-ETSP are in

some sense close to each other, then there is a good two-tour presolution. However, note that

this is not a reduction to 2-ETSP: In 2-ETSP, the objective is to minimize l(πB) + l(πRG).

In our case, we need to minimize l(πB) + 2 · l(πRG), i.e., we need to solve a weighted variant

of 2-ETSP. We will see later that we can compute a (1 + ε)-approximation for this weighted

variant of 2-ETSP in polynomial time (cf. Theorem 15).

Recall that two tours are δ-close if they can be connected by a straight line segment of

length at most δ that does not intersect the third tour. The construction for proving the

following lemma is illustrated in Figure 4.5

▶ Lemma 7. Let Π = (πR, πG, πB) be a solution to a given instance of 3-ETSP and let δ > 0.

Wlog., let πB be the longest tour, i.e., l(πB) ≥ l(πR), l(πG). Assume that πR and πG are

δ-close. Then, there is a two-tour presolution (πRG, πB) with 2 · l(πRG)+ l(πB) ≤ 5
3 · l(Π)+8δ.

Note that applying Lemma 7 to a (1 + ε)-approximation with δ ≤ εOpt
∗/24 gives a

two-tour presolution (πRG, πB) with

2 · l(πRG) + l(πB) ≤ 5

3
· (1 + ε) · Opt

∗ + 8δ =



5

3
+

5

3
ε



· Opt
∗ + 8δ ≤



5

3
+ 2ε



· Opt
∗,

which completes the proof of Lemma 3.

5 This and all other missing proofs are deferred to the full version.

ESA 2024



15:6 A (5/3+ε)-Approximation for Tricolored Non-Crossing Euclidean TSP

3 Our structure theorem

In this section, we prove our structure theorem for 3-ETSP (cf. Theorem 4) which, roughly

speaking, states the following: For every ε > 0, either, there is a two-tour presolution that

induces a
(

5
3 + ε

)

-approximation, or there is a (1 + ε)-approximate solution that fulfills some

additional constraints (or both). Later, we will see that it is possible to find a good solution

that fulfills these additional constraints and a good two-tour presolution in polynomial time.

Our final algorithm for 3-ETSP will preprocess the input such that the terminals remain

distinct points and have integer coordinates. This allows us to assume throughout this section

that terminals lie in ¶0, . . . , L♢2 for some integer L that is a power of 2. As the problem

is not interesting for small L, we also assume L ≥ 4 whenever necessary. In Section 5, we

explain in more detail how we preprocess the input and show that a near-optimal solution to

the preprocessed input can be transformed in polynomial time to a near-optimal solution to

the original input.

Following [10], we assume without loss of generality that, for every ε > 0 and δ > 0, there is

a (1+ε)-approximate solution to 3-ETSP whose tours consist of straight line segments, where

each segment connects two points that each are at distance at most δ from a terminal. To see

this intuitively, interpret each tour of a solution as a sequence of terminals to visit or bypass.

The cheapest way to realize such a sequence is by straight line segments with endpoints

arbitrarily close to terminals (cf. Figure 1). For this reason, we will assume from now on that

all tours that we work with consist of such straight line segments. Since we assume in this

section that terminals lie in ¶0, . . . , L♢2, we have in particular, that the straight line segments

have endpoints in Nδ

(

¶0, . . . , L♢2
)

, where Nδ(A) := ¶x : ∥x − a∥ < δ for some a ∈ A♢
denotes the δ-neighbourhood of a set A.

3.1 Dissection and portals

In this subsection, we place a suitable grid on the Euclidean plane and place some portals

on it through which the tours will later be allowed to cross the grid lines. For this, we

follow the definitions as in [2]. The aforementioned additional constraints for the (1 + ε)-

approximate solution in Theorem 4 strongly relate to this construction and are crucial for

efficient computation.

Fix an instance of k-ETSP with T ⊆ ¶0, . . . , L♢2 where L is a power of two. We pick a

shift vector a = (a1, a2) ∈ ¶0, . . . , L − 1♢2 and consider the square

C(a) :=



−a1 − 1

2
, 2L − a1 − 1

2



×


−a2 − 1

2
, 2L − a2 − 1

2



,

i.e., C(a) is the square [0, . . . , 2L]2 shifted by −a − (0.5, 0.5). Note that C(a) contains every

terminal.

The dissection D(a) is a full 4-ary tree defined as follows (illustrated in Figure 5): Each

node is a square in R
2. The root of D(a) is C(a). Given a node S of the tree of side length

more than one, we partition S into four smaller equal sized squares and these define the four

children of S. If S has side length one, it is a leaf. Note that this is well-defined because L is

a power of two.6

Given a square S, we define its border edges to be the unique four straight line segments

bounding it and we define its border ∂S to be the union of the border edges.

6 In previous work, the well-known quad-trees are defined as a subtree of the dissection, on which the
dynamic program of [2] is based, which however we do not rely on in this work.
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2L

vertical grid lines



−a1 − 0.5
−a2 − 0.5



C(a)

level 1

level 2

level 2

level 3

level 3

level 3

level 3

Figure 5 The figure on the left illustrates the dissection D(a) with L = 4, a = (1, 0). The dashed

lines denote ∂[0, L]2. The three pink lines are examples of boundaries of levels one, two, and three.

The levels of all horizontal grid lines are indicated. We have placed 4 portals on every boundary,

represented as circles. For better overview, we have drawn only one portal at endpoints of boundaries.

Note that the endpoint of a boundary is actually contained in up to four portals. This is illustrated

on the right hand side, where the exact portal placement of the marked orange area is given.

A grid line is either a horizontal line containing (0, −a2 − 0.5 + k) or a vertical line

containing (−a1 − 0.5 + k, 0) for some k ∈ ¶1, . . . , 2L − 1♢. Note that every border edge of a

square in D(a) is either contained in a grid line or contained in a border edge of C(a) (which

is not on a grid line). Since terminals have coordinates in Z and grid lines have coordinates

in 0.5 + Z, no terminal lies on a grid line. More precisely, every terminal lies exactly in the

center of a leaf of D(a).

A boundary is a border edge of a non-root node in D(a) not contained in another border

edge (see Figure 5 for an example). Observe that its length is 2L
2i for some i ∈ ¶1, . . . , log(2L)♢.

Then, we define its level as i. Note that a grid line only contains boundaries of the same level so

we can define the level of a grid line as the level of the boundaries that it contains (cf. Figure 5).

If two boundaries (or grid lines) of level i and j are given with i < j, we say that level j is

deeper than level i (resembling the property that the corresponding boundary belongs to a

node that is deeper in the dissection), and level i is shallower than level j.

Observe that there is precisely one vertical (respectively horizontal) grid line of level one

and, for every i ∈ ¶1, . . . , log(2L) − 1♢, there are twice as many grid lines of level i + 1 as

grid lines of level i. In total, there are 2L − 1 horizontal and 2L − 1 vertical grid lines. With

this, we immediately obtain the following property.

▶ Observation 8. Let g be either a vertical line containing point (k − 0.5, 0) or a horizontal

line containing point (0, k − 0.5) for some k ∈ ¶1, . . . , L♢. Consider the dissection D(a) for

a vector a ∈ ¶0, . . . , L − 1♢2 chosen uniformly at random. Then, g is a grid line with respect

to D(a), and, for every i ∈ ¶1, . . . , log(2L)♢, we have

Pra(the level of g is i) =
2i−1

2L − 1
.

ESA 2024



15:8 A (5/3+ε)-Approximation for Tricolored Non-Crossing Euclidean TSP

µ
µ

Figure 6 On the left, the red and blue tour cross a boundary outside of a portal and the green tour

crosses in an intersection of grid lines. On the right, the tours are modified in a µ-Neighbourhood of

the grid line such that they are still non-crossing, only cross boundaries at portals and do not cross

in intersections of grid lines.

A δ-portal (or, in short, portal) on a straight line segment is a subsegment of length

δ ∈ (0, 1). Given a segment s, we define grid(s, k, δ) as the set of k equispaced δ-portals on s

such that the endpoints of s are contained in the first and last δ-portal respectively.

We place portals on D(a) as follows: We will choose a large enough integer r ∈ N (called

the portal density factor) and δ > 0 (the portal length) small enough. Then, for every

boundary b, we place the portals grid(b, r log L, δ) on b (cf. Figure 5). Note hereby that

log L ∈ N because L is a power of two. Observe that, on a deeper level boundary, portals are

placed more densely, which will turn out to be a key property.

3.2 Snapping non-crossing curves to portals

In this subsection, we show that disjoint tours can be modified so that they only intersect

grid lines in portals, without increasing their lengths too much. To prove this, we follow the

same ideas as in [2, Section 2.2]. Nevertheless, the snapping technique in [2, Section 2.2]

needs some adaptation to work in the setting of non-crossing curves. This technique was

used in previous work for pairs of non-crossing tours [10] and for Steiner trees [5]. Here, we

provide a unified framework for this technique, which may be of wider interest and can be

applied to a variety of non-crossing Euclidean problems.

In the following, if s = x1x2 is a straight line segment, we let s◦ := s \ ¶x1, x2♢. This

allows us to specify more precisely where the segments are allowed to intersect. In particular,

if we require that s◦
1 and s◦

2 are disjoint for two segments s1 and s2, they are allowed to share

an endpoint.

▶ Lemma 9. Let S = ¶s1, . . . , sm♢ be a finite set of straight line segments in the Euclidean

plane such that each si connects two points in N 1

4

(

¶0, . . . , L♢2
)

and assume L ≥ 4. Choose a

vector a ∈ ¶0, . . . , L − 1♢2 uniformly at random and consider the dissection D(a). For every

portal density factor r ∈ N \ ¶0♢, portal length δ ∈ (0, 1), and δ′ > 0, there is a set of curves

S ′ = ¶s′
1, . . . , s′

m♢ (not necessarily straight line segments) such that

a) s′
i differs from si only in Nδ′(G) where G denotes the union of all grid lines in D(a),

b) if the segments s◦
i are pairwise disjoint, then the curves (s′

i)
◦ are pairwise disjoint as well,

c) every s′
i intersects every boundary b of D(a) only in the portals grid(b, r log L, δ), i.e.,

s′
i ∩ b ⊆ grid(b, r log L, δ),

d) no s′
i contains an intersection point of two grid lines, i.e., g1 ∩ g2 ∩ s′

i = ∅ for every

i ∈ ¶1, . . . , m♢ and grid lines g1 ̸= g2,

e) the curves of S ′ intersect the grid lines in finitely many points,

f) Ea [l(S ′) − l(S)] ≤ 7
√

2 · l(S)
r , where l(S) :=

∑

s∈S
l(s).

Proof sketch. We apply the modifications illustrated in Figure 6 one by one on every

boundary. When estimating the cost of these modifications, we make use of the fact that, on

a boundary of a deeper level, the portals are placed more densely and, by Observation 8, given
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s s

Figure 7 Illustration of the patching scheme in [2] for a single tour: On the left, we are given a

tour π intersecting the segment s in six points. On the right, we see how the tour can be modified

such that the number of crossings is at most two and the length of is increased at most by 3 · l(s).

a fixed line intersected by S, the probability that it is of a shallower level in D(a) is small.

The total cost of the modifications in Figure 6 depends on the total number of intersection

points with grid lines. Therefore, the last step is to relate the number of intersection points

to l(S), making use of the fact that S consists of straight lines segments connecting points

close to ¶0, . . . , L♢2. ◀

3.3 The patching technique for three disjoint tours

In the previous section, we have seen that a (reasonable) solution to k-ETSP can be modified

such that it only intersects grid lines in portals. In this section, we investigate how the tours

can further be modified to reduce the number of intersection points per portal. This will be

important for our algorithm because it considers all possible ways that a solution can cross

the squares of D(a) through the portals. To obtain a reasonable running time, we need a

constant bound on the number of crossings. As briefly explained in the introduction, we

cannot hope to show this for every solution, even for k = 3 (cf. Figure 2). Therefore, we

restrict ourselves to 3-ETSP and show the desired properties for this problem under some

additional assumptions.

Before delving into the proof, let us introduce some useful notation and establish the

prerequisites. Let πR, πG, πB be a solution to an instance of 3-ETSP and s be a straight line

segment such that πc ∩ s consists of finitely many distinct points for all c ∈ ¶R, G, B♢. Then

we say that s is non-aligned to the solution and we call the points in
⋃

c∈C πc ∩ s crossings.

We define an order on the crossings by rotating the plane such that s is parallel to the x-axis

and then ordering them by their x-coordinates. This allows us to speak of a crossing to

be “next to” or “in between” other ones. The color of a crossing x, denoted c(x), is d if

x ⊆ s ∩ πd. With this, we can classify the occurring patterns by sequences of the three colors

and we call this a crossing pattern. For example, if x1, . . . , x6 denote the ordered crossings,

by the crossing pattern RRGGBB, we mean that c(x1) = c(x2) = R, c(x3) = c(x4) = G and

c(x5) = c(x6) = B.

Our work builds on existing results for one and two tours. Arora [2] showed that the

number of crossings of a single tour with a line segment can be reduced as follows (cf. Figure 7).

▶ Lemma 10 (Arora [2]). Let π be a closed curve and s be a non-aligned straight line segment.

For every δ > 0, there is a curve π′ differing from π only inside Nδ(s) such that ♣s ∩ π′♣ ≤ 2

and l(π′) ≤ l(π) + 3 · l(s).

Dross et al. [10] proved that the number of crossings between two disjoint tours and a

straight line segment s can be reduced to a constant number, at additional cost O(l(s)).

Here, we only need the two-color patching schemes for the two special crossing patterns given

in the following result. To see why the following lemma holds, one can carefully investigate

the proof in [10] or observe that the scheme illustrated in Figure 8 works as desired.
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Figure 8 Illustration of the patching scheme for the crossing pattern BRRBBRR, see also [10].

Observe that the connections illustrated by dashed lines must exist (up to symmetry).

(a) (b) (c)

Figure 9 Impossible connections of the blue groups.

▶ Lemma 11 (Dross et al. [10]). Let πc, πd be disjoint closed curves and s be a non-aligned

straight line segment. Assume the crossing pattern is given by cddccdd. For every δ > 0,

there are disjoint closed curves π′
c, π′

d differing from πc and πd only inside Nδ(s) such that

the new crossing pattern is cdd, and l(π′
c) + l(π′

d) ≤ l(πc) + l(πd) + 4 · l(s).

Now, we have all the prerequisites in place to give a patching procedure in the case

that no red crossing is next to a green crossing on the considered segment (or for any other

other choice of two colors), i.e., to prove Lemma 2. For this, we first give a more precise

formulation of Lemma 2.

▶ Lemma 12 (Tricolored Patching). Let πR, πG, πB be disjoint closed curves and s be a

non-aligned straight line segment. Assume that, in the crossing pattern on s, there is no red

crossing next to a green crossing. Then, for every δ > 0, there are disjoint closed curves

π′
R, π′

B, π′
G such that

a) for all c ∈ ¶R, G, B♢, πc differs from π′
c only inside Nδ(s),

b) ♣(s ∩ π′
R) ∪ (s ∩ π′

B) ∪ (s ∩ π′
G)♣ ≤ 18,

c) l(π′
R) + l(π′

G) + l(π′
B) ≤ l(πR) + l(πG) + l(πB) + 75 · l(s).

Proof sketch. We modify the three curves in several steps to reduce the number of crossings

with s. We arrange the crossings into groups, where a group is a maximal set of consecutive

monochromatic crossings. The road map for our proof is roughly as follows:

First, we reduce the number of crossings inside a group by applying Lemma 10 so that

each group consists of either one or two crossings. Next, we show that all green and red groups

consist of two crossings, except for possibly the first and last group along the segment s.

Then, we further simplify the occurring patterns by applying Lemma 11, eliminating longer

sequences where only two of the three colors appear. As a next step, we argue that, after these

reductions, it is only left to eliminate crossing patterns of the form GGB∗RRB∗GGB∗RR,

where B∗ ∈ ¶B, BB♢.

To eliminate occurrences of this pattern, we will cut the tours open close enough to s and

reconnect them. However, we must ensure that this does not disconnect the tours. For this,

we investigate how the crossings are connected via the tours outside of Nδ(s) and we show
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Figure 10 Patching scheme for three non-crossing tours in the two considered crossing patterns.

that the connections illustrated by the dashed lines in Figure 10 must exist (up to symmetry),

which is the technically most involved part of our proof. To prove the existence of these

connection, we carefully investigate all possible ways that the crossings can be connected.

We argue that (some combinations of) the connections illustrated in Figure 9 cannot exist

and that this implies the existence of the desired connections.

Then, one can observe that modifying the tours as illustrated in Figure 10 gives three

closed curves with a reduced number of crossings with s. We apply this modification

repeatedly whenever the crossing pattern GGB∗RRB∗GGB∗RR (B∗ ∈ ¶B, BB♢) appears

while simultaneously redirecting the new crossings towards the right endpoint of s. This will

ensure that we do not occur an additional cost of O(l(s)) for every application of the scheme,

but rather a cost of O(l(si)) for some almost non-overlapping subsegements si of s.

The last step is to argue that every crossing pattern that does not contain the described

subpatterns consists of at most 18 crossings. ◀

3.4 Structure theorem for three non-crossing tours

Now, we have all the prerequisites in place to state and prove our structure theorem

(cf. Theorem 4) for three non-crossing tours.

For this, given an instance of k-ETSP with terminals in ¶0, . . . , L♢2 and a shift vector

a ∈ ¶0, . . . , L − 1♢2, we say that a solution Π = (πc)c∈C is (r, m, δ)-portal respecting if, for

every boundary b in D(a), the intersection points b∩⋃

c∈C πc are contained in the the portals

grid(b, r log L, δ) and every portal is intersected in at most m points in total.

▶ Theorem 13 (Structure Theorem for 3-ETSP). Let an instance of 3-ETSP with T ⊆
¶0, . . . , L♢2 and ε > 0 be given. Then there exists a shift vector a ∈ ¶0, . . . , L − 1♢2

and δ > 0 such that there is either a (⌈(15
√

2 + 4)/ε⌉, 18, δ)-portal respecting solution of

cost at most (1 + ε) · Opt
∗, or there is a (⌈(15

√
2 + 4)/ε⌉, 18, δ)-portal respecting two-tour

presolution (π1, π2) with 2l(π1) + l(π2) ≤
(

5
3 + ε

2

)

· Opt
∗.

Proof sketch. First, we move all crossings to portals by applying Lemma 9. Then, we

consider boundaries b one by one in non-decreasing order of their levels and apply patching

(Lemma 12). Note that patching can create new crossings on another boundary perpendicular

to b. We argue that such a boundary is of a deeper level so that it has not been modified

yet. Since we can choose the portal-length δ arbitrarily small, the total cost of patching is

negligible. ◀
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Recall that, given a two-tour presolution, one can “double” one of the tours to ob-

tain an induced two-tour solution for 3-ETSP (cf. Observation 6). Applying this to a

(⌈(15
√

2 + 4)/ε⌉, 18, δ)-portal respecting two-tour presolution obtained from Theorem 13,

this gives a (⌈(15
√

2 + 4)/ε⌉, 36, δ)-portal respecting solution for 3-ETSP. Combining this

with Theorem 13, we obtain the following.

▶ Corollary 14. For every instance of 3-ETSP with terminals in ¶0, . . . , L♢2 and ε > 0, there

is a shift vector a ∈ ¶0, . . . , L − 1♢2 and δ > 0 such that there exists a (⌈(15
√

2 + 4)/ε⌉, 36, δ)-

portal respecting solution of cost at most
(

5
3 + ε

)

· Opt
∗.

4 A dynamic programming algorithm

In the previous section, we have seen that there is a
(

5
3 + ε

)

-approximate portal-respecting

solution. In this section, we give a polynomial-time algorithm that computes an “optimal”

(in the sense of Theorem 5) portal-respecting solution.

Our algorithm is based on the same ideas as Arora’s dynamic programming algorithm for

Euclidean TSP [2] and the algorithm by Dross et al. for 2-ETSP [10]. The difference to our

work is that we need to solve a more general problem: First, we allow for any fixed number

of colors of terminals and search for non-crossing tours. Second, we have weighted colors,

i.e., the tours of different colors contribute differently to the total cost.

More precisely, by k-ETSP′ we denote the following problem: a set C of k colors is given

together with an integer L that is a power of two. The input consists of a set of terminals

Tc ⊆ ¶0, . . . , L♢2 for each color c ∈ C, a color weight wc ≥ 0 for each c ∈ C, a shift vector

a ∈ ¶0, . . . , L − 1♢2, δ > 0 (sufficiently small) and two integers r, m ∈ N. We consider the

dissection D(a) and, as before, we place r log L portals on every boundary. A solution to

k-ETSP′ is a k-tuple of tours Π = (πc)c∈C such that every terminal is visited by the tour of the

same color (i.e., Tc ⊆ πc for every c ∈ C), the tours are pairwise disjoint, and (r, m, δ)-portal

respecting. The cost of a solution for k-ETSP′ is then l(Π) :=
∑

c∈C wc · l(πc). Similarly

as for k-ETSP (cf. Figure 1), a solution minimizing the cost does not necessarily exist. By

Opt
∗ := inf¶l(Π)) : Π is a solution♢, we denote the value that we want to approximate.

The aim of this section is to prove the following theorem.

▶ Theorem 15. There is an algorithm that computes a parametric solution Π(λ) to k-ETSP′

in time LO(mr log k) such that limλ→0 l (Π(λ)) = Opt
∗.

Proof sketch. The main idea is to use dynamic programming. More precisely, we consider

the nodes of D(a) (i.e., squares in R
2) one by one from leaves to the root and compute all

possible ways that a solution can cross the border of the square (the so-called multipath

problem). For a non-leaf node, we will find these possibilities by combining the solutions for

the four subsquares. ◀

5 Perturbation

In the previous section, we have focused on solving 3-ETSP when the terminals have integer

coordinates. In this section, we show how an input for general 3-ETSP can be preprocessed

such that we only have to solve an instance with terminals in Z
2 and how a solution to the

preprocessed instance can be transformed back into a solution to the original instance. For

this, we use similar ideas as in [2]. Note that, if the terminal sets of different colors are in

some sense far away from each other, we can find a tour for each color separately such that

they are are disjoint. More precisely, we call an instance to 3-ETSP ε-reducible, if there is
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a choice of the three colors ¶c, c′, c′′♢ = ¶R, G, B♢ such that, when applying the algorithm

in [10] on Tc, Tc′ (with the given ε), and, independently appylying Arora’s algorithm [2]

on Tc′′ , the resulting tours are disjoint and, therefore, provide a (1 + ε)-approximation for

3-ETSP. For this reason, we restrict ourselves to instances that are non-reducible.

▶ Theorem 16. Let ε > 0 and I be a non-ε-reducible instance of 3-ETSP.

a) There is an algorithm Perturbation that has running time O(n2) and returns an

instance I ′ of 3-ETSP with terminals in ¶0, . . . , L♢2 where L = O(n/ε) is a power of two.

b) There is an algorithm Back-Perturbation that has running time O(n2) and, given a

(1 + ε′)-approximate solution to the instance I ′, returns a (1 + ε′ + O(ε))-approximate

solution to the instance I.

Proof sketch. The main idea for the algorithm Perturbation is the following: Choose a

square S of minimum size containing all terminals and place a grid in S with O(n/ε) many

grid lines. Then, snap each terminal to a close enough intersection point of these grid lines

without moving two terminals of different colors to the same point.

For Back-Perturbation, include a doubled straight line segment between terminals of

the original instance and the solution to the perturbed instance. If such a segment crosses

the other two tours, apply patching and then replace each crossing by a detour around the

segment. ◀

6 A (5

3
+ ε)-approximation algorithm for 3-ETSP

We have all the prerequisites in place to prove our main result. We begin by recalling the

theorem.

▶ Theorem 1 (restated). For every ε > 0, there is an algorithm that computes a
(

5
3 + ε

)

-

approximation for 3-ETSP in time ( n
ε )O(1/ε).

Proof sketch. It is straightforward how to check whether an instance is ε-reducible and

how we can find a solution in that case. Therefore, assume we are given a non-reducible

instance. First, we apply algorithm Perturbation to the instance. By Corollary 14, there is

a portal-respecting solution to the perturbed instance I ′ that gives a
(

5
3 + ε′

)

-approximation

(where we need to choose ε′ to be ε divided by a large enough constant). Therefore, we can

apply Theorem 15 to compute a
(

5
3 + ε′

)

-approximate portal-respecting solution to I ′. Last,

we apply Back-Perturbation to the solution. ◀
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